ictp.acad.ro/jnaat

DOUBLE INEQUALITIES FOR QUADRATURE FORMULA OF GAUSS TYPE WITH TWO NODES

MARIUS HELJIU*

Abstract. In this paper upper and lower error bonds for Gauss's quadrature rule with two nodes are given.

MSC 2000. 65D32.

Keywords. Double integral inequalities, numerical integration.

1. INTRODUCTION

In a series of papers (see [2], [3], [8]) the authors establish bounds for the quadrature rules such as the trapezoid, Simpson and Newton quadrature rules. In this work we will consider Gauss's quadrature rule with two nodes:

(1)
$$\int_{a}^{b} f(x)dx = \frac{b-a}{2}[f(x_1) + f(x_2)] + R[f]$$

where $f:[a,b]\to \mathbb{R}, \ x_1=\frac{a+b}{2}-\frac{b-a}{2}\cdot \xi, \ x_2=\frac{a+b}{2}+\frac{b-a}{2}\cdot \xi, \ \xi=\frac{1}{\sqrt{3}}=$

If $f \in C^4[a, b]$, the error R[f] from the formula (1) is given by:

(2)
$$R[f] = \int_a^b \varphi(x) f^{(4)}(x) dx$$

(see [7], pp. 137–138 and 283–284), where the function φ has the form:

(3)
$$\varphi(x) = \begin{cases} \frac{(x-a)^4}{4!} & \text{if } x \in [a, x_1], \\ \frac{(x-a)^4}{4!} - \frac{b-a}{2} \frac{(x-x_1)^3}{3!} & \text{if } x \in]x_1, x_2[, \\ \frac{(b-x)^4}{4!} & \text{if } x \in [x_2, b]. \end{cases}$$

It is easy to see that the function φ has the following properties:

a)
$$\varphi \in C^4[a,b];$$

a)
$$\varphi \in C^4[a, b]$$
;
b) $\varphi\left(\frac{a+b}{2} - h\right) = \varphi\left(\frac{a+b}{2} + h\right)$, for any $h \in \left[0, \frac{b-a}{2}\right]$;

Department of Mathematics, University of Petroşani, Romania, mheljiu@upet.ro.

c)
$$\int_{a}^{b} \varphi(x) dx = \frac{1}{135} \left(\frac{b-a}{2} \right)^{5}.$$

2. MAIN RESULTS

In the following theorem double inequalities for -R[f] are presented where R[f] is the error in the quadrature formula (1) given by the relation (2).

Theorem 1. If $f \in C^4[a,b]$ then

(4)
$$\frac{1}{17280}(b-a)^{5}(41\gamma_{4}-45S_{3}+180\xi^{3}S_{3}-180\xi^{3}\gamma_{4}) \leq$$

$$\leq \frac{b-a}{2}[f(x_{1})+f(x_{2})]-\int_{a}^{b}f(x)dx$$

$$\leq \frac{1}{17280}(b-a)^{5}(41\Gamma_{4}-45S_{3}+180\xi^{3}S_{3}-180\xi^{3}\Gamma_{4})$$

where $\gamma_4, \Gamma_4 \in \mathbb{R}$, $\gamma_4 \leq f^{(4)}(x) \leq \Gamma_4$, for all $x \in [a, b]$ and $S_3 = \frac{f'''(b) - f'''(a)}{b - a}$. Moreover,

(5)
$$\gamma_4 = \min_{x \in [a,b]} f^{(4)}(x), \quad \Gamma_4 = \max_{x \in [a,b]} f^{(4)}(x),$$

and the inequalities (4) are sharp.

Proof. From (2), using the properties of the function φ and integrating by parts, we obtain:

(6)
$$\int_{a}^{b} \varphi(x) f^{(4)}(x) dx = \int_{a}^{b} f(x) dx - \frac{b-a}{2} [f(x_1) + f(x_2)].$$

By using the equality c) in the formula (6) and the assumptions of the theorem, we have:

(7)
$$\int_{a}^{b} [f^{(4)}(x) - \gamma_{4}] \varphi(x) