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Rev. Anal. Numér. Théor. Approx., vol. 37 (2008) no. 1, pp. 87–97
ictp.acad.ro/jnaat

GENERAL CONVERGENCE OF THE METHODS
FROM CHEBYSHEV-HALLEY FAMILY
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Abstract. In this paper we study the Chebyshev-Halley family (which contains,
as particular cases, the Chebyshev method, Halley method, super-Halley method
and the C-method). For Chebyshev and super-Halley methods we give a global
theorem of convergence. In the end of the paper we study the basins of attraction
of the roots of a polynomial with real coefficients. They are obtained when
we apply to that polynomial the methods from the Chebyshev-Halley family
methods.
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1. INTRODUCTION

One of the classical problems in numerical analysis is to locate the root of
the equation

(1.1) f(x) = 0

where f : [a, b] ⊂ R→ R is an analytic function with simple roots.
Before formulating the problems we investigate here, we recall some basic

notions.
Let g : R→ R be a rational map, that is, g(x) = p(x)

q(x) , where p(x) and q(x)
are polynomials without common factors.

We say that ω is a fixed point of g if g(ω) = ω. A fixed point ω is a periodic
point of g if ∃p ≥ 1 s.t. gp(ω) = ω, where gp(ω) = g(gp−1(ω)).

The smallest p such that gp(ω) = ω is called the period of ω. A periodic
point ω, of period p, of a function g is called repelling if |(gp)′(ω)| > 1;
attractive if |(gp)′(ω)| < 1; superattractive if |(gp)′(ω)| = 0 and indifferent if
|(gp)′(ω)| = 1.

The basin of attraction A(ω) of an attractive fixed point ω, associated with
the rational map g, is:
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(1.2) A(ω) = {z ∈ C : gk(z) →
k→∞

ω}.

Most well known one-point cubically convergent iteration methods for find-
ing a simple zero of the function f belong to the family of Chebyshev-Halley
methods given by the expression:
(1.3)
xn+1 = Mf,θ,c(xn) = xn −

(
1 + Lf (xn)

2(1−θLf (xn)) + c[Lf (xn)]2
)
uf (xn), for n > 0,

where x0 is an initial point, Lf (x) = f(x)f ′′(x)
f ′(x)2 , uf (x) = f(x)

f ′(x) , if f ′(x) 6= 0, and
θ, c are real parameters, both of them should be chosen in a convenient way
in every cases. The one parameter family of Chebyshev-Halley methods has
been rediscovered by several authors [1], [2], [4], [7].

For c = 0 and θ non-negative we obtain a new family of third-order iterative
methods which includes, as special cases, the Euler-Chebyshev method (θ =
0), the Halley method (θ = 1

2) and the super-Halley method (θ = 1).
In what follows, we assume that f : [a, b] ⊂ R → R, a < b, a, b ∈ R is a

polynomial function.
We notice that when we apply any of these iterative functions of a polyno-

mial, we get a rational application.

2. CONVERGENCE THEOREMS

For the iterative family methods (1.3), we have the following result for which
we present a proof.

Theorem 2.1 (Scaling). [2] Set f(x) an application, and set T (x) = αx+β,
where α 6= 0, an affine application. If g(x) = ρ(f ◦ T (x)), where ρ is a non-
null constant, then T ◦Mg,θ,c ◦ T−1(x) = Mf,θ,c. That is, Mg,θ,c and Mf,θ,c

are conjugate through T .

Proof. We have
Mg,θ,c ◦ T−1(x) =Mg,θ,c(T−1(x))

=T−1(x)−
(
1 + Lg(T−1(x))

2(1−θLg(T−1(x))) + c[Lg(T−1(x))]2)ug(T−1(x)
)
.

On the other hand, because g ◦ T−1(x) = f(x), we have
(g ◦ T−1)′(x) = 1

αg
′(T−1(x))

and
(g ◦ T−1)′′(x) = 1

α2 g
′′(T−1(x)).

