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THEORETICAL AND NUMERICAL RESULTS ABOUT SOME
WEAKLY SINGULAR VOLTERRA-FREDHOLM EQUATIONS
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Abstract. In this paper existence, uniqueness results for the solution of some
weakly singular linear Volterra and Volterra-Fredholm integral equations are
given. For these equations, a numerical model is proposed and its convergence
and rate of convergence are analyzed. Numerical results on some polynomial
test functions are given.
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1. INTRODUCTION

The singular integral equations have been studied by many authors. As
monographs in this field we quote here W. Pogorzelski [13] (1966), D.V.
Ionescu [8] (1972), H.M. Srivastava and R.G. Buschman [17] (1992), R. Estrada
and R.P. Kanwall [7] (2000), A. Chakrabarti and G. Vanden Berge [5] (2002).
As papers we quote here [1], [6] and [15]. For results in the field of Volterra-
Fredholm integral equations by using fixed point theory, we quote [2], [10],
[11] and [12].

The aim of this paper is to present existence, uniqueness and numerical re-
sults for the solutions of the following weakly singular linear integral equations
with linear modification of the argument:

y(x) = f(x) +
∫ x

0
K(x, s)y(λs)ds, x ∈ [0, b], 0 < λ ≤ 1,

where f ∈ C[0, b], K(x, s) = L(x,s)
|x−s|α for all x, s ∈ [0, b], x 6= s, 0 < α < 1 and

L ∈ C([0, b]× [0, b]), respectively

y(x) = f(x)+
∫ x

0
K1(x, s)y(λs)ds+

∫ b

0
K2(x, u)y(λu)du, x ∈ [0, b], 0 < λ ≤ 1,
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where f ∈ C[0, b], Ki(x, s) = Li(x,s)
|x−s|αi , 0 < αi < 1, and Li ∈ C([0, b] × [0, b]),

i = 1, 2.
At these problems, taking into account the kernel singularity, a particular

numerical model [14] is adapted. This model is based on Nystrom collocation
method, using Schoenberg variation diminishing (SVD) splines of fourth order.
The order of convergence is studied and numerical results are given to test the
polynomial exactness.

Section 2 and 3 are respectively devoted to the theoretical results for Vol-
terra and Volterra-Fredholm weakly singular integral equations with linear
modification of the argument. Sections 4 and 5 present the numerical model
and its convergence analysis; in Section 6 numerical results are given.

2. VOLTERRA INTEGRAL EQUATIONS

Consider the following integral equation:

(2.1λ) y(x) = f(x) +
∫ x

0
K(x, s)y(λs)ds, x ∈ [0, b], 0 < λ ≤ 1,

where f ∈ C[0, b], K(x, s) = L(x,s)
|x−s|α for all x, s ∈ [0, b], x 6= s, 0 < α < 1 and

L ∈ C([0, b]× [0, b]).
By using the results given in [8] and [2] for weakly singular Volterra-Fredholm

integral equations, we obtain:

Lemma 2.1. If K(x, s) = L(x,s)
|x−s|α , 0 < α < 1 and L ∈ C([0, b] × [0, b]), then

the operator T : C[0, b]→ C[0, b],

T (y)(x) :=
∫ x

0
K(x, s)y(s)ds

is well defined (T (y) ∈ C[0, b]).

Lemma 2.2. If Ki(x, s) = L(x,s)
|x−s|αi , 0 < αi < 1 and Li ∈ C([0, b] × [0, b]),

i = 1, 2, then the operator T : C[0, b]→ C[0, b],

T (y)(x) :=
∫ x

0
K1(x, s)y(s)ds+

∫ b

0
K2(x, u)y(u)du

is well defined (T (y) ∈ C[0, b]).

We have

Theorem 2.3. In the conditions mentioned before, the equation (2.1λ) has
in C[0, b] a unique solution and this solution can be obtained by the successive
approximation method, starting from any element of C[0, b].

Proof. Because of Lemma 2.1, we have that the operator U : C[0, b] →
C[0, b],

U(y)(x) :=
∫ x

0
K(x, s)y(λs)ds,
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is well defined. So, we have that C[0, b] is an invariant set for the operator T ,
where

T (y)(x) := f(x) +
∫ x

0
K(x, s)y(λs)ds.

The equation (2.1λ) can be written as a fixed point problem of the form
y = T (y).

