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ORDER 1 AUTOREGRESSIVE PROCESS OF FINITE LENGTH ‡
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Abstract. The stochastic processes of finite length defined by recurrence rela-
tions request additional relations specifying the first terms of the process analo-
gously to the initial conditions for the differential equations. As a general rule, in
time series theory one analyzes only stochastic processes of infinite length which
need no such initial conditions and their properties are less difficult to be deter-
mined. In this paper we compare the properties of the order 1 autoregressive
processes of finite and infinite length and we prove that the time series length
has an important influence mainly if the serial correlation is significant. These
different properties can manifest themselves as transient effects produced when
a time series is numerically generated. We show that for an order 1 autoregres-
sive process the transient behavior can be avoided if the first term is a Gaussian
random variable with standard deviation equal to that of the theoretical infinite
process and not to that of the white noise innovation.
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1. INTRODUCTION

The purpose of the statistical processing of time series is to find a stochastic
model which can generate time series having the same statistical properties
as the observed series. One of the most common statistical model is the au-
toregressive moving average (ARMA) process having many applications in
economy, finance, signal theory, geophysics, etc. [4]. Lately, especially the
applications of the autoregressive (AR) models have become more frequent
in physics as well. For example they are used in the analysis of the wind
speed fluctuations [7], radar signals [5], climatic phenomena variability [13],
electroencephalographic activity [12], heart interbeat time series [6], the daily
temperature fluctuations [10], X-ray emmision from the active galactic nuclei
[17], sunspots variability [15], etc. As a result of their simple mathematical
properties and their direct physical interpretation, the realizations of AR(1)
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processes have been used as artificial series to analyze some numerical algo-
rithms for monotonic trend removal [18], some surrogate data test for nonlin-
earity [11] or for renormalization group analysis [1].

A stochastic process {Xt, t = 0,±1,±2, ...} is called autoregressive process
of order p, denoted AR(p), if {Xt} is stationary and for any t we have

(1) Xt − φ1Xt−1 − ...− φpXt−p = Zt ,

where {Zt} is a Gaussian white noise with zero mean and variance σ2, and
φ1, φ2, ..., φp are real constants. The above relation may be rewritten in the
compact form φ(B)Xt = Zt where

(2) φ(z) = 1− φ1z − ...− φpzp

and B is the shift operator, BXt = Xt−1. Equation (1) has a unique solution
if the polynomial (2) does not vanish for |z| = 1 [2]. If in addition φ(z) 6= 0 for
all |z| < 1, then the process is causal, i.e., there exists a sequence of constants
{ψj} such that

∑∞
j=1 |ψj | <∞ and

(3) Xt =
∞∑
j=0

ψjZt−j , t = 0,±1, ...

Hence, a causal process is characterized by the property that the random
variable Xt can be expressed only in terms of noises at previous moments and
at the same moment. The properties of AR(p) processes have been studied in
detail and they are the basis of the linear stochastic theory of time series ([2],
[3], [8]).

The stochastic process defined above is an idealized mathematical object
which has no direct correspondent in practice. Each time series obtained by
measurements is a sequence of real numbers xt and one makes the assump-
tion that each of those numbers is a realization of a random variable Xt. To
recover the statistical information regarding the stochastic process we need
a large number of time series generated in the same conditions, a situation
occurring rarely in practice. Usually we have only one single time series and
the recognition of the stochastic process that generated it is very difficult.
In addition the finite length (sometimes very short) of the data series render
the problem even harder. Therefore it is important to analyze a finite sto-
chastic process satisfying the same recurrence relation as the idealized infinite
stochastic process (1).

In the following we analyze the properties of an AR(1) stochastic process
of finite length allowing us to make detailed analytical and numerical compu-
tations. We compare the results obtained with the ideal case of the infinite
stochastic process and we discuss the conclusions which can be obtained from
its power spectrum.
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2. AR(1) PROCESS

A stochastic AR(1) process is defined by the simplified form of the relation
(1)

(4) Xt = φXt−1 + Zt .

By definition an AR(1) process has an infinite length. In this case the polyno-
mial (2) has the form φ(z) = 1− φz and then the causality condition reduces
to |φ| < 1. Because the relation (4) is so simple, we can analyze more directly
the significance of this condition. By successively applying (4) τ times we
obtain

(5) Xt = Zt + φZt−1 + ...+ φτ−1Zt−τ+1 + φτXt−τ .