It results g′(T−1(x)) = α · f ′(x) and g′′(T−1(x)) = α2 · f ′′(x).
So we have Lg(T−1(x)) = Lf (x) and ug(T−1(x)) = 1

αuf (x). By replacing
these expressions and by using the definition of Mg,θ,c(T−1(x)) we get:

T ◦Mg,θ,c ◦ T−1(x) = T (Mg,θ,c(T−1(x))) = αMg,θ,c(T−1(x)) + β =
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= α ·
[
T−1(x)−

(
1 + Lg(T−1(x))

2(1− θLg(T−1(x))) + c[Lg(T−1(x))]2
)
ug(T−1(x))

]
+ β

= x−
(
1 + Lf (x)

2(1− θLf (x)) + c[Lf (x)]2
)
uf (x) = Mf,θ,c(x).

�

After a convenient change of coordinate, the Scaling theorem allows us to
reduce the study of iterative methods to the study of iterative methods applied
to families of simple functions.

We want to give now sufficient conditions for that the sequence (xn)n≥0
generated by (1.3) to be convergent, and if x∗ = lim

n→∞
xn, then f(x∗) = 0 and,

moreover, the convergence order of the sequence that we have considered to
be s, s ≥ 2 natural number.

The following result holds.

Theorem 2.2. [5] If the function ϕ, the element x0 ∈ [a, b], and the
number δ > 0 can be chosen such that the following relations hold:

a) the interval ∆ = [x0 − δ, x0 + δ] ⊂ [a, b], δ ∈ R;
b) the function f admits derivatives up to the order s inclusively on every

point of ∆, where s ∈ N, s ≥ 2, and sup
x∈∆

∣∣∣f (s)(x)
∣∣∣ = M <∞;

c) we have the relation∣∣∣∣∣
s−1∑
i=0

1
i!f

(i)(x)ϕi(x)
∣∣∣∣∣ ≤ γ |f(x)|s

for every x ∈ ∆, where γ ∈ R, γ ≥ 0;
d) the function ϕ verifies the relation |ϕ(x)| ≤ β |f(x)| , for every x ∈ ∆,

where β ∈ R, β > 0;
e) the numbers λ, β,M and δ verify the relations:

µ0 = λ |f(x0)| < 1,

where λ =
(
γ + Mβs

s!

) 1
s−1 and βµ0

λ(1−µ0) ≤ δ,
then the sequence {xn}n≥0 generated by (1.3) has the following properties:

i) is convergent, and if x∗ = lim
n→∞

xn then f(x∗) = 0 and x∗ ∈ ∆;

ii) |xn+1 − xn| ≤
βµ3n

0
λ , for any n = 0, 1, ...;

iii) |x∗ − xn| ≤
βµ3n

0
λ(1−µ3n

0 ) , n = 0, 1, 2, ....

Proof. See [5]. �

Next we are applying Theorem 2.2 for the study of the convergence of the
methods from the family of Chebyshev-Halley methods, more exactly we would
focus on the Chebyshev method and super-Halley method.



90 Raluca Anamaria Pomian 4

The super-Halley method, called Convex Acceleration of Newton’s method,
is less known than Chebyshev and Halley methods, and is defined by:
(2.4)

xn+1 = xn −
f(xn)
f ′(xn)

(
1 +

f(xn)f ′′(xn)
[f ′(xn)]2

2− 2f(xn)f ′′(xn)
[f ′(xn)]2

)
= xn −

f(xn)
f ′(xn)

(
1 + Lf (xn)

2− 2Lf (xn)

)
Because the methods from the family of Chebyshev-Halley methods have

the convergence order 3, we consider s = 3 in Theorem 2.2.
For the super-Halley method we obtain the following result.

Theorem 2.3. If x0 ∈ [a, b], the function f and the number δ > 0 verify
the relations:

a) ∆ = [x0 − δ, x0 + δ] ⊂ [a, b], δ ∈ R;
b) the function f admits derivatives up to the order 3 inclusively at every

point of ∆;
c)

∣∣∣ 1
f ′(x)

∣∣∣ ≤ β < 1 for every x ∈ ∆;
d) Lf (x) = f(x)f ′′(x)

[f ′(x)]2 ≤
4
5 for every x ∈ ∆;

e) sup
x∈∆
|f ′′′(x)| = M <∞;

f) 0 <
√

27M
3! β

3 + γ =
√

9
2Mβ3 + γ = λ < 1, γ ≥ 0;

g) µ0 = λ |f(x0)| < 1;
h) 3βµ0

λ(1−µ0) ≤ δ,
then the sequence {xn}n≥0 generated by (2.4) is convergent and, if x∗ =
lim
n→∞

xn, then the following relations hold:

i) f(x∗) = 0 and x∗ ∈ ∆;
ii) xn ∈ ∆, n = 0, 1, 2...;
iii) |f(xn)| ≤ µ3n

0
λ , n = 0, 1, 2, ...;

iv) |x∗ − xn| ≤
3βµ3n

0
λ(1−µ3n

0 ) , n = 0, 1, 2, ....

