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CONDITIONS ON BANACH SPACES WITH A CONVERGENCE

STRUCTURE
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Abstract. We provide new semilocal results for Newton’s method on Banach
spaces with a convergence structure. Using more precise majorizing sequence we
show that, under weaker convergence conditions than before, we can obtain finer
error bounds on the distances involved and a more precise information on the
location of the solution.
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally
unique zero x∗ of the operator
(1) F (x) = AG (x0 + x) ,
where G is an operator Banach space X with a convergence structure (to be
precized later) and A is meant to be an approximation of G′ (x0)−1 ∈ L (X,X),
the space of bounded linear operators from X into X.

A large number of problems in applied mathematics and also in engineering
are solved by finding the solutions of certain equation. For example, dynamic
systems are mathematically modeled by difference or differential equations,
and their solutions usually represent the states of the systems. For the sake of
simplicity, assume that a time–invariant system is driven by the equation ẋ =
τ (x) (for some suitable operator τ), where x is the state. Then the equilibrium
states are determined by solving equation (1). Similar equations are used in
the case of discrete systems. The unknowns of engineering equations can be
functions (difference, differential, and integral equations), vectors (systems of
linear or nonlinear algebraic equations), or real or complex numbers (single
algebraic equations with single unknowns). Except in special cases, the most
commonly used solution methods are iterative – when starting from one or
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several initial approximations, a sequence is constructed that converges to
a solution of the equation. Iteration methods are also applied for solving
optimization problems. In such cases, the iteration sequences converge to an
optimal solution of the problem at hand. Since all of these methods have the
same recursive structure, they can be introduced and discussed in a general
framework.

Using more precise majorizing sequences than before we show that under
weaker conditions than before [1]–[3], [5], [6] we can obtain using Newton’s
method (see (10)), finer error bounds on the distances |xn − x∗| and a more
precise information on the location of the solution x∗.

2. PRELIMINARIES

We will need the definitions:
Definition 1. The triple (X,V,E) is a Banach space with a converges

structure if
(C1) (X, ‖·‖) is a real Banach spaces;
(C2) (V,C, ‖·‖V ) is a real Banach space which is partially ordered by the

closed convex cone C; the norm ‖·‖V is assumed to be monotone on
C;

(C3) E is a closed convex cone in X × V satisfying {0} ×C ⊆ E ⊆ X ×C;
(C4) the operator |·| : D0 → C is well defined:

|x| = inf {q ∈ C | (x, q) ∈ E}
for

x ∈ D0 = {x ∈ X | ∃q ∈ C : (x, q) ∈ E} ;
and

(C5) for all x ∈ D0 ‖x‖ ≤ ‖|x|‖V .

The set
U (a) = {x ∈ X | (x, a) ∈ E}

defines a sort of generalized neighborhood of zero.
Let us given some motivational examples for X =: Rm with the maximum-

norm:
(a) V := R, E := {(x, e) ∈ Rm × R | ‖x‖∞ ≤ e}
(b) V := Rm, E := {(x, e) ∈ Rm × Rm | |x| ≤ e}

(componentwise absolute value).
(c) V := Rm, E := {(x, e) ∈ Rm × Rm | 0 ≤ x ≤ e} .

Case (a) involves classical convergence analysis in a Banach space, (b) allows
componentwise analysis and error estimates, and (c) is used for monotone
convergence analysis.

The convergence analysis will be based on monotonicity considerations in
the space X × V. Let (xn, en) be an increasing sequence in EN , then

(xn, en) ≤ (xn+k, en+k) =⇒ 0 ≤ (xn+k − xn, en+k − en) .
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If en → e, we obtain: 0 ≤ (xn+k − xn, e− en) and hence by (C5)
‖xn+k − xn‖ ≤ ‖e− en‖V → 0, as n→∞.

hence {xn} (n ≥ 0) is a Cauchy sequence. When deriving error estimates, we
shall as well use sequences en = w0 − wn with a decreasing sequence {wn}
(n ≥ 0) in CN to obtain the estimate

0 ≤ (xn+k − xn, wn − wn+k) ≤ (xn+k − xn, wn) .
If xn → x∗, as n → ∞, this implies the estimate |x∗ − xn| ≤ wn (n ≥ 0) .
Moreover, if (x, e) ∈ E, then x ∈ D0 and by (C4) we deduce |x| ≤ e.

Definition 2. An operator L ∈ C1 (V1 → V ) defined on an open subset V1
of an ordered Banach space V is order convex on [a, b] ⊆ V1 if
(2) c, d ∈ [a, b] , c ≤ d⇒ L′ (d)− L′ (c) ∈ L+ (V ) ,
where for m ≥ 0

L+ (V m) = {L ∈ L (V m) | 0 ≤ xi ⇒ 0 ≤ L (x1, x2, ..., xm)}
and L (V ) denotes the space of m-linear, symmetric, bounded operators on V .