Because the process {Xt} is stationary, the random variables Xt and Xt−τ
have the same norm and then the norm of the last term in (5) is φτ times
the norm of the left term. So for any positive number ε < 1, there exists
τ > ln ε/ ln |φ| > 0 such that the last term from the right side can be neglected

(6) Xt = Zt + φZt−1 + ...+ φτ−1Zt−τ+1 +O(ε)

for ε→ 0. This is the definition relation of a causal process (3) where ψj = φj .
From relation (6) one observes that the influence of the noise reduces as the
time moves away from t.

In the nonstationary case |φ| = 1, all the terms in (5) have unitary coef-
ficients and for any delay τ none of them can be neglected. Every random
variable Xt is an infinite sum of terms with the same norm, hence its norm is
infinite.

2.1. Causal AR(1) process. In the following we analyze the basic properties
of the causal stationary process AR(1) using the relation (4). If we take the
mean of this relation we obtain E {Xt} = 0. Its square is

X2
t = φ2X2

t−1 + 2φXt−1Zt + Z2
t .

In accordance with relation (6) the random variables Xt−1 and Zt are inde-
pendent, that is E {Xt−1Zt} = 0. If we take the mean of the last relation we
obtain a relation between the variance of successive random variables

σ2
t = φ2σ2

t−1 + σ2.

Because the AR(1) process is stationary, it follows that for every t we have
the same value for the variance σt ≡ σs and then

(7) σ2
s = σ2

1−φ2 .

In order to compute the autocovariance function we multiply (4) with Xt−τ
and we take the mean. Because the mean of Xt vanishes and E {Xt−1Zt} = 0,
we obtain

γ (τ) ≡ E {XtXt−τ} = φγ (τ − 1) .
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By applying successively this relation and taking into account that γ (0) = σ2
s ,

we have
(8) γ (τ) = σ2

sφ
τ .

The spectral density is the Fourier transform of the autocovariance function

(9) f (ν) = 1
2π

∞∑
τ=−∞

e−2πiτνγ (τ) ,

where the positive number ν is the frequency. By direct calculation with γ (τ)
given by (8) we obtain

(10) f (ν) = σ2

2π
1

1−2φ cos 2πν+φ2 .

Due to the periodicity of this function, we reduce its domain of definition to
the interval ν ∈ [0, 0.5].

When φ → 1, the standard deviation σs given by (7) and the covariance
function γ(τ) given by (8) become both of them infinite. The spectral density
(10) becomes infinite only for ν = 0.

2.2. Acausal AR(1) process. Let us analyze the basic properties for the
stationary acausal AR(1) process, that is when |φ| > 1 in (4). The relation
(6) is no more true because now φτ increases when τ increases. If we divide
(5) by φτ , then

φ−τXt = φ−τZt + φ−τ+1Zt−1 + ...+ φ−1Zt−τ+1 +Xt−τ .

For every positive ε < 1, there exists τ > − ln ε/ ln |φ| > 0 such that the term
from the left side can be neglected and then
(11) Xt−τ = −φ−1Zt−τ+1 − ...− φ−τ+1Zt−1 − φ−τZt +O(ε)
for ε → 0. Hence, the random variable at moment t − τ can be expressed in
terms of the noise values at the future moments. It means that the direction
of this process is reversed to that of the causal process (3).

The same conclusion can be drawn from (4) if we write it in the form
Xt−1 = φ−1Xt − φ−1Zt .

In this way we obtain a stationary causal process AR(1) because |φ−1| < 1,
but in reverse temporal direction and with the variance of the noise φ−1σ. It
means that the formulas for the acausal AR(1) process can be obtained from
those for the causal one by replacing φ with φ−1 and σ with φ−1σ. We shall
derive these formulas directly as well in order to verify this assertion.

From (11) it follows that the random variables Xt−1 and Zt are not inde-
pendent, that is E {Xt−1Zt} 6= 0. In this case E {XtZt} = 0, and then we
write (4) in the form

φXt−1 = Xt − Zt
and we square it

φ2X2
t−1 = X2

t − 2XtZt + Z2
t .