Consider T : (C[0, b], ‖ · ‖B) → (C[0, b], ‖ · ‖B), where ‖ · ‖B is a Bielecki
norm on C[0, b] defined by

‖y‖B = max
x∈[0,b]

|y(x)|e−τx, and τ > 0.

Denote
L∗ = max

(x,s)∈[0,b]×[0,b]
|L(x, s)|.

We have

|T (y)(x)− T (z)(x)| ≤
∫ x

0

L∗

|x− s|α
|y(λs)− z(λs)|e−τλs · eτλsds

≤ L∗‖y − z‖B
∫ x

0

eτλs

(x− s)αds

≤ L∗‖y − z‖B
( ∫ x

0

ds
(x− s)αp

)1/p( ∫ x

0
eτλsqds

) 1
q
,

where p > 0, q > 0,
1
p + 1

q = 1 and αp < 1.

So,

|T (y)(x)− T (z)(x)| ≤ L∗
( b1−αp

1− αp
)1/p eτx

(τλq)1/q ‖y − z‖B

and

|T (y)(x)− T (z)(x)|e−τx ≤ L∗
( b1−αp

1− αp
)1/p 1

(τλq)1/q ‖y − z‖B, for all x ∈ [0, b].

It follows that

‖T (y)− T (z)‖B ≤ LT ‖y − z‖B, for all y, z ∈ C[0, b],

where

LT = L∗
( b1−αp

1− αp
)1/p 1

(τλq)1/q .

We can choose τ large enough such that 0 < LT < 1. So, the proof follows
from Contraction principle. �
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3. VOLTERRA-FREDHOLM INTEGRAL EQUATIONS

Consider the following Volterra-Fredholm weakly singular integral equation:

(3.1λ) y(x) = f(x) +
∫ x

0
K1(x, s)y(λs)ds+

∫ b

0
K2(x, u)y(λu)du,

x ∈ [0, b], 0 < λ ≤ 1,

where f ∈ C[0, b] and Ki(x, s) = Li(x,s)
|x−s|αi , 0 < αi < 1, Li ∈ C([0, b] × [0, b]),

i = 1, 2.
We have

Theorem 3.1. In the above conditions let L∗i > 0 be such that |Li(x, s)| ≤
L∗i , for all x, s ∈ [0, b], i = 1, 2, and we suppose that there exist p > 0, q > 0
and τ > 0, such that α1p < 1, α2p < 1, 1

p + 1
q = 1 and 0 < LT < 1, where

LT = 1
(τλq)1/q

[
L∗1

(
b1−α1p

1−α1p

)1/p
+ L∗2(1 + eτb)

(
b1−α2p

1−α2p

)1/p
]
.

Then the equation (3.1λ) has in C[0, b] a unique solution y∗ and this solution
can be obtained by the successive approximation method starting from any
element of C[0, b].

Proof. Let us consider the operators Ui : C[0, b]→ C[0, b], i = 1, 2, defined
by

U1(y)(x) :=
∫ x

0
K1(x, s)y(λs)ds

and

U2(y)(x) :=
∫ b

0
K2(x, u)y(λu)du.

By using Lemma 2.2 we obtain that U1 and U2 are well defined.
The equation (3.1λ) is equivalent to the following fixed point problem:

y = T (y), where T : C[0, b]→ C[0, b], is given by

T (y)(x) := f(x) + U1(y)(x) + U2(y)(x), x ∈ [0, b], 0 < λ ≤ 1,

and T is well defined.
Consider T : (C[0, b], ‖ · ‖B) → (C[0, b], ‖ · ‖B), where ‖ · ‖B is a Bielecki

norm on C[0, b] defined by

‖y‖B := max
x∈[0,b]

|y(x)|e−τx and τ > 0.

We have

|T (y)(x)− T (z)(x)| ≤ |U1(y)(x)− U1(z)(x)|+ |U2(y)(x)− U2(z)(x)|.