Definition 3. The set of bounds for an operator H ∈ L (Xm) is defined to
be
B (H) = {L ∈ L+ (V m) | (xi, qi) ∈ E ⇒ (H (x1, ..., xm) , L (q1, ..., qm)) ∈ E} .

Definition 4. Let H ∈ L (X) and y ∈ X be given, then
H∗ (y) = z ⇐⇒ z = T∞ (0) = lim

n→∞
Tn (0) ,

T (x) = (I −H) (x) + y ⇐⇒ z =
∞∑

i=0
(I −H)i y,(3)

if this limit exists.

We will also need the Lemmas [2], [6]:

Lemma 5. Let L ∈ L+ (V ) and a, q ∈ C be given such that:
(4) L (q) + a ≤ q and Ln (q)→ 0 as n→∞.
Then the operator
(5) (I − L)∗ : [0, a]→ [0, a]
is well defined and continuous.

The following is a generalization of Banach’s lemma [2], [5], [6].

Lemma 6. Let H ∈ L (X) , L ∈ B (H) , y ∈ D0 and q ∈ C be such that
(6) L (q) + |y| ≤ q and Ln (q)→ 0 as n→∞
Then the point x = (I −H)∗ (y) is well defined, x ∈ S and
(7) |x| ≤ (I − L)∗ |y| ≤ q.
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Moreover, the sequence
bn+1 = L (bn) + |y| , b0 = 0

is well defined and
(8) bn+1 ≤ q, lim

n→∞
bn = b = (I − L)∗ |y| ≤ q.

Lemma 7. Let H1 : [0, 1]→ L (Xm) and H2 : [0, 1]→ L+ (V m) be continu-
ous operators, then for all t ∈ [0, 1]:

(9) H2 (t) ∈ B (H1 (t))⇒
∫ 1

0
H2 (t) dt ∈ B

(∫ 1

0
H1 (t) dt

)
which will be used for the remainder of Taylor’s formula [1], [2], [5], [6].

3. SEMILOCAL CONVERGENCE ANALYSIS

We can show the main semilocal convergence result for Newton’s method:
(10) x0 = 0, xn+1 = xn + F ′ (xn)∗ (−F (xn))

Theorem 8. Assume:
there exists a Banach space X with convergence structure (X,V,E) where

V =(V,C, ‖·‖V) , operators F ∈ C⊥ (XF → X) (XF ⊆ X), L0 ∈ C1 (VL0 → V )
(VL0 ⊆ V ), L ∈ C1 (VL0 → V ) (VL ⊆ V ), and a point a ∈ C such that the fol-
lowing conditions hold:
(11) VL0 ⊆ VL,

(12) U (a) ⊆ XF and [0, a] ⊆ VL0 ,

L0 is order-convex on [0, a] and satisfies
(13) L′0 (|x|)− L′0 (0) ≤ B

(
F ′ (0)− F ′ (x)

)
,

for all x ∈ U (a) ,
L is order-convex on [0, a] and satisfies

L′ (|x|+ |y|)− L′ (|x|) ∈ B
(
F ′ (x)− F ′ (x+ y)

)
for all(14)

x, y ∈ U (a) with |x|+ |y| ≤ a,
L′0 (0) ∈ B

(
I − f ′ (0)

)
and (−F (0) , L0 (0)) ∈ E,(15)

L′0 (|x|) ≤ L′ (|x|) for all x ∈ U (a) ,(16)
L0 (a) ≤ L (a) for all a ∈ [0, a] ,(17)
L (a) ≤ a,(18)

and
(19) L′ (a)n a→ 0 as n→∞.

Then sequence {xn} (n ≥ 0) generated by Newton’s method (2) is well de-
fined and converges to the unique zero x∗ of F in U (a).
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Define sequences
{
dn

}
, {dn} (n ≥ 0) by

(20) d0 = d0 = 0, dn+1 = L
(
dn

)
+ L′0 (|xn|) cn

and
(21) dn+1 = L (dn) + L′ (|xn|) cn,

where
(22) cn = |xn+1 − xn| .

Then sequences
(
xn, dn

)
∈ (X × V )N , (xn, dn) ∈ (X × V ) are well defined,

monotone and satisfy
(23) dn ≤ dn ≤ b,
where b = L∞ (0) is the smallest fixed point of L in [0, a] .

Proof. First, we observe that the conditions of the Theorem are satisfied if
b replaces a. For n = 1 we have to solve
(24) w =

(
I − F ′ (0)

)
w − F (0) .

By (15), (16) and the order convexity of L we get for w = b

(25) L′0 (0) b+ |−F (0)| ≤ L′ (0) b+L0 (0) ≤ L (b)−L (0)+L0 (0) ≤ L (b) = b.