7 Order 1 autoregressive process of finite length 205

0 10 20 30 40 50
−3

−2

−1

0

1

2

3

t

x t
φ =−0.9

0 10 20 30 40 50
−3

−2

−1

0

1

2

3

t

φ =0

0 10 20 30 40 50
−3

−2

−1

0

1

2

3

t

φ =0.9

Fig. 1. Realizations of an anticorrelated AR(1) process (φ = −0.9), of an uncorrelated one
(φ = 0), and of a correlated one (φ = 0.9).

If we take the mean instead of (7) we obtain

σ2
s = σ2

φ2−1 .

In order to compute the autocovariance function we multiply (4) by Xt+τ and
instead of (8) we obtain

γ (τ) = σ2
sφ
−τ .

Finally, relation (10) is the same.

2.3. Anticorrelated AR(1) process. Let us remark that the values of the
parameter φ can be both positive and negative. In order to qualitatively
characterize the difference between the two situations we use the fact that,
if φ = 0, the AR(1) process is reduced to a white noise with uncorrelated
terms and a vanishing autocovariance function for τ > 0. When φ > 0, from
(4) it follows that the fluctuations due to the white noise are superposed over
the term |φ|Xt−1 which memorizes a part of the previous value of the time
series. Hence, the larger φ is, the closer from each other the successive values
of the time series are, and the fluctuations due to the white noise are smaller.
Therefore, in comparison with a realization of a white noise, for φ > 0 the
graphical representation of an AR(1) process is less fluctuant and resembles
to a deterministic trajectory disturbed by a random fluctuation (see Fig. 1).
The autocovariance function (8) is positive and tends to zero for τ →∞.

If φ < 0, then the white noise is superposed over the term −|φ|Xt−1 which
has an opposite sign to the previous term of the time series. Consequently
the white noise fluctuations are enhanced and the series values fluctuate with
a larger amplitude than the white noise, as shown in Fig. 1. The successive
values of the autocovariance function (8) are of opposite signs and the time
series is called anticorrelated.
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Fig. 2. The power spectrum of an AR(1) process for φ = 0.5 and σ = 1 on a linear scale
and on a log-log one.

3. AR(1) POWER SPECTRUM

In Fig. 2 we have plotted the power spectrum (10) for φ = 0.5 and σ = 1 on a
linear scale and on a log-log one. The logarithmic coordinates strongly distort
the shape of the graphic because by taking the logarithm, the origin of the Ox
axis is send to −∞ and any neighborhood of the origin is transformed into an
infinite length interval. We have separated the graphic into three regions (A,
B, and C) in order to evidence the deformations. For small frequencies (region
A) the spectral density is strongly stretched such that a plateau appears with
a value given by

(12) f(0) = σ2

2π(1−φ)2 .

From relation (10) one observes that the plateau corresponds to the small
values of ν, when the variable term at the denominator can be neglected in
comparison with the constant term. Using the quadratic approximation for
cosine function we obtain the condition that the graph of the AR(1) power
spectrum has a plateau

(13) ν � 1−φ
2π
√
φ
.

One remarks that if φ tends to 1, then the plateau appears at smaller values
of the frequency.

The region C of the spectral density for large frequencies is almost parallel
to the Ox axis in linear coordinates. In logarithmic coordinates it is strongly
squeezed and acquires a significant slope. The region B of median frequencies is
not compressed so much, but its almost exponential shape in linear coordinates
becomes o curve with a considerable part having a constant slope. The relative
length of the three frequency regions depends on the minimum value νmin of
the frequency scale in the plot. If νmin is not small enough, then the plateau
may remain outside the graphic.
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Fig. 3. Power spectra of an AR(1) process for σ = 1 and different values of φ.

As a global characteristic of the AR(1) power spectrum we introduce the
difference of its extreme values, quantity which we call the spectrum amplitude
and is denoted by A. For ν ∈ [0, 0.5] the spectral density (10) is monotonic
and its extreme values occur at ν = 0 and ν = 0.5. Using (12) and

(14) f(0.5) = σ2

2π(1+φ)2 ,

we have for the spectrum amplitude

(15) A = |f(0)− f(0.5)| = 4|φ|σ2

(1−φ2)2 .

The extreme values of the power spectrum (12) and (14) become equal for
φ = 0 when the power spectrum is a line parallel with Ox axis and A = 0.
One can see that for φ→ 1, both f(0) and A tend to infinity.

In Fig. 3 we present the variation of the power spectrum with respect to φ.
Although in linear coordinates the power spectrum corresponding to −φ is the
reflection of that corresponding to φ with respect to a line parallel to Oy axis,
in log-log scale they have very different shapes. This difference occurs because,
as shown in Fig. 2, the small frequency region is stretched whereas that of large
frequency is compressed. In accordance with (12), for φ > 0 the plateau height
f(0) increases with φ and the extreme region for large frequencies of the power
spectrum f(0.5) given by (14) has smaller values for smaller φ.

From Fig. 3a and Fig. 2b it results that the AR(1) processes have some
fractal features. For φ = 0.9 and especially for φ = 0.99, a large region of
the power spectrum is linear with a slope near −2. Also for small values of
φ (for example φ = 0.5 in Fig. 2b) a significant region of the power spectrum
can be considered linear (fractal). In order to compute the slope of the power
spectrum for arbitrary φ, we denote by ξ = log x and η = log y the double-
logarithmic coordinates such that a function y = f (x) is written in the new
coordinates as

η = log10 f
(
10ξ
)
.
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Fig. 4. The absolute value of the slope of the AR(1) power spectrum for σ = 1 and different
values of φ.

The slope of the log-log plot is
β (x) = dη

dξ = −x d
dx (ln f (x)) .

If we apply this relation to the function (10), we obtain the slope of the AR(1)
power spectrum
(16) β(ν;φ) = − 4πφν sin 2πν

1+φ2−2φ cos 2πν .

In Fig. 4 we have plotted the absolute value of this function in log-log scale
and we observe that for φ & 0.9 there exist values of β near −2. We can verify
this behavior substituting φ = 1 in (16)

β(ν; 1) = −2πν cotπν .
Obviously this case is artificial because for φ = 1 we obtain the Brownian
motion, not the AR(1) process. Then we have limν→0 β(ν; 1) = −2 which
corresponds to the plateau in Fig. 4. If φ < 1, then β(0;φ) = 0 and in Fig. 4
the curve is decreasing for small frequencies. For φ < 0.9 there is only one
maximum value for β that corresponds to the center of the ”linear” (fractal)
region of the power spectrum.

4. FINITE AR(1) PROCESS

The time series appearing in practice have a finite length and usually they
are considered finite samples of an AR(1) process of infinite length. The first
terms of the sample are correlated with the preceding terms of the realization
which has not been recorded. But the first terms of a numerically generated
time series can not be related with realizations of other preceding random
variables. Therefore, a numerically generated time series is never strictly a
realization of a finite sample of an ideal stationary stochastic process of infinite
length. For instance, the index t in relations (1) and (4) cannot be an arbitrary
integer. Because the relations defining the process are recursive, the first terms
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must be defined by additional relations. As we shall show in the following, the
manner in which these additional relations are chosen can essentially modify
the properties of the stochastic process. We shall call finite AR(1) process a
stochastic process of finite length satisfying a recursive relation (1).

Let T denote the length of a finite AR(1) process, that is t = 1, 2, ..., T . The
first term X1 must be chosen independently and then we obtain another pro-
cess instead of that studied in the previous section, denoted by {X̂t}. Because
X̂t satisfies the relation (4) for t > 1, if we apply this relation successively we
can express the terms of the stochastic process as a finite sum

(17) X̂t = Zt + φZt−1 + ....+ φt−2Z2 + φt−1X̂1.

In the following we consider only the causal AR(1) processes, i.e., we suppose
|φ| < 1. As shown in the previous section, the acausal process is equivalent
with a causal one generated in reverse order.

If X̂1 is a Gaussian random variable with variance σ̂1 and zero mean, then
from (17) it follows that X̂t is the sum of t Gaussian random variables, hence
it has also a Gaussian distribution with variance

σ̂2
t = σ2

(
1 + φ2 + φ4 + ...+ φ2(t−2)

)
+ σ̂2

1φ
2(t−1) .

Applying the formula for the sum of a geometric series we have

(18) σ̂2
t = σ2

s +
(
σ̂2

1 − σ2
s

)
φ2(t−1) ,

where we have used (7). The variance of the finite AR(1) process has a constant
term equal with the variance of the infinite AR(1) process (7) and a variable
term which tends asymptotically to zero because |φ| < 1. In this case the finite
AR(1) process is nonstationary presenting transient effects, i.e., its variance
approximates the theoretical one σ̂t ' σs only after a time interval t0 for which
φ2t0 can be neglected.

