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DOUBLE INEQUALITIES FOR QUADRATURE FORMULA
OF GAUSS TYPE WITH TWO NODES
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Abstract. In this paper upper and lower error bonds for Gauss’s quadrature
rule with two nodes are given.
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1. INTRODUCTION

In a series of papers (see [2], [3], [8]) the authors establish bounds for the
quadrature rules such as the trapezoid, Simpson and Newton quadrature rules.
In this work we will consider Gauss’s quadrature rule with two nodes:
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0 [ #@rae = 2500 + fan)) + RIS

where f @ [a,b] — R, 21 = &b — 050 . £ gy = afb g boa e =
0,57735027. ..
If f € C*[a,b], the error R[f] from the formula (1)) is given by:
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@ Rifl = [ o)/ (a)da
see [7], pp. 137-138 and 283-284), where the function ¢ has the form:
P

(zz!a)4 if z€[a,x],

z—a)* —a (z—x1)% .
(3) p(z) = % - %% if z€lzy,xg,

% if x € [xg,b)].

It is easy to see that the function ¢ has the following properties:
a) ¢ € C*a, b];
b) @(“T‘H’—h) :cp<“T+b+h), for any h € [O,b_T“];
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2. MAIN RESULTS

In the following theorem double inequalities for —R[f] are presented where
R][f] is the error in the quadrature formula given by the relation (2).

THEOREM 1. If f € C*[a,b] then

(4) ﬁ(b — a)®(41yy — 4553 + 180£3 53 — 180£37,) <
b

< b2 f (o) + fla)] - [ fa)da

a

< A5 (b — @)’ (417 — 4555 + 180€° S5 — 180€°Ty)

where v4,T'y € R, v4 < f(4)(a;) < Ty, for all x € [a,b] and S35 = W.
Moreover,

(5) Y4 = min f(4)(3:), I'y = max f(4)(:n),
z€[a,b| z€la,b]

and the inequalities are sharp.

Proof. From , using the properties of the function ¢ and integrating by
parts, we obtain:

b b
() | e@r V@ = [ fla)de - s @) + f@2)

By using the equality ¢) in the formula @ and the assumptions of the
theorem, we have:

b

@ U@ - e = [ e 5 + S

On the other hand, we have:

b b
O [ - e < ma jo@) [0 @) = ld
where
(10) max [p(x)] = gh(1 — 4% (b — a)* = 2502 (b — ),

z€[a,b]
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and
b b

(1) [ 119w = ulde = [[(19 @)~ )da
= f"(b) = f"(a) = ya(b - a)
= (53 —74)(b—a).

From the relations , @D, and we obtain:
b
12 [ f@de = B2 ) + fw)
< — 1 (b — a)® (41, — 4583 + 18063 S5 — 180&%y).

In the same way we have:

1) [ r @l < max lot)] [ 10 - 10 @

z€la,b]

and
w [ @ = [0 e

=T4(b—a)— ") + f"(a)
= (T4 — S3)(b— a).

Using , , and we obtain the inequality:
b
15 [ fa)de = b f ) + fe)]
> — 325 (b — a)° (410 — 4555 + 180£% S5 — 180&34).
Inequalities follow from the inequalities and .

To prove the second part of the theorem we consider the function f(z)

—a)*. Tt is easy to show that all the three members of the double inequality

x
have in common the value —ﬁ(b — a)®. This completes the proof.

In the following theorem double inequalities for R[f]| are presented.
THEOREM 2. If the function f € C*[a,b] then:
(16) 5 (b — a)° (4974 — 4553 + 180£%S5 — 180&%4)

b b—a
< [ p@pde - 221 (@0) + fe2)]
< 1o (b — @)° (49T — 4555 + 180¢3S5 — 180¢°Ty),
where v4,1'4,& and Ss are given in Theorem[I. Moreover,

4= min fD(z), Iy= ma}zi)] FD (),

z€[a,b z€[a,

and the inequalities are sharp.
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Proof. By using the relations , @, and it follows:

b
a1 = [ f@de+ 2 + f)]
< — 135 (b — a)° (4974 — 4555 + 180€7 S5 — 180&%y4).
Analogously, using the relations , , and we obtain:

b
(18) | F@)de = b2r @) + faa)
< 5oagg (b — @) (49T — 4555 + 180€%S3 — 180¢°Ty).

From the relations and result the inequalities . To prove that
the double inequalities are exact we follow the steps of the proof for
Theorem [11 O

Theorem [3| gives us the inequalities which do not depend on Ss.

THEOREM 3. In the assumptions of Theorem/[l], we have:
(19) gitgo (b — @) (417; — 49Ty — 18063y, + 1806°Ty)

b
< VS (o) + fla)] - [ fa)da
< ke (b — @)’ (41T — 4974 + 180¢%y, — 1806°T).

If
Y4 = min f(4) (.’E), 'y = max f(4) (l‘),
z€[a,b x€la,b]

then the inequalities are sharp.

Proof. Multiplying the inequality with (—1) and adding it with the
inequality we obtain the double inequalities . Considering the function
f(z) = (z — a)* and calculating all the three members of the inequality
the value obtained is —ﬁ(b — a)®. The double inequalities are sharp. This
completes the proof. O
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