Proof. By applying the Taylor expansion we obtain:∣∣f ′′(x)
∣∣ ≤ ∣∣f ′′(x)− f ′′(x0)

∣∣+ ∣∣f ′′(x0)
∣∣

≤M |x− x0|+
∣∣f ′′(x0)

∣∣ ≤Mδ +
∣∣f ′′(x0)

∣∣ not= M2,

for every x ∈ ∆.
Analogously, we obtain:∣∣f ′(x)

∣∣ ≤ ∣∣f ′(x)− f ′(x0)
∣∣+ ∣∣f ′(x0)

∣∣ ≤M2 |x− x0|+
∣∣f ′(x0)

∣∣
≤M2δ +

∣∣f ′(x0)
∣∣ not= M1

|f(x)| ≤ |f(x)− f(x0)|+ |f(x0)| ≤M1 |x− x0|+ |f(x0)|

≤M1δ + |f(x0)| not= M0,
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for every x ∈ ∆.
We consider the function ϕ of form:

ϕ(x) = − f(x)
f ′(x)

(
1 + Lf (x)

2−2Lf (x)

)
.

Taking into account the above relations, a simple computation leads us to
the relation:∣∣∣f(x) + f ′(x)

1! ϕ(x) + f ′′(x)
2! ϕ2(x)

∣∣∣ =(2.5)

=
∣∣∣∣f(x)− f ′(x)

1!
f(x)
f ′(x)

(
1 + Lf (x)

2−2Lf (x)

)
+ f ′′(x)

2!

[
f(x)
f ′(x)

(
1 + Lf (x)

2−2Lf (x)

)]2∣∣∣∣
=
∣∣∣ f4(x)[f ′′(x)]3
8[[f ′(x)]3−f(x)f ′(x)f ′′(x)]2

∣∣∣
≤ |f(x)|3

∣∣∣ f(x)[f ′′(x)]3
8[[f ′(x)]3−f(x)f ′(x)f ′′(x)]2

∣∣∣
≤ |f(x)|3

∣∣∣∣∣∣∣ f(x)[f ′′(x)]3

8[f ′(x)]6
[
1−f(x)f ′′(x)

[f ′(x)]2
]2

∣∣∣∣∣∣∣ ≤ |f(x)|3 25β6M0M3
2

8

for every x ∈ ∆, γ = 25
8 β

6M0M
3
2 ≥ 0, γ ∈ R.

By condition d) we have:

|x1 − x0| =
∣∣∣ f(x0)
f ′(x0)

∣∣∣
∣∣∣∣∣∣1 +

f(x0)f ′′(x0)
[f ′(x0)]2

2−2f(x0)f ′′(x0)
[f ′(x0)]2

∣∣∣∣∣∣ ≤ 3
∣∣∣ f(x0)
f ′(x0)

∣∣∣
≤ 3β |f(x0)| = 3λβ|f(x0)|

λ < 3βµ0
λ(1−µ0) ≤ δ ⇒ x1 ∈ ∆.

By applying the Taylor expansion of the function f around on x0 and
taking into account the relation (2.5) from above we get:

|f(x1)| ≤
∣∣∣f(x1)− [f(x0) + f ′(x0)(x1 − x0) + 1

2f
′′(x0)(x1 − x0)2]

∣∣∣+
+
∣∣∣f(x0) + f ′(x0)(x1 − x0) + 1

2f
′′(x0)(x1 − x0)2

∣∣∣ ≤
≤ M

3! |x1 − x0|3 + γ |f(x0)|3

≤ M
3! (3β |f(x0)|)3 + γ |f(x0)|3 =

(27M
3! β

3 + γ
)
|f(x0)|3 = µ3

0
λ .