4.1. Quasistationary finite AR(1) process. For σ̂1 = σs the variable term
in (18) vanishes and σ̂t = σs for all t 6 T . Hence, if for a finite AR(1) process
we choose X̂1 = (σs/σ)Z1, then all the terms have the same variance. This
choice is natural because it is more reasonable to take the first term of the finite
AR(1) process similar to the stationary infinite AR(1) process and not to the
white noise. Because for σ̂1 6= σs the calculations become more complicated,
we deal only with the case σ̂1 = σs.

Let us show that for σ̂1 = σs the properties of the finite AR(1) process
are very identical to those of a finite sample of a stationary infinite AR(1)
process. The autocovariance function γ̂(τ ; t) = E{X̂tX̂t−τ} can be calculated
only if |τ | < T and τ < t 6 T + τ . Unlike the autocovariance function
(8) the quantity γ̂ (τ ; t) does not depend only on τ since it exists only for
certain values of t. Therefore {X̂t} is not a stationary stochastic process in
a strict mathematical meaning. However, when it exists, we can show that
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E{X̂tX̂t−τ} = φE{X̂t−1X̂t−τ} proceeding in the same way as for (8). Then
instead of (8) we obtain

(19) γ̂ (τ ; t) = φτ σ̂2
t−τ .

If we choose σ̂1 = σs, then σ̂t−τ = σs is constant and when γ̂ (τ ; t) exists
it is identical to the covariance function γ (τ) in (8). Hence, if we want to
numerically model a stationary infinite AR(1) process, then we have to use a
finite AR(1) process {X̂t} with σ̂1 = σs.

4.2. Brownian motion. Let us analyze now the finite AR(1) process satis-
fying (4) for φ = 1. This is the well known Brownian motion. In this case
X̂1 = Z1 and then (17) becomes

(20) X̂t = Zt + Zt−1 + ...+ Z2 + Z1.

Because X̂t is the sum of t gaussian random variables, it results that its vari-
ance is the sum of the variances of the terms of the sum

(21) σ̂2
t = tσ2.

If we write the relation (20) in the form

X̂t+τ = Zt+τ + ...+ Zt+1 + X̂t ,

multiply it with X̂t and take the mean, then we obtain

(22) E{X̂t+τ X̂t} = σ̂2
t = tσ2.

The relation between the Brownian motion and the quasistationary finite
AR(1) process can be clarified if in (18) we take σ̂1 = σ corresponding to the
choice of the first term for the Brownian motion X̂1 = Z1

(23) σ̂2
t = σ2

s

(
1− φ2t

)
.

Figure 4 shows the variation of σ̂2
t for different values of φ. For a given φ, at

the beginning there is a nonstationary transient period before the stationary
state of the AR(1) process is reached. As φ tends to 1, the transient region is
expanded and at the limit it becomes infinite, such that for φ = 1 an entirely
nonstationary process is obtained, i.e., the Brownian motion. So the Brownian
motion corresponds to the transient region extended to the infinity, whereas
the stationary infinite AR(1) process corresponds to the stationary part of the
graph. Therefore to obtain a quasistationary finite AR(1) process for φ very
close to 1 the only possibility is to choose σ̂1 = σs completely eliminating the
transient region.
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5. PERIODOGRAM

For a finite AR(1) process the definition (9) can not be applied. Therefore
we use the periodogram which is defined as the square of the absolute value
of the discrete Fourier transform of the stochastic process of finite length [16].
Here we consider only a finite equidistant set of frequencies for which we define
the amplitude

(24) An = 1√
T

T∑
t=1

X̂tω
(t−1)(n−1)
T , n = 1, 2, ..., T,

where ωT = exp (−2πi/T ). The corresponding terms of the periodogram are

(25) In = |An|2 .

Replacing (24) in (25) we have

In = 1
T

T∑
t=1

T∑
s=1

X̂tω
(t−1)(n−1)
T X̂sω

−(s−1)(n−1)
T .