Hence, x1 is well defined, (x1, b) ∈ E. We also have
x1 =

(
I − F ′ (0)

)
x1 + (−F (0))⇒

|x1| ≤ L′0 (0) |x1|+ L0 (0) = d1 ≤ L′ (0) |x1|+ L (0) = d1

and by the order convexity of L,
d1 = L′ (0) |x1|+ L (0) ≤ L′ (0) b+ L (0) ≤ L (b)− L (0) + L (0) = L (b) = b.

Assume sequences
(
xn, dn

)
, (xn, dn) are well defined and monotone up to

n ∈ N with
(26) 0 ≤

(
xn−1, dk−1

)
≤ (xk, dk) (k = 1, ..., n) , dk ≤ dk ≤ b.

We must solve
(27) w =

(
I − F ′ (xn)

)
w + (−F (xn)) .

Using (13), (15) and (16) we get in turn∣∣I − F ′ (xn)
∣∣ =

∣∣I − F ′ (0) + F ′ (0)− F ′ (xn)
∣∣

≤
∣∣I − F ′ (0)

∣∣+ ∣∣F ′ (0)− F ′ (xn)
∣∣

≤ L′0 (0) + L′0 (|xn|)− L′0 (0) = L′0 (|xn|) .(28)
Hence, we conclude L′0 (|xn|) ∈ B (I − F ′ (xn)) .

We must solve
(29) L′0 (|xn|) q + |−F (xn)| ≤ q.
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But
|−F (xn)| =

∣∣−F (xn) + F (xn−1) + F ′ (xn−1) (xn − xn−1)
∣∣

≤
∫ 1

0

[
L′ (|xn−1|+ tcn−1)− L′ (|xn−1|)

]
cn−1dt

= L (|xn−1|+ cn−1)− L (|xn−1|)− L′ (|xn−1|) cn−1

≤ L
(
dn−1 + dn − dn−1

)
− L

(
dn−1

)
− L′0 (|xn−1|) cn−1

= L
(
dn

)
− dn ≤ L (dn)− dn.(30)

Set q = b− dn to get in turn

L′0 (|xn|) q + |−F (xn)|+ dn ≤ L′0
(
dn

) (
b− dn

)
+ L (dn)

≤ L′ (dn) (b− dn) + L (dn)
≤ L (b)− L (dn) + L (dn) = L (b) = b.(31)

That is xn+1 is well defined and
(32) cn ≤ b− dn ≤ b− dn.

Moreover dn+1, dn+1 are well defined also and

(33) dn+1 ≤ L (dn)+L′0
(
dn

) (
b− dn

)
≤ L (dn)+L′ (dn) (b− dn) ≤ L (b) = b.

Furthermore the monotonicity of(
xn, dn

)
≤
(
xn+1, dn+1

)
, (xn, dn) ≤ (xn+1, dn+1)

follows from
(34) cn +dn+1 ≤ L′0 (|xn|) cn + |−F (xn)|+dn ≤ L′0 (|xn|) cn +L

(
dn

)
= dn+1

and
(35) cn + dn+1 ≤ L′ (|xn|) cn + |−F (xn)|+ dn ≤ L′ (|xn|) cn +L (dn) = dn+1.

By the definition of
{
dn

}
, {dn} we get inductively

(36) Ln (0) ≤ dn ≤ b and Ln
0 (0) ≤ dn ≤ b,

which together with Ln (0) → b as n → ∞ imply dn → b∗ and dn → b as
n → ∞ for some b∗ such that Ln

0 (0) ≤ b∗ ≤ b ≤ dn, sequence {xn} converges
to some x∗ ∈ U (b∗), and by (30) x∗ is a zero of F .

To show uniqueness consider the modified Newton’s method
(37) yn+1 = yn − F (yn) .

Then sequence {yn} converges and (xn, L
∗ (0)) is monotone in X × V. As-

sume y∗ ∈ U (a) is a zero of F . Then we can easily get by induction on n
that
(38) |y∗ − yn| ≤ Ln (a)− Ln (0)→ 0 as n→∞.
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That is yn → y∗ as n→∞. However, we have shown yn → x∗ as n→∞.
Hence we deduce:

x∗ = y∗.

That completes the proof of the theorem. �

Remark 9. As in [1], [2], [5], [6] we note that from the proof of Theorem 8
we have the error bound

|x∗ − xn| ≤ b∗ − dn ≤ q − dn,

where for q we may use any solution of L (q) ≤ q. We can obtain better a
posteriori error estimates if we use instead the solutions of Rn (q) ≤ q with
monotone operators Rn. �

Under the hypotheses of Theorem 8 define:
Rn (q) =

(
I − L′0 (|xn|)

)∗
Sn (q) + cn

where
Sn (q) = L (|xn|+ q)− L (|xn|)− L′0 (|xn|) q.