Because
∣∣∣ 1
f ′(x1)

∣∣∣ ≤ β we have that

|x2 − x1| =
∣∣∣ f(x1)
f ′(x1)

∣∣∣
∣∣∣∣∣∣1 +

f(x1)f ′′(x1)
[f ′(x1)]2

2−2f(x1)f ′′(x1)
[f ′(x1)]2

∣∣∣∣∣∣ ≤ 3
∣∣∣ f(x1)
f ′(x1)

∣∣∣ ≤ 3β |f(x1)| ≤ 3βµ3
0

λ .
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By applying the Taylor expansion of the function f around on x1 and
taking into account the relation (2.5) we get:

|f(x2)| ≤
∣∣∣f(x2)− [f(x1) + f ′(x1)(x2 − x1) + 1

2f
(2)(x1)(x2 − x1)2]

∣∣∣+
+
∣∣∣f(x1) + f ′(x1)(x2 − x1) + 1

2f
(2)(x1)(x2 − x1)2

∣∣∣
≤ M

3! |x2 − x1|3 + γ |f(x1)|3

≤ M
3! (3βµ3

0
λ )3 + γµ32

0
λ3 = (27M

3!λ3 β
3 + γ

λ3 )µ32
0 = λ2

λ3µ
32
0 = µ32

0
λ .

Analogously, one can prove the following:

(2.6) |f(xn)| ≤ µ3n

0
λ , n = 0, 1, 2, ...,

(2.7) |xn+1 − xn| =
∣∣∣ f(xn)
f ′(xn)

∣∣∣
∣∣∣∣∣∣1 +

f(xn)f ′′(xn)
[f ′(xn)]2

2−2f(xn)f ′′(xn)
[f ′(xn)]2

∣∣∣∣∣∣ ≤ 3βµ3n

0
λ , n = 0, 1, ...,

|xn+1−x0| ≤
k∑
i=0
|xi+1 − xi|≤

k∑
i=0

3βµ3i

0
λ ≤ 3βµ0

λ (1 +µ3−1
0 +µ32−1

0 +...+ µ3k−1
0 )

(2.8)

< 3βµ0
λ(1−µ0) ≤ δ ⇒ xn+1 ∈ ∆, n = 0, 1, 2, ....

By using relation (2.7) we deduce that

|xn+p − xn| ≤
n+p−1∑
i=n

|xi+1 − xi| ≤
n+p−1∑
i=n

3βµ3i

0
λ(2.9)

<
3βµ3n

0
λ (1 + µ3n+1−3n

0 + ...+ µ3n+p−1−3n

0 )

<
3βµ3n

0
λ(1−µ3n

0 ) , p ∈ N, n = 0, 1, 2, ....

Because µ0 < 1 it results that the sequence {xn}n≥0 is fundamental, so
according to the Cauchy theorem, it is convergent.

If x∗ = lim
n→∞

xn, for p→∞ from inequality (2.9) we deduce:

(2.10) |x∗ − xn| ≤
3βµ3n

0
λ(1−µ3n

0 ) , n = 0, 1, 2, ....

We show now that x∗ is a root of the equation f(x) = 0.
From the continuity of the function f and from iii) for n→∞ it results:

0 ≤ |f(x∗)| ≤ lim
n→∞

µ3n

0
λ

= 0⇔ f(x∗) = 0.

From inequality (2.10) for n = 0 we obtain:

|x∗ − x0| ≤
3βµ30

0
λ(1−µ30

0 )
≤ δ ⇔ x∗ ∈ ∆. �
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We apply Theorem 2.2 to the study of the convergence of the Chebyshev
method. As we know, the Chebyshev method can be applied to any nonlinear
equation from R. It is the most studied third-order method in the literature.
The method is known by the name parable-tangent method or the super-
Newton method because of its geometrical interpretations.

We obtain the following result.

Theorem 2.4. If x0 ∈ [a, b], the function f and the number δ > 0 verify
the relations:

a) ∆ = [x0 − δ, x0 + δ] ⊂ [a, b], δ ∈ R;
b) the function f admits derivatives up to the order 3 inclusively, at every

point of ∆;
c)

∣∣∣ 1
f ′(x)

∣∣∣ ≤ β < 1 for every x ∈ ∆;
d) −2 ≤ Lf (x) = f(x)f ′′(x)