But from results given in Section 2, the following inequality holds:

|U1(y)(x)− U2(y)(x)| ≤ L∗1
(
b1−α1p

1−α1p

)1/p eτx
(τλq)1/q ‖y − z‖B.
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We estimate

|U2(y)(x)− U2(z)(x)| ≤
∫ b

0

L∗2
|x−u|α2 |y(λu)− z(λu)|e−τλueτλudu ≤

≤ L∗2‖y − z‖B

(∫ x

0
eτλu
|x−u|α2 du+

∫ b

x

eτλu
|x−u|α2 du

)

≤L∗2‖y − z‖B

( b1−α2p

1−α2p

)1/p eτx
(τλq)1/q +

(∫ b

x

du
(u−x)α2p

)1/p(∫ b

x
eτλuqdu

)1/q


≤ L∗2‖y − z‖B

[(
b1−α2p

1−α2p

)1/p eτx
(τλq)1/q +

(
(u−x)1−α2p

1−α2p

∣∣∣b
x

)1/p (
eτλuq
τλq

∣∣∣b
x

)1/q
]

≤ L∗2‖y − z‖B
[(

b1−α2p

1−α2p

)1/p eτx
(τλq)1/q +

(
b1−α2p

1−α2p

)1/p (eτλbq−eτλxq)1/q

(τλq)1/q

]
≤ L∗2‖y − z‖B

[(
b1−α2p

1−α2p

)1/p eτx
(τλq)1/q +

(
b1−α2p

1−α2p

)1/p eτλb
(τλq)1/q

]
≤ L∗2‖y − z‖B

[(
b1−α2p

1−α2p

)1/p eτx
(τλq)1/q +

(
b1−α2p

1−α2p

)1/p eτ(b−x)eτx
(τλq)1/q

]
≤ L∗2‖y − z‖Beτx

(
b1−α2p

1−α2p

)1/p 1+eτb
(τλq)1/q .

It follows that

|T (y)(x)− T (z)(x)|e−τx ≤

≤
[
L∗1

(
b1−α1p

1−α1p

)1/p
+ L∗2(1 + eτb)

(
b1−α2p

1−α2p

)1/p
]

1
(τλq)1/q ‖y − z‖B.

So,
‖T (y)− T (z)‖B ≤ LT ‖y − z‖B, for all y, z ∈ C[0, b],

where

LT = 1
(τλq)1/q

[
L∗1

(
b1−α1p

1−α1p

)1/p
+ L∗2(1 + eτb)

(
b1−α2p

1−α2p

)1/p
]
.

So, the proof follows from Contraction principle. �

Remark 3.1. For λ = 1 in (2.1λ) and (3.1λ) we have the equations consid-
ered by Sz. András in [1] and [2]. �

Example 3.2. Consider (3.1λ) in which Ki(x, s) := − 1
|x−s|1/2 , i = 1, 2, and

b := 1, λ := 1
2 . �

We have

Theorem 3.2. If there exist 0 < p < 2 and τ > 0 such that(
2
τ

) p−1
p
(
p−1
p

) p−1
p
(

2
2−p

) 1
p (2 + eτ ) < 1,
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then the equation

y(x) = f(x)−
∫ x

0
1

(x−s)1/2 y
(
s
2
)

ds−
∫ 1

0
1

|x−s|1/2 y
(
s
2
)

ds, x ∈ [0, 1], (3.2)

where f ∈ C[0, b], has in C[0, 1] a unique solution.

Remark 3.3. By choosing p = 11
10 and τ = 1

10 , the condition in Theorem
3.2 is satisfied. �

4. NUMERICAL MODEL

In this section we present a numerical model suitable to (3.1λ) based on
a global collocation method using approximating splines, in particular the so
called Schoenberg variation-diminishing (SVD) splines [16].

In the following we recall the necessary background on SVD splines.

4.1. The SVD splines. Let Xm := {α = x0 < x1 < · · · < xm < xm+1 = β}
be a partition of the interval J := [α, β] with Hm := max

0≤j≤m
(xj+1−xj), Hm →

0 as m → ∞, and let {dj : j = 0, . . . ,m + 1} be a vector of positive integers
where d0 = dm+1 = p (p > 1) and dj ≤ p− 1, j = 1, . . . ,m .