Because ωt−1
T ω−s+1

T = exp
{
−2πi

T (t− s)
}

, we introduce a new variable τ = t−s
and then

(26) In = 1
T

T∑
t=1

X̂2
t + 1

T

T−1∑
τ=1

[
ω
τ(n−1)
T + ω

−τ(n−1)
T

] T−τ∑
t=1

X̂tX̂t+τ .

The terms In of the periodogram are random variables and their mean E {In}
tends to the spectral density f(ν) given by (10) when T → ∞ [2]. We shall
show this property only for the two particular cases considered in the previous
section for which the calculations are shorter.
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5.1. The periodogram of the quasistationary finite AR(1) process.
According to the analysis in the previous section, if σ̂1 = σs, then E{X̂2

t } = σ2
s

and E{X̂tX̂t+τ} = σ2
sφ

τ and the average of relation (26) reads

E {In} = σ2
s + 1

T σ
2
s

T−1∑
τ=1

(T − τ)φτ
[
ω
τ(n−1)
T + ω

−τ(n−1)
T

]
.

The sums in this formula are equal to

(27)
T−1∑
τ=1

(T − τ)xτ = xT
1−x −

x(1−xT )
(1−x)2

where x = φω
±(n−1)
T . Since the first term is proportional to T , it is larger

than the second term, therefore we write the periodogram mean as a sum of
a dominant term and a correction
(28) E {In} = σ2

1−2φ cos 2π
T (n−1)+φ2

(1 + ρn) .

When the correction ρn can be neglected, this formula is an approximation of
the spectral density of the stationary infinite AR(1) process (10)

E {In} ' 2πf (νn) ,
where νn = (n− 1) /T . Since (28) is a periodic function, we shall consider for
the index n only the values n = 1, 2, ..., [(T + 1)/2], where [·] is the integer
part function, so that νn ∈ [0, 0.5]. Relation (28) can be written as well as

(29) E {In} = σ2

(1−φ)2+4φ sin2 πνn
(1 + ρn) .

Now we shall analyze the dependence of the correction ρn on the parameters
n, T and φ. Taking into account that in (27) xT = φT , from a direct compu-
tation it follows that ρn can be written as a product of two factors depending
each of them only on two of the three parameters
(30) ρn = r(φ, T ) η(φ, νn) ,
where
(31) r(φ, T ) = 1

T
2φ(1−φT )

1−φ2

and
(32) η(φ, νn) = 2φ−(1+φ2) cos 2πνn

1+φ2−2φ cos 2πνn
.

The derivative of the function η with respect to νn indicates that it is
monotonic increasing for any fixed value φ ∈ (−1, 1). For the extreme values
of νn, the function η is independent on the values of φ, i.e., η(φ, 0) = −1 and
η(φ, 0.5) = 1. In Fig. 6 we have plotted η with respect to νn for different values
of φ. For φ = 0 the function reduces to a cosine function η(0, νn) = − cos 2πνn
which, as |φ| increases, is distorted into a constant function, i.e.,
(33) lim

φ→±1
η(φ, νn) = ±1 .
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Fig. 6. Correction of the periodogram of the quasistationary finite AR(1) process in
comparison with the power spectrum of the stationary infinite AR(1) process.

The absolute value of this factor is always smaller or equal to 1.
The second factor in the correction (30) given by (31) is plotted in Fig. 6

for φ > 0 and a few values of T . It is a monotonic increasing function with
respect to φ and

(34) lim
φ→1

r(φ, T ) = 1 .

From (33) and (34) it follows that when φ → 1 the correction (30) is also
approximately equal to 1, so that the approximation (28) of the AR(1) power
spectrum is wrong in the very dominant order. Reversely, for a given value of
φ, the relation (31) allows us to find the value of T so that the correction r
should have the desired value.

If T is even, then these conclusions hold for φ < 0 too, since r changes
only its sign r(−φ, T ) = −r(φ, T ). But if T is odd, then φT changes its
sign and the function r(φ, T ) acquires a different form. The most important
modification is that, for φ → −1 the factor r becomes infinite. Thus, in this
case, the periodogram of the quasistationary finite AR(1) process is completely
different from the power spectrum of the stationary infinite AR(1) process.