[f ′(x)]2 ≤ 2 for every x ∈ ∆;
e) sup

x∈∆
|f ′′′(x)| = M <∞;

f) 0 <
√

8M
3! β

3 + γ =
√

4
3Mβ3 + γ = λ <, γ ≥ 0;

g) µ0 = λ |f(x0)| < 1;
h) 2β0µ0

λ(1−µ0) ≤ δ,

then the sequence {xn}n≥0 generated by (1.3) for θ = 0 is convergent and if
x∗ = lim

n→∞
xn the following relations hold:

i) f(x∗) = 0 and x∗ ∈ ∆;
ii) xn ∈ ∆, n = 0, 1, 2...;
iii) |f(xn)| ≤ µ3n

0
λ , n = 0, 1, 2, ...;

iv) |x∗ − xn| ≤
2β0µ3n

0
λ(1−µ3n

0 ) , n = 0, 1, 2, ....

Proof. By applying the Taylor expansion we obtain:

∣∣f ′′(x)
∣∣ ≤ ∣∣f ′′(x)− f ′′(x0)

∣∣+ ∣∣f ′′(x0)
∣∣ ≤M |x− x0|+

∣∣f ′′(x0)
∣∣

≤Mδ +
∣∣f ′′(x0)

∣∣ not= M2,

for every x ∈ ∆.
We will consider the function ϕ of the form:

ϕ(x) = −f(x)
(
1+ 1

2Lf (x)
)

f ′(x) .
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Taking into account the above notations, a simple computation takes us to
the relation: ∣∣∣f(x) + f ′(x)

1! ϕ(x) + f ′′(x)
2! ϕ2(x)

∣∣∣ =(2.11)

=

∣∣∣∣∣∣f(x)− f ′(x)
1!

f(x)
(
1+ 1

2Lf (x)
)

f ′(x) + f ′′(x)
2!

[
f(x)

(
1+ 1

2Lf (x)
)

f ′(x)

]2
∣∣∣∣∣∣

=
∣∣∣f3(x)[f ′′(x)]2

2[f ′(x)]4 + f4(x)[f ′′(x)]3
8[f ′(x)]6

∣∣∣
≤ |f(x)|3|[f ′′(x)]2|

|2[f ′(x)]4|

∣∣∣1 + f(x)f ′′(x)
4[f ′(x)]2

∣∣∣
≤ |f(x)|3 3β4M2

2
4

for every x ∈ ∆, γ = 3β4M2
2

4 ≥ 0, γ ∈ R.
By condition d) we have:

|x1 − x0| =
∣∣∣ f(x0)
f ′(x0)

∣∣∣
∣∣∣∣∣∣1 +

f(x0)f ′′(x0)
[f ′(x0)]2

2

∣∣∣∣∣∣ ≤ 2
∣∣∣ f(x0)
f ′(x0)

∣∣∣
≤ 2β |f(x0)| ≤ 2λβ|f(x0)|

λ < 2βµ0
λ(1−µ0) ≤ δ ⇒ x1 ∈ ∆.

By applying the Taylor expansion to the function f at x0 and taking into
account relation (2.11) we get:

|f(x1)| ≤
∣∣∣f(x1)− [f(x0) + f ′(x0)(x1 − x0) + 1

2f
(2)(x0)(x1 − x0)2]

∣∣∣+
+
∣∣∣f(x0) + f ′(x0)(x1 − x0) + 1

2f
(2)(x0)(x1 − x0)2

∣∣∣
≤ M

3! |x1 − x0|3 + γ |f(x0)|3

≤ M
3! (2β |f(x0)|)3 + γ |f(x0)|3 =

(8M
3! β

3 + γ
)
|f(x0)|3 = µ3

0
λ .

By condition c) we have that

|x2 − x1| =
∣∣∣∣ f(x1)
f ′(x1)

∣∣∣∣
∣∣∣∣∣∣1 +

f(x1)f ′′(x1)
[f ′(x1)]2

2

∣∣∣∣∣∣ ≤ 2
∣∣∣∣ f(x1)
f ′(x1)

∣∣∣∣ ≤ 2β |f(x1)| ≤ 2βµ3
0

λ
.

