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UNSTEADY BOUNDARY LAYER FLOW AND HEAT TRANSFER
OVER A STRETCHING SHEET: HEAT FLUX CASE‡

CORNELIA REVNIC∗, TEODOR GROŞAN† and IOAN POP†

Abstract. Unsteady two-dimensional boundary layer flow and heat transfer
over a stretching flat plate in a viscous and incompressible fluid of uniform am-
bient temperature is investigated in this paper. It is assumed that the velocity
of the stretching sheet and the heat flux from the surface of the plate vary in-
verse proportional with time. Two equal and opposite forces are impulsively
applied along the plate so that the plate is stretched keeping the origin fixed.
Using appropriate similarity variables, the basic partial differential equations are
transformed into a set of two ordinary differential equations. These equations
are solved numerically for some values of the governing parameters using the
Runge-Kutta method of fourth order. Flow and heat transfer characteristics are
determined and represented in some tables and figures. It is found that the struc-
ture of the boundary layer depends on the ratio of the velocity of the potential
flow near the stagnation point to that of the velocity of the stretching surface.
In addition, it is shown that the heat transfer from the plate increases when
the Prandtl number increases. The present results to include also the steady
situation as a special case considered by other authors. Comparison with known
results is very good.
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1. INTRODUCTION

The study of unsteady boundary layer flow is important in several phys-
ical problems in aero-nautics, missile dynamics, acoustics etc. The work in
this area was initiated by Moore [12], Lighthill [5] and Lin [7]. Reviews of
unsteady boundary layers were presented by Stuart [17], Riley [15], Telionis
[22], [23] and Pop [14]. In recent years certain aspects of the unsteady flows
were investigated by Ma and Hui [9] and Ludlow et al. [8] using the classical
method of Lie-group. The essence of the Lie-group method is that each of the
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variables in the initial equation is subjected to an infinitesimal transformation
and the demand that the equation is invariant under these transformations
leads to the determination of the possible symmetries (see Ludlow et al. [8]).
The fundamental governing equations of fluid mechanics are the Navier-Stokes
equations. This inherently nonlinear set of partial differential equations has
no general solution, and only a small number of exact solutions have been
found (see Wang [20]). Exact solutions are important for the following rea-
sons; (i) the solutions represent fundamental fluid-dynamic flows. Also, owing
to the uniform validity of exact solutions, the basic phenomena described by
the Navier-Stokes equations can be more closely studied. (ii) The exact solu-
tions serve as standards for checking the accuracies of the many approximate
methods, whether they are numerical, asymptotic, or empirical.

Flow of a viscous fluid over a stretching sheet has an important bearing on
several technological processes. In particular in the extrusion of a polymer
in a melt-spinning process, the extruded from the die is generally drawn and
simultaneously stretched into a sheet which is then solidified through quench-
ing or gradual cooling by direct contact with water. Further, glass blowing,
continuous casting of metals and spinning of fibres involve the flow due to
a stretching surface, see Lakshmisha et al. [4]. In all these cases, a study
of the flow field and heat transfer can be of significant importance since the
quality of the final product depends to a large extent on the skin friction
coefficient and the surface heat transfer rate. Crane [2] presented a simple
closed form exponential solution of the steady two-dimensional flow caused
solely by a linearly stretching sheet in an otherwise quiescent incompressible
fluid. The simplicity of the geometry and the possibility of obtaining further
exact solutions through simple generalizations have generated a lot of interest
in extending it to more general situations. Such extensions include considera-
tion of more general stretching velocity, application to non-Newtonian fluids,
and inclusion of other physical effects such as suction or blowing, magnetic
fields, etc. Unsteady two-dimensional boundary layer flow over a stretching
surface has been studied by Na and Pop [13], Wang et al. [21], Elbashbeshy
and Badiz [3], Sharidan et al. [16] and Ali and Magyari [1], while Lakshmisha
et al. [20], Devi et al. [18] and Takhar et al. [19] have considered the unsteady
three-dimensional flow due to the impulsive motion of a stretching surface.