If the length T is large enough such that the correction ρn in (29) could be
neglected, then the graphical representation of the finite AR(1) power spec-
trum is identical to that discussed in Section 3. For example, when T = 1000
and φ = 0.9 the correction (30) is ρn = 0.0095 η(φ, νn) < 0.0095 and it can be
neglected. But for T = 1000 and φ = 0.99 we have a much greater correction
ρn = 0.0995 η(φ, νn). In Fig. 6 one can see that for φ near 1, the factor η is
approximately 1 excepting for very small frequencies. Therefore the correction
r is constant for almost all frequencies and the periodogram (29) differs from
the spectral density (10) by the constant factor 1 + ρn. In log-log scale this
constant factor shifts the periodogram parallel to the AR(1) power spectrum
(see Fig. 7).

Because ν1 = 0, in a log-log scale the minimum frequency for a periodogram
of a finite AR(1) process is ν2 = 1/T . Then the condition that the periodogram
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Fig. 7. The periodogram of an finite AR(1) process with T = 100 and φ = 0.99 (point
markers) in comparison with the power spectrum of an infinite AR(1) process with the same

φ (continuous line).

has a plateau can be obtained from (13)

(35) T � 2π
√
φ

1−φ .

For example, when φ = 0.99 we have T � 600 and in Fig. 7 one can see that
for T = 100 the periodogram has no plateau.

5.2. The periodogram of the Brownian motion. The periodogram of the
Brownian motion is obtained by replacing (21) and (22) in the formula result-
ing by averaging (26)

E {In} = σ2

2 (T + 1) + σ2

2T

T−1∑
τ=1

(T − τ) (T − τ + 1) ·(36)

(
ω
τ(n−1)
T + ω

−τ(n−1)
T

)
.

After some calculations we obtain

(37) E {In} = σ2T
8 sin2( πT (n−1)) +

σ2 cos
(

2π
T (n−1)

)
2 sin2( πT (n−1)) .

The dominant term in (37) is different from that in (29) for φ = 1 only by
the factor T/2. The relation (37) does not hold for n = 1 because in the
calculations we used relations incompatible with that special value. If in (36)
we take n = 1, then

(38) E {I1} = σ2

3 (T + 1)
(
T 2 − T + 3

)
.

In Fig. 8 we have plotted the dominant term of the periodogram (37) for
T = 1000. The most part of the graphic is a straight line since, if in (37) we
consider n� T , then E {In} ∝ n−2. So in a log-log scale we obtain a straight
line with the slope −2 and since the small frequencies region is strongly delated
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the most part of the graphic has this property. Figure 8 shows that outside
of the plateau, the periodogram of the Brownian motion is parallel to the
periodograms of quasistationary finite AR(1) processes with φ close to 1 and
the distance between them equals log(T/2) as shown above. This behavior
is due to the fact that for 1 − φ � 1 the value of the sine function at the
denominator in (29) is dominant. Only for νn small enough the quantities
(29) and (37) are significantly different.
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Fig. 8. The periodogram of the Brownian motion in comparison with the periodograms of
the quasistationary finite AR(1) process with φ = 0.9 and 0.99.

6. CONCLUSIONS

Although the finite and infinite AR(1) processes are defined by the same
recurrence relation, their properties can be very different when the serial cor-
relation is large and the length of the finite AR(1) process is small. This
difference is minimized if the first term of the finite AR(1) process is chosen
such that its standard deviation should be equal to the standard deviation of
the infinite AR(1) process. However, even in this case the periodogram of the
finite AR(1) process for φ close to ±1 can significantly differ from the power
spectrum of the infinite AR(1) process. That is why to numerically generate
a time series as a realization of an AR(1) process we must take into account
that the series length must be larger than the threshold value (35).

Although the AR(1) process is the simplest stochastic process describing
the serial correlation only by means of a single parameter, it has remarkable
properties which make it very useful as a first step in time series modeling.
However, one has to take care that it is only one in the infinity of existing
stochastic models and it is possible that an autoregressive structure to be
incorrectly assigned to a time series. For example, although the autocovariance
function (8) has an exponential decay, sometimes one attempted to model a
1/f noise characterized by a power law decay with autoregressive processes
[9], [14]. Therefore, it is necessary a thorough analysis of the AR(1) process
properties not only in its infinite idealized form, but in the finite one as well. If
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the time series is not long enough, it is very likely that essential characteristics
of the AR(1) process should be lost, as for example the existence of the plateau
at small frequencies, and misinterpretations can occur.
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