EXACT ORDERS IN SIMULTANEOUS APPROXIMATION BY COMPLEX BERNSTEIN-STANCU POLYNOMIALS ${ }^{\dagger}$

SORIN G. GAL*

Abstract

In this paper the exact orders in approximation by the complex Bernstein-Stancu polynomials (depending on two parameters) and their derivatives on compact disks are obtained.

MSC 2000. Primary: 30E10; Secondary: 41A25, 41A28.
Keywords. Complex Bernstein-Stancu polynomials, exact orders in simultaneous approximation.

1. INTRODUCTION

In the recent paper [1] the following upper estimates and Voronovskaja's theorem in approximation by complex Bernstein-Stancu polynomials depending on two parameters were proved.

Theorem 1.1. Let $\mathbb{D}_{R}=\{z \in \mathbb{C} ;|z|<R\}$ be with $R>1$ and let us suppose that $f: \mathbb{D}_{R} \rightarrow \mathbb{C}$ is analytic in \mathbb{D}_{R}, i.e. $f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$, for all $z \in \mathbb{D}_{R}$. Also, for $0 \leq \alpha \leq \beta$ (independent of n) let us define the complex Bernstein-Stancu polynomials by

$$
S_{n}^{(\alpha, \beta)}(f)(z)=\sum_{k=0}^{n}\binom{n}{k} z^{k}(1-z)^{n-k} f[(k+\alpha) /(n+\beta)], z \in \mathbb{C} .
$$

(i) For $1 \leq r<R$ and $n \in \mathbb{N}$, we have

$$
\left\|S_{n}^{(\alpha, \beta)}(f)-f\right\|_{r} \leq \frac{M_{2, r}^{(\beta)}(f)}{n+\beta}
$$

where $0<M_{2, r}^{(\beta)}(f)=2 r^{2} \sum_{j=2}^{\infty} j(j-1)\left|c_{j}\right| r^{j-2}+2 \beta r \sum_{j=1}^{\infty} j\left|c_{j}\right| r^{j-1}<\infty$. Here $\|f\|_{r}=\sup \{|f(z)| ;|z| \leq r\}$.

[^0](ii) If $1 \leq r<r_{1}<R$, then for all $n, p \in \mathbb{N}$, we have
$$
\left\|\left[S_{n}^{(\alpha, \beta)}(f)\right]^{(p)}-f^{(p)}\right\|_{r} \leq \frac{M_{2, r_{1}}^{(\beta)}(f) p!r_{1}}{(n+\beta)\left(r_{1}-r\right)^{p+1}}
$$
(iii) For all $n \in \mathbb{N}$, we have
$$
\left\|S_{n}^{(\alpha, \beta)}(f)-f+\frac{\beta e_{1}-\alpha}{n+\beta} f^{\prime}-\frac{n e_{1}\left(1-e_{1}\right)}{2(n+\beta)^{2}} f^{\prime \prime}\right\|_{1} \leq \frac{M_{1}^{(\alpha, \beta)}(f)}{(n+\beta)^{2}},
$$
where $e_{1}(z)=z$ and $0<M_{1}^{(\alpha, \beta)}(f)<\infty$ depends only on α, β and f.
Remark 1.2. Following exactly the lines in the proof of Theorem 1.1, (iii) in [1], it is immediate that in fact for any $1 \leq r<R$ we have an upper estimate of the form
$$
\left\|S_{n}^{(\alpha, \beta)}(f)-f+\frac{\beta e_{1}-\alpha}{n+\beta} f^{\prime}-\frac{n e_{1}\left(1-e_{1}\right)}{2(n+\beta)^{2}} f^{\prime \prime}\right\|_{r} \leq \frac{M_{r}^{(\alpha, \beta)}(f)}{(n+\beta)^{2}}
$$
where the constant $M_{r}^{(\alpha, \beta)}(f)>0$ is independent of n and depends on f, r, α and β. This estimate will be useful in Section 3.