We set n + p :=
m+1∑
j=0

dj and define Πn = {ti : i = 1, 2, . . . , n + p} as the

nondecreasing sequence obtained from Xm by repeating xj exactly dj times,
j = 0, . . . ,m+ 1.

Πn is assumed as mesh of the set of normalized B-splines Bi,p (i = 1, . . . , n)
of order p defined by the following recurrence relation:

(4.1) Bi,p(x) = x− ti
ti+p−1 − ti

Bi,p−1(x) + ti+p − x
ti+p − ti+1

Bi+1,p−1(x)

(4.2) Bi,1(x) =
{

1, ti ≤ x < ti+1
0, otherwise

Let ξi = ti+1+···+ti+p−1
p−1 (i = 1, 2, . . . , n) be a set of nodes, the so-called

Schoenberg points, belonging to [ti, ti+p] for i = 1, 2, . . . , n.
For all g ∈ C(J) we define the following spline operator:

(4.3) Wng :=
n∑
i=1

g(ξi)Bi,p(x), ξi ∈ J (i = 1, 2, . . . , n).

According to [9] Wn is a SVD spline operator. In [9] it is shown to be a
projector operator.
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5. NUMERICAL SOLUTION OF THE PROBLEM

Let us consider the function:

yn(x) :=
n∑
i=1

αiBi,p(x),

where αi (i = 1, 2, . . . , n) are chosen to satisfy the so called generalized Nys-
trom collocation system. Precisely, we introduce yn(λx) instead of y(λx) in
(3.1λ) obtaining:

(5.1) yn(x) = f(x) +
∫ x

0
K1(x, s)yn(λs)ds+

∫ b

0
K2(x, u)yn(λu)du,

x ∈ [0, b], λ ∈ (0, 1].
We can rewrite (5.1) as:

(5.2) yn(x) = f(x) + 1
λ

∫ λx

0
K1(x, sλ)yn(s)ds+ 1

λ

∫ λb

0
K2(x, uλ)yn(u)du,

x ∈ [0, b], λ ∈ (0, 1].
Let J := [0, b], we choose in J a set of collocation points τk (k = 1, 2, . . . , n),

decoupled from the set of the ξi (i = 1, 2, . . . , n). Consequently from (5.2) we
obtain the following collocation system:

n∑
i=1

αiBi,p(τk)− 1
λ

n∑
i=1

αi

[∫ λτk

0
K1(τk, sλ)Bi,p(s)ds+

∫ λb

0
K2(τk, uλ)Bi,p(u)du

](5.3)

= f(τk), τk ∈ J (k = 1, 2, . . . , n), λ ∈ (0, 1].
The evaluation of the singular integrals

I(K1, Bi,p) =
∫ λτk

0
K1(τk, sλ)Bi,p(s)ds

and
I(K2, Bi,p) =

∫ λb

0
K2(τk, uλ)Bi,p(u)du

is carried out by a recurrence formula analogous to (4.1).
The basis integrals

I(K1, B1,p) =
∫ λτk

0
K1(τk, sλ)sp−1B1,p(τk)ds

and
I(K2, B1,p) =

∫ λb

0
K2(τk, uλ)up−1B1,p(u)du

are evaluated by a closed analytical formula.
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We assume yn(x) as approximated solution of (3.1λ). Now the problem is
to analyze the convergence of yn(x) to y(x).

5.1. Convergence analysis. In order to carry out the error analysis for the
proposed method we can rewrite (3.1λ) as

(5.4) y(x) = f(x) +
∫ b

0
K̃(x, s)y(λs)ds, x ∈ [0, b], λ ∈ (0, 1]

and (5.1) as

(5.5) yn(x) = f(x) +
∫ b

0
K̃(x, s)yn(λs)ds, x ∈ [0, b], λ ∈ (0, 1],

where
K̃(x, s) = K̃1(x, s) +K2(x, s)

and
K̃1(x, s) =

{
K1(x, s) if 0 ≤ s ≤ x
0 if s > x

Theorem 5.1. Let Wn as in (4.3) and let

Wn K̃g = 1
λ

∫ λb

0
K̃(x, sλ)Wng(s)ds, x ∈ [0, b], λ ∈ (0, 1].

Then

(5.6) ‖y − yn‖ ≤ ‖I −WnK̃‖−1‖(I −Wn)y‖.