By applying the Taylor expansion to the function f at x1 and taking into
account relation (2.11) we get:

|f(x2)| ≤
∣∣∣f(x2)− [f(x1) + f ′(x1)(x2 − x1) + 1

2f
(2)(x1)(x2 − x1)2]

∣∣∣+
+
∣∣∣f(x1) + f ′(x1)(x2 − x1) + 1

2f
(2)(x1)(x2 − x1)2

∣∣∣
≤ M

3! |x2 − x1|3 + γ |f(x1)|3

≤ M
3!
(3βµ3

0
λ

)3 + γµ32
0
λ3 =

(27M
3!λ3 β

3 + γ
λ3
)
µ32

0 = λ2

λ3µ
32
0 = µ32

0
λ .
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Analogously, one can prove the following inequalities:

(2.12) |f(xn)| ≤ µ3n

0
λ , n = 0, 1, 2, ...,

(2.13) |xn+1 − xn| =
∣∣∣ f(xn)
f ′(xn)

∣∣∣ ∣∣∣1 + 1
2
f(xn)f ′′(xn)

[f ′(xn)]2
∣∣∣ ≤ 2βµ3n

0
λ , n = 0, 1, ....

By using the inequality (2.13) we obtain the inequalities:

|xn+1 − x0| ≤
k∑
i=0
|xi+1 − xi| ≤

k∑
i=0

2βµ3i

0
λ(2.14)

≤ 2βµ0
λ (1 + µ3−1

0 + µ32−1
0 + ...+ µ3k−1

0 )

< 2βµ0
λ(1−µ0) ≤ δ ⇒ xn+1 ∈ ∆, n = 0, 1, 2, ...

and

|xn+p − xn| ≤
n+p−1∑
i=n

|xi+1 − xi| ≤
n+p−1∑
i=n

2βµ3i

0
λ

(2.15)

<
2βµ3n

0
λ

(1 + µ3n+1−3n

0 + ...+ µ3n+p−1−3n

0 )

<
2βµ3n

0
λ(1− µ3n

0 )
, p ∈ N, n = 0, 1, 2, ....

Because µ0 < 1 it results that the sequence {xn}n≥0 is fundamental, so
according to the theorem of Cauchy, it is convergent.

If x∗ = lim
n→∞

xn from the inequality (2.15), for p→∞, we deduce

(2.16) |x∗ − xn| ≤
2βµ3n

0
λ(1−µ3n

0 ) , n = 0, 1, 2, ....

We show now that x∗ is a root of the equation f(x) = 0.
From the continuity of the function f and from iii) for n→∞ it results

0 ≤ |f(x∗)| ≤ lim
n→∞

µ3n

0
λ = 0⇔ f(x∗) = 0.

For n = 0 from inequality (2.16) we obtain:

|x∗ − x0| ≤
2βµ30

0
λ(1− µ30

0 )
≤ δ ⇔ x∗ ∈ ∆. �

3. NUMERICAL EXAMPLE

We apply the iterative methods that we have considered in the previous
sections to approximate the real roots of a polynomial with real coefficients.

Example 3.5. Next we will apply the iterative methods from above to
get the real roots of the polynomial p(x) = x3 + 4x2 − 7x − 10. It is clear
that the roots of the polynomial p are −5, −1 and 2. We take a rectangle
D = [−5.4, 2.4]× [−2.4, 2.4], which contains these three roots and we apply
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(a) Halley method (b) Chebyshev method

(c) super-Halley method (d) C method for C=2

these iterative methods starting from each x0 ∈ D. In practice we will take a
grid of 1024×1024 points inD and we will use these points as initial points x0 ∈
D. The numerical methods starting from a point in D can converge to some of
the roots or, eventually, diverge. We will use a tolerance ε = 10−8 and compute
maximum 10 iterations. In the next figures are presented the graphical images
of the iterative methods from the Chebyshev-Halley methods, in the above
described region. If the fractal that appears becomes more complicated, then
there seems that the method requires more conditions on the initial point.
We assign a gray color with different nuances, light colors or dark ones in
correspondence with the number of the iterations useful to find the roots.
With the precision that we have taken to each point x0 ∈ D according to the
root at which the iterative methods starting from x0 converge, and we mark
the point as black if the methods does not converge. We marked with black the
points x0 ∈ D for which the iterative methods, starting from the initial point
x0 ∈ D they are not approaching to any root, with the tolerance ε = 10−8 in
maximum 10 iterations. The region A(−1) constitutes the basin of attraction
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of the root −1, the region A(2) constitutes the basin of the attraction of the
root 2, and A(−5) constitutes the basin of attraction of the root −5. The
graphics that are shown here were generated with Mathematica 4.0.
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