The goal of this paper is to show that in Theorem 1.1, (i) and (ii), also lower estimates hold. Thus, in Section 2 we prove that if the analytic function f is not a polynomial of degree ≤ 0 and $1 \leq r<R$, then we have $\left\|S_{n}^{(\alpha, \beta)}(f)-f\right\|_{r} \geq$ $\frac{C_{r}^{(\alpha, \beta)}(f)}{n}, n \in \mathbb{N}$, that is in Theorem 1.1, (i), in fact the equivalence $\| S_{n}^{(\alpha, \beta)}(f)-$ $f \|_{r} \sim \frac{1}{n}$ holds. In Section 3 we prove that for any $p \in \mathbb{N}$ and $1 \leq r<R$, if f is not a polynomial of degree $\leq p-1$ then we have $\left\|\left[S_{n}^{(\alpha, \beta)}(f)\right]^{(p)}-f^{(p)}\right\|_{r} \sim \frac{1}{n}$, where the constants in the equivalence depend only on f, α, β, r and p.

Since the case $\alpha=\beta=0$ (i.e. the case of classical Bernstein polynomials) was already considered in [2], in the rest of the paper we will exclude it.

2. EXACT ORDER OF APPROXIMATION FOR COMPLEX BERNSTEIN-STANCU POLYNOMIALS

The main result of this section is the following.
Theorem 2.1. Let $R>1,0 \leq \alpha \leq \beta$ with $\alpha+\beta>0, \mathbb{D}_{R}=\{z \in \mathbb{C} ;|z|<R\}$ and let us suppose that $f: \mathbb{D}_{R} \rightarrow \mathbb{C}$ is analytic in \mathbb{D}_{R}, that is we can write $f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$, for all $z \in \mathbb{D}_{R}$. If f is not a polynomial of degree 0 and $1 \leq r<R$, then we have

$$
\left\|S_{n}^{(\alpha, \beta)}(f)-f\right\|_{r} \geq \frac{C_{r}^{(\alpha, \beta)}(f)}{n+\beta}, n \in \mathbb{N}
$$

where the constant $C_{r}^{(\alpha, \beta)}(f)$ depends only on f, r, α and β.
Proof. For all $z \in \mathbb{D}_{R}$ and $n \in \mathbb{N}$ we have

$$
\begin{aligned}
& S_{n}^{(\alpha, \beta)}(f)(z)-f(z)=\frac{1}{n+\beta}\left\{-(\beta z-\alpha) f^{\prime}(z)+\frac{z(1-z)}{2} f^{\prime \prime}(z)+\frac{1}{n+\beta}\right. \\
& \left.\quad \cdot\left[(n+\beta)^{2}\left(S_{n}^{(\alpha, \beta)}(f)(z)-f(z)+\frac{\beta z-\alpha}{n+\beta} f^{\prime}(z)-\frac{n z(1-z)}{2(n+\beta)^{2}} f^{\prime \prime}(z)\right)-\frac{\beta z(1-z)}{2} f^{\prime \prime}(z)\right]\right\} .
\end{aligned}
$$

Note that in the case $\alpha=\beta=0$ in [2], necessarily f was supposed to be not a polynomial of degree ≤ 1.

In what follows we will apply to the above identity the following obvious property:

$$
\|F+G\|_{r} \geq\left|\|F\|_{r}-\|G\|_{r}\right| \geq\|F\|_{r}-\|G\|_{r}
$$

It follows

$$
\begin{aligned}
& \left\|S_{n}^{(\alpha, \beta)}(f)-f\right\|_{r} \geq \frac{1}{n+\beta}\left\{\left\|-\left(\beta e_{1}-\alpha\right) f^{\prime}+\frac{e_{1}\left(1-e_{1}\right)}{2} f^{\prime \prime}\right\|_{r}-\frac{1}{n+\beta} .\right. \\
& \left.\quad \cdot\left[\left\|(n+\beta)^{2}\left(S_{n}^{(\alpha, \beta)}(f)-f+\frac{\beta e_{1}-\alpha}{n+\beta} f^{\prime}-\frac{n e_{1}\left(1-e_{1}\right)}{2(n+\beta)^{2}} f^{\prime \prime}\right)-\frac{\beta e_{1}\left(1-e_{1}\right)}{2} f^{\prime \prime}\right\|_{r}\right]\right\} .
\end{aligned}
$$