Proof. We can transform (5.4) and (5.5) in the operator form

(5.7) (I − K̃)y = f

(5.8) (I − K̃)yn = f

where

Iy = y, K̃y = 1
λ

∫ λb

0
K̃(x, sλ)y(s)ds, K̃yn = 1

λ

∫ λb

0
K̃(x, sλ)yn(s)ds,

x ∈ [0, b], λ ∈ (0, 1].

Applying the operator (4.3) to (5.7) we obtain

(5.9) Wn(I − K̃)y = Wnf,

that is equivalent to

(5.10) (I −WnK̃)y = Wnf + (I −Wn)y.

Analogously for (5.8) we obtain

(5.11) (I −WnK̃)yn = Wnf + (I −Wn)yn.
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From (5.10) and (5.11) and taking account that Wn is a projector operator,
it follows
(5.12) (I −WnK̃)(y − yn) = (I −Wn)y.

Then (5.6) holds. �

Corollary 5.2. Let Wn and K̃ be the operators as in (5.12). Then for n
sufficiently large, say n ≥ N, the operator (I −WnK̃)−1 from C(I) to C(I)
exists. Moreover it is uniformly bounded, i.e.:

supn≥N ‖I −WnK̃‖−1 ≤M <∞.

Proof. From Theorem 1 and Corollary 2 in [14] it follows that ‖K̃ −WnK̃‖
→ 0 as n→∞. Consequently, by the proof of Theorem 1 in [16], the Corollary
5.2 is proved. �

Remark 5.1. From (5.12) and from the Corollary 5.2 it follows that ‖y −
yn‖ → 0 exactly with the same rate of convergence as ‖y −Wny‖ does. �

6. NUMERICAL RESULTS

In what follows we present some numerical results for some Volterra-Fred-
holm integral equation, by using the numerical method presented above. In
particular, the exactness of the method for polynomial functions till third
degree is tested. In all examples the hypotheses of existence and uniqueness
of the solution are guaranteed.

We consider the following equation:

y(x) = f(x)+
∫ x

0
K1(x, s)y(λs)ds+

∫ b

0
K2(x, u)y(λu)du, x ∈ [0, b], λ ∈ (0, 1],

where y is the unknown function and K1,K2, f are given functions.

Table 1.

f(x) y(x) λ = 1 λ = 0.5
1 + 2[

√
b− x+ 2

√
x] 1 1.43 · 10−16 2.39 · 10−15

x+ 2λ/3[
√
b− x(b+ 2x) + 4x3/2] x 4.45 · 10−16 7.78 · 10−16

x2 + 2λ2/5[
√
b− x(b2 + 4x(b+ 2x)/3) x2 6.16 · 10−17 5.50 · 10−17

+16x5/2/3]
x3 + 2λ3/7[

√
b− x(b3 + 6xb2/5 x3 9.08 · 10−17 3.60 · 10−16

+8x2(b+ 2x)/5) + 32x7/2/5]
x4 + 2λ4/9[

√
b− x(b4 + 8xb3/7 x4 1.88 · 10−5 1.29 · 10−5

+48x2b2/35 + 64x3(b+ 2x)/35)
+256x7/2/35]

In all cases the interval [0, b] has been divided by m = 11 equispaced simple
nodes xj = (0.1)jb, (j = 0, 1, . . . , 10), except for x0 and x10 of multiplicity
p = 4. The corresponding vector t has n+ p = 17 components.
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The unknown function is approximated in n = 13 nodes belonging to [0, b].
In Table 1 we show the results obtained with the choiceK1(x, t) = K2(x, t) =

−|t−x|−1/2, b = 1, λ = 1 and λ = 0.5. For λ = 0.5 we have the equation (3.2),
considered in Example 3.2. For brevity we indicate the mean of the absolute
values of the errors evaluated in the interval. Our computer programs are
written in MATLAB 7.3.
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