The aim of this analysis is to study the unsteady flow and heat transfer in the
stagnation-point flow on a stretching surface in a viscous and incompressible
fluid when the sheet is stretched in its own plane with a velocity proportional
to the distance from the stagnation-point and inversely with time and the
velocity of the external flow (inviscid fluid) is also proportional with the dis-
tance along the plate and inversely with time. The geometry is similar to that
proposed by Mahapatra and Gupta [10], [11] for the steady two-dimensional
stagnation-point flow towards a stretching sheet. The parabolic partial dif-
ferential equations governing the flow and heat transfer have been reduced
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to a system of two ordinary differential equations which are solved using an
implicit finite-differential scheme in combination with the shooting method.

2. PROBLEM FORMULATION

We consider the unsteady two-dimensional forced convection flow and heat
transfer of a viscous and incompressible fluid near a stagnation point at a
surface coinciding with the plain y = 0, the flow being confined to y > 0.
Two equal and opposite forces are applied along the x - axes at the time
t = 0, so that the surface is stretched keeping the origin fixed as shown in
Fig.1. It is assumed that viscous dissipation effects are neglected. Under
these assumptions, the system of unsteady boundary layer equations are given
by

∂u

∂x
+ ∂v

∂y
= 0(1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ∂ue

∂t
+ ue

due
dx

+ ν
∂2u

∂y2(2)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2(3)

subject to the initial and boundary conditions of the form:

t ≥ 0 : u = uw(t, x), v = 0, ∂T
∂y

= −qw(t)
k

for y = 0(4)

u→ ue(t, x), T → T∞ as y →∞(5)

where u and v are the velocity components along the x− and y− axes, T is
the fluid temperature, qw(t) is the heat flux at the plate, ν is the kinematic
viscosity, α is the thermal diffusivity and k is the thermal conductivity. Fol-
lowing Takhar et al. [19] we assume that uw(t, x), ue(t, x) and qw(t) are given
by

(6) uw(t, x) = c

1− αtx, ue(t, x) = a

1− αtx, qw(t) = qw0
(1− αt)1/2

where c and a are positive constants. Equations (1)-(3) can be transformed to
the corresponding ordinary differential equations using the following similarity
variables:

ψ =
(

cν

1− αt

)1/2
xf(η),(7)

θ(η) = (T − T∞) k

qw0

(
c

ν

)1/2
,(8)

η =
(

c

ν(1− αt)

)1/2
y(9)
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Fig. 1. Physical model and coordinate system.

where qw0 is the characteristic heat flux and ψ is the stream function which is
defined in the usual way as u = ∂ψ/∂y and v = −∂ψ/∂x.
Substituting (6) into Eqs. (2) and (3), we obtain the following set of two
ordinary differential equations:

f ′′′ + f f ′′ + a2

c2 − f
′ 2 + α

c

(
a

c
− f ′ − η

2f
′′
)

= 0(10)

1
Pr

θ′′ + f θ′ − α

2cηθ
′ = 0(11)

subject to the boundary conditions (4) which become

f(0) = 0, f ′(0) = 1, θ′(0) = −1(12)

f ′(∞) = a

c
, θ(∞) = 0(13)

where Pr is the Prandtl number and primes denote differentiation with respect
to η.
The physical quantities of interest are the skin friction coefficient Cf = τw

ρu2
ws

and the temperature of the wall Tw, where uws(x) = cx, and τw is the skin
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friction, given by

(14) τw = µ

(
∂u

∂y

)
y=0

with µ being the dynamic viscosity. Using (6), we get

(1− αt)−1/2Re1/2
x Cf = f ′′(0),(15)

(Tw − T∞)qw0
k

(
ν

c

)1/2
= θ(0)(16)

Where Re = (cx)x/ν is the local Reynolds number. It is important to notice
that for the steady-state, Eqs. (7) and (8) reduce to

f ′′′ + f f ′′ − f ′ 2 + a2

c2 = 0(17)
1
Pr

θ′′ + f θ′ = 0(18)

with the boundary conditions

f(0) = 0, f ′(0) = 1, f ′(∞) = a

c
(19)

θ′(0) = −1, θ(∞) = 0(20)

On the other hand, Eq. (18) subject to the boundary condition (20) for θ
is given by

(21) θ(η) =
∫ ∞

0
exp

(
− Pr

∫ η

0
f(t)dt

)
dη −

∫ η

0
exp

(
− Pr

∫ s

0
f(t)dt

)
ds

3. SOLUTION

The systems of ordinary differential equations (10)–(11) subject to the
boundary condition(12)–(13) and (17)–(18) subject to the boundary condi-
tion (19)–(20) have been solved numerically for some values of the parameters
a/c and Pr when α = −1 using Runge-Kutta method of fourth order com-
bined with the shooting technique. Some values of f ′′(0) obtained by solving
Eq.(17), which correspond to the steady-state flow case are given in Table 1
for different values of the parameter a/c. The values reported by Mahapatra
and Gupta [10] are also included in this table. We can see that there is a very
good agreement between our results and those obtained by Mohapatra and
Gupta [10].

Figs.(2)–(4) show the velocities profiles f ′ and f for the case of unsteady
flow. The values of the parameters are a = {3, 2, 0.5, 0.2, 0.1}, c = 1. The
corresponding streamlines for these two solutions are presented in Figs.(6) and
(7) for the time step t = {0, 1, 2, 3}. It is interesting to notice that the so-
lution of Eq. (10) is not unique. Thus, there are two solutions, one (2) and
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Table 1. Values of f ′′(0) for some values of a/c when the flow is steady; ( ) values reported
by Mohapatra and Gupta [10].

a/c 0.10 0.20 0.50 2.00
f ′′(0) −0.9696 −0.9182 −0.6673 2.0175
f ′′(0) (−0.9694) (−0.9181) (−0.6673) (2.0175)

(3) representing an attached flow and the authors (4) and (5) representing the
reversed flow, respectively. This is in agreement with the results obtained by
Ma and Hui [9] for the unsteady two-dimensional boundary layer flow near a
stagnation point on a fixed flat plate. Therefore, we are confident that the
present results are accurate.
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Fig. 2. The first solution of f ′ for some valuers of a/c.
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Fig. 3. The first solution of f for some valuers of a/c.
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Fig. 4. The second solution of f ′ for some valuers of a/c.

Some values of the wall temperature θ(0) = θw described by Eq.(18) for
different values of the Prandtl number (Pr) are given in Table 2. Also, the
variation of θw with Pr in this case, is shown in Fig. 8 when a = 0, and c = 1.
It is seen that θw decreases with the increasing of Pr, which is in agreement
with the results reported by Lin and Chen [6]. Further, Figs. 9 and 10 show the
temperature profiles θ(η) given by Eq. (11) for a/c = 2 respectively, a/c = 0.1
and for different values of Pr. It is evident from these figures that an increase
in Pr results in a decrease in the thermal boundary layer thickness.
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Fig. 5. The second solution of f for some valuers of a/c.
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Fig. 6. The streamlines for: t = 0, 1, 2, 3 corresponding to the first solution.
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Fig. 7. The streamlines for: t = 0, 1, 2, 3 corresponding to the second solution.

θw

Pr Numerical

0.05 4.1277
0.5 1.7717
0.72 1.4770
1 1.2533
1.5 1.0233

4. CONCLUSION

The unsteady two-dimensional stagnation-point flow and heat transfer of
an incompressible fluid over a stretching flat plate in its own plane has been
numerically analyzed in detailed. The case of variable heat flux from the wall
is considered. Following Takhar [19] similarity variables where used to reduce
the governing partial differential equations to ordinary differential equations.
Solving numerically these equations, we have been able to determine the veloc-
ity, temperature profile, skin friction and temperature at the wall. For the case
of steady-state flow, we have compared our results with those of Mahapatra
[10]. The agreement between the results is very good. Effects of a/c and Pr
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Fig. 8. The solution of θ(0) in respect with Prandtl number for the particular equation.
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Fig. 9. Temperature profiles of θ(η) for several values of Pr and a/c = 2 in respect with η.

on the flow and heat transfer characteristic have been examined and discussed
in detail. It is shown that for small values of a/c the solution of the ordinary
differential equation is not unique. One solution represents an attached flow
and the other one a reversed flow. It is worth mentioning that solutions of the
problem for more values of the governing parameters have been determined.
However, in order to save space we have present results here only for some
values of these parameters.
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Fig. 10. Temperature profiles of θ(η) for several values of Pr and a/c = 0.1 in respect with
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