Since by Remark 1.2 we have

$$
\begin{gathered}
\|(n+\beta)^{2}\left(S_{n}^{(\alpha, \beta)}(f)-\right. \\
\left.\leq+\frac{\beta e_{1}-\alpha}{n+\beta} f^{\prime}-\frac{n e_{1}\left(1-e_{1}\right)}{2(n+\beta)^{2}} f^{\prime \prime}\right)-\frac{\beta e_{1}\left(1-e_{1}\right)}{2} f^{\prime \prime} \|_{r} \leq \\
\leq M_{r}^{(\alpha, \beta)}(f)+\beta\left\|f^{\prime \prime}\right\|_{r},
\end{gathered}
$$

and denoting $H(z)=-(\beta z-\alpha) f^{\prime}(z)+\frac{z(1-z)}{2} f^{\prime \prime}(z)$, if we prove that $\|H\|_{r}>0$, then it is clear that there exists an index n_{0} depending only on f, α and β, such that

$$
\left\|S_{n}^{(\alpha, \beta)}(f)-f\right\|_{r} \geq \frac{1}{n+\beta} \cdot \frac{\|H\|_{r}}{2}, \forall n \geq n_{0}
$$

For $n \in\left\{1,2, \ldots, n_{0}-1\right\}$ we have $\left\|S_{n}^{(\alpha, \beta)}(f)-f\right\|_{r} \geq \frac{A_{n, r}^{(\alpha, \beta)}(f)}{n+\beta}$ with $A_{n, r}^{(\alpha, \beta)}(f)=$ $(n+\beta) \cdot\left\|S_{n}^{(\alpha, \beta)}(f)-f\right\|_{r}>0$, which finally implies $\left\|S_{n}^{(\alpha, \beta)}(f)-f\right\|_{r} \geq \frac{C_{r}^{(\alpha, \beta)}(f)}{n+\beta}$ for all $n \in \mathbb{N}$, with $C_{r}^{(\alpha, \beta)}(f)=\min \left\{A_{1, r}^{(\alpha, \beta)}, A_{2, r}^{(\alpha, \beta)}(f), \ldots, A_{n_{0}-1, r}^{(\alpha, \beta)}(f), \frac{\|H\|_{r}}{2}\right\}$.

Therefore it remains to show that $\|H\|_{r}>0$. Indeed, suppose that $\|H\|_{r}=$ 0 . We have two possibilities: 1) $0=\alpha<\beta$ or 2$) 0<\alpha \leq \beta$.

Case 1). We obtain $H(z)=-\beta z f^{\prime}(z)+\frac{z(1-z)}{2} f^{\prime \prime}(z)=0$, for all $|z| \leq r$ and denoting $y(z)=f^{\prime}(z)$, it follows that $y(z)$ is an analytic function in \mathbb{D}_{R}, solution of the differential equation $-\beta z y(z)+\frac{z(1-z)}{2} y^{\prime}(z)=0,|z| \leq r$, which after simplification with $z \neq 0$ becomes $-\beta y(z)+\frac{(1-z)}{2} y^{\prime}(z)=0,|z| \leq r$. Now, seeking $y(z)$ in the form $y(z)=\sum_{k=0}^{\infty} b_{k} z^{k}$ and replacing it in the differential equation, by the identification of the coefficients we easily obtain $b_{k}=0$ for all $k=0,1, \ldots$. Therefore $y(z)=0$ for all $|z| \leq r$, which by the identity theorem on analytic (holomorphic) functions implies $y(z)=0$ for all $z \in \mathbb{D}_{R}$ and the contradiction that f is a polynomial of degree ≤ 0.

Case 2). Denoting $y(z)=f^{\prime}(z)$ by hypothesis it follows that $y(z)$ is an analytic function in \mathbb{D}_{R} solution of the differential equation $(-\beta z+\alpha) y(z)+$ $\frac{z(1-z)}{2} y^{\prime}(z)=0,|z| \leq r$.

Taking $z=0$ it follows $\alpha y(0)=0$, which means $y(0)=0$. Seeking $y(z)$ in the form $y(z)=\sum_{k=1}^{\infty} b_{k} z^{k}$ and replacing it in the differential equation, by the
identification of the coefficients we easily obtain $b_{k}=0$ for all $k=1,2, \ldots$, which finally leads to the contradiction that f is a constant.

Combining now Theorem 2.1 with Theorem 1.1, (i), we immediately get the following.

Corollary 2.2. Let $R>1,0 \leq \alpha \leq \beta$ with $\alpha+\beta>0, \mathbb{D}_{R}=\{z \in$ $\mathbb{C} ;|z|<R\}$ and let us suppose that $f: \mathbb{D}_{R} \rightarrow \mathbb{C}$ is analytic in \mathbb{D}_{R}. If f is not a polynomial of degree 0 and $1 \leq r<R$, then we have

$$
\left\|S_{n}^{(\alpha, \beta)}(f)-f\right\|_{r} \sim \frac{1}{n+\beta}, n \in \mathbb{N}
$$

where the constants in the equivalence depend on f, r, α and β.