Operator Sn is monotone on interval In = [0, a− |xn|] . If there exists a qn ∈ C
such that |xn|+ qn ≤ n, and

Sn (qn) + L′0 (|xn|) (qn − cn) ≤ qn − cn,

then Rn : [0, qn] → [0, qn] is well defined and monotone. A reasonable choice
for qn is a− dn, since

dn + cn ≤ dn+1 ⇒ L (a)− L
(
dn

)
− L′0 (|xn|) cn ≤ a− dn − cn

⇒ Sn

(
a− dn

)
+ L′0 (|xn|)

(
a− dn − cn

)
≤ a− dn − cn.

Other ways of choosing a suitable qn are given in the Lemmas that follows:

Lemma 10. Let q ∈ In satisfy Rn (q) ≤ q. Then
cn ≤ Rn (q) = r ≤ q

and
Rn+1 (r − cn) ≤ r − cn.

Proof. Element r − cn satisfies
Sn (q) + L′0 (|xn|) (r − cn) = r − cn.

Therefore, we have
Sn+1 (r − cn) + |−F (xn+1)|+ L′0 (|xn+1|) (r − cn) ≤ r − cn.

That completes the proof of the Lemma. �

Lemma 11. Assume:
• conditions of Theorem 1 hold;
• there exists a solution qn ∈ In of Rn (q) ≤ q.
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Then for
an = qn am+1 = Rm (am)− cm (m ≥ n)

we have
|x∗ − xm| ≤ am.

Proof. Using induction we immediately have

Rm (am) ≤ am.

That is
am+1 + cm ≤ am,

which implies the monotonicity of

(xm, an − am) in X × V.

That completes the proof of the Lemma. �

The properties of Rn imply the existence of R∞n (0) which is a reasonable
choice for qn in the Lemma above.

Hence we have:

Lemma 12. Assume conditions of Theorem 1 hold.
Then any solution q ∈ In of Rn (q) ≤ q implies the a posteriori estimate

|x∗ − xn| ≤ R∞n (0) ≤ q.

As suggested in [1], [2], [5], [6] in precise we may want to use a monotone
operator satisfying

Pn (q) ≤ q ⇒ Rn (q) ≤ q,
where

Pn (q) = L (|xn−1|+ cn−1 + q)− L (|xn−1|)− L′0 (|xn−1|) cn−1.

Remark 13. (a) If L0 = L then our Theorem 8 and Lemmas 10–12 reduce
to the corresponding ones in [6]. However, if strict inequality holds in (16)
or (17), then the error bounds on the distances |x∗ − xn| are finer and the
information on the location of the solution x∗ more precise. (since dn ≤ dn and
b∗ ≤ b). Note that these improvements are made under the same hypotheses
as in [6] (since practically the computation of operator L requires that of L0).

(b) One hopes that in general we can find conditions weaker than say (18)
since the convergence of (20) (and not (21), which depends on (18)) suffices
for the existence of x∗ (in U (b∗)). �

As an example we consider the case of a Banach space with a real norm
denoted by ‖·‖. To check the conditions of the theorem, assume F ′ (0) = I
and that the Fréchet-derivative F ′ of operator F can be estimated by some
monotone operator ` : [0, a]→ R such that∥∥F ′ (x)− F ′ (y)

∥∥ ≤ ` (‖x− y‖) ‖x− y‖ for all x, y ∈ U (a) .
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Moreover define
L (q) = ‖F (0)‖+

∫ q

0
ds
∫ s

0
dt` (t) .

Set ` (t) ≤ ` (a) = `1 ≥ 0. Then crucial convergence condition (18) holds if

‖F (0)‖+ 1
2`1a

2 ≤ a

or if
(39) hK = 2`1 ‖F (0)‖ ≤ 1,
which is the famous Newton-Kantorovich condition that guarantees the semilo-
cal convergence of Newton’s method to x∗ [3], [4], [8].

To show that sequence (20) converges under weaker conditions than (39) in
this case, assume there exists a monotone operator p : [0, a]→ R such that∥∥F ′ (x)− F ′ (0)

∥∥ ≤ p1 (‖x‖) ‖x‖ for all x ∈ U (a) .
Set p (t) ≤ p (a) = p1, and define

L0 (q) = ‖F (0)‖+
∫ q

0
ds
∫ s

0
dtp (t) .

Then it can easily be seen that sequence (20) converges, provided that

(40) hA =
(
p1 + `1

2

)
‖F (0)‖ ≤ 1

which is weaker than (39). Note also that
p1 ≤ `1

holds in general and that `1
p1

can be arbitrarily large [3].
Hence, the above justify the claims made at the introduction and in the

Remark above.
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