3. EXACT ORDERS OF APPROXIMATION FOR DERIVATIVES OF COMPLEX BERNSTEIN-STANCU POLYNOMIALS

The main result of this section is the following.
TheOrem 3.1. Let $\mathbb{D}_{R}=\{z \in \mathbb{C} ;|z|<R\}$ be with $R>1,0 \leq \alpha \leq \beta$ with $\alpha+\beta>0$ and let us suppose that $f: \mathbb{D}_{R} \rightarrow \mathbb{C}$ is analytic in \mathbb{D}_{R}, i.e. $f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$, for all $z \in \mathbb{D}_{R}$. Also, let $1 \leq r<r_{1}<R$ and $p \in \mathbb{N}$ be fixed. If f is not a polynomial of degree $\leq p-1$, then we have

$$
\left\|\left[S_{n}^{(\alpha, \beta)}(f)\right]^{(p)}-f^{(p)}\right\|_{r} \sim \frac{1}{n+\beta}
$$

where the constants in the equivalence depend on $f, \alpha, \beta, r, r_{1}$ and p.
Proof. Taking into account Theorem 1.1, (ii), it remains only to prove the lower estimate for $\left\|\left[S_{n}^{(\alpha, \beta)}(f)\right]^{(p)}-f^{(p)}\right\|_{r}$.

Denoting by Γ the circle of radius $r_{1}>r$ (with $r \geq 1$) and center 0 , by the Cauchy's formulas it follows that for all $|z| \leq r$ and $n \in \mathbb{N}$ we have

$$
\left[S_{n}^{(\alpha, \beta)}(f)\right]^{(p)}(z)-f^{(p)}(z)=\frac{p!}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{S_{n}^{(\alpha, \beta)}(f)(v)-f(v)}{(v-z)^{p+1}} \mathrm{~d} v
$$

where we have the inequality $|v-z| \geq r_{1}-r$ valid for all $|z| \leq r$ and $v \in \Gamma$.
As in the proof of Theorem 2.1 (keeping the notation for H), for all $v \in \Gamma$ and $n \in \mathbb{N}$ we have

$$
\begin{aligned}
& S_{n}^{(\alpha, \beta)}(f)(v)-f(v)= \\
& =\frac{1}{n+\beta}\left\{H(v)+\frac{1}{n+\beta}\left[(n + \beta) ^ { 2 } \left(S_{n}^{(\alpha, \beta)}(f)(v)-f(v)+\right.\right.\right. \\
& \left.\left.\left.\quad \frac{\beta v-\alpha}{n+\beta} f^{\prime}(v)-\frac{n v(1-v)}{2(n+\beta)^{2}} f^{\prime \prime}(v)\right)-\frac{\beta v(1-v)}{2} f^{\prime \prime}(v)\right]\right\}
\end{aligned}
$$

which replaced in the above Cauchy's formula implies

$$
\begin{aligned}
& {\left[S_{n}^{(\alpha, \beta)}(f)\right]^{(p)}(z)-f^{(p)}(z)=\frac{1}{n+\beta}\left\{H^{(p)}(z)+\frac{1}{n+\beta} .\right.} \\
& \quad \cdot\left[\frac{p!}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{(n+\beta)^{2}\left(S_{n}^{(\alpha, \beta)}(f)(v)-f(v)+\frac{\beta v-\alpha}{n+\beta} f^{\prime}(v)-\frac{n v(1-v)}{2(n+\beta)^{2}} f^{\prime \prime}(v)\right)}{(v-z)^{p+1}} \mathrm{~d} v-\right. \\
& \left.\left.\quad-\frac{p!}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{\beta v(1-v)}{2(v-z)^{p+1}} f^{\prime \prime}(v) \mathrm{d} v\right]\right\} .
\end{aligned}
$$

Passing now to absolute value, for all $|z| \leq r$ and $n \in \mathbb{N}$ it follows

$$
\begin{aligned}
& \left|\left[S_{n}^{(\alpha, \beta)}(f)\right]^{(p)}(z)-f^{(p)}(z)\right| \geq \frac{1}{n+\beta}\left\{\left|H^{(p)}(z)\right|-\frac{1}{n+\beta}\right. \\
& {\left[\left\lvert\, \frac{p!}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{(n+\beta)^{2}\left(S_{n}^{(\alpha, \beta)}(f)(v)-f(v)+\frac{\beta v-\alpha}{n+\beta} f^{\prime}(v)-\frac{n v(1-v)}{2(n+\beta)^{2}} f^{\prime \prime}(v)\right)}{(v-z)^{p+1}} \mathrm{~d} v-\right.\right.} \\
& \left.\left.\left.\frac{p!}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{\beta v(1-v)}{2(v-z)^{p+1}} f^{\prime \prime}(v) \mathrm{d} v \right\rvert\,\right]\right\},
\end{aligned}
$$

where by using the Remark 1.2 , for all $|z| \leq r$ and $n \in \mathbb{N}$ we get

$$
\begin{aligned}
& \left\lvert\, \frac{p!}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{(n+\beta)^{2}\left(S_{n}^{(\alpha, \beta)}(f)(v)-f(v)+\frac{\beta v-\alpha}{n+\beta} f^{\prime}(v)-\frac{n v(1-v)}{2(n+\beta)^{2}} f^{\prime \prime}(v)\right)}{(v-z)^{p+1}} \mathrm{~d} v-\right. \\
& \quad-\frac{p!}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{\beta v(1-v)}{2(v-z)^{p+1}} f^{\prime \prime}(v) \mathrm{d} v \left\lvert\, \leq \frac{p!}{2 \pi} \cdot \frac{2 \pi r_{1} M_{r}^{(\alpha, \beta)}}{\left(r_{1}-r\right)^{p+1}}+\frac{p!}{2 \pi} \cdot \frac{2 \pi r_{1} \beta r_{1}\left(1+r_{1}\right)\left\|f^{\prime \prime}\right\| \|_{1}}{2\left(r_{1}-r\right)^{p+1}} .\right.
\end{aligned}
$$

Denoting now $F_{p}(z)=H^{(p)}(z)$, we prove that $\left\|F_{p}\right\|_{r}>0$. Indeed, if we suppose that $\left\|F_{p}\right\|_{r}=0$ then it follows that f satisfies the differential equation

$$
-\beta z f^{\prime}(z)+\frac{z(1-z)}{2} f^{\prime \prime}(z)=Q_{p-1}(z), \forall|z| \leq r
$$

where $Q_{p-1}(z)$ is a polynomial of degree $\leq p-1$. Simplifying with z, making the substitution $y(z)=f^{\prime}(z)$, searching $y(z)$ in the form $y(z)=\sum_{k=0}^{\infty} b_{k} z^{k}$ and then replacing in the differential equation, by simple calculations we easily obtain that $b_{k}=0$ for all $k \geq p-1$, that is $y(z)$ is a polynomial of degree $\leq p-2$. This implies the contradiction that f is a polynomial of degree $\leq p-1$. Continuing exactly as in the proof of Theorem 2.1 (with $\left\|S_{n}^{(\alpha, \beta)}(f)-f\right\|_{r}$ replaced by $\left\|\left[S_{n}^{(\alpha, \beta)}(f)\right]^{(p)}-f^{(p)}\right\|_{r}$), finally there exists an index $n_{0} \in \mathbb{N}$ depending on f, r, r_{1} and p, such that for all $n \geq n_{0}$ we have

$$
\left\|\left[S_{n}^{(\alpha, \beta)}(f)\right]^{(p)}-f^{(p)}\right\|_{r} \geq \frac{1}{n} \cdot \frac{C_{0}}{2} .
$$

Also, the cases when $n \in\left\{1,2, \ldots, n_{0}-1\right\}$ are similar with those in the proof of Theorem 2.1.

REFERENCES

[1] GaL, S.G., Approximation by complex Bernstein-Stancu polynomials in compact disks, Results in Mathematics, 2008, accepted for publication.
[2] Gal, S.G., Exact orders in simultaneous approximation by complex Bernstein polynomials, J. Concr. Applic. Math., 2009, accepted for publication.

Received by the editors: March 2, 2008.

[^0]: ${ }^{\dagger}$ This work has been supported by the Romanian Ministry of Education and Research, under CEEX grant: 2-CEx 06-11-96.
 *Department of Mathematics and Computer Science, University of Oradea, Universităţii str., no. 1, 410087 Oradea, Romania, e-mail: galso@uoradea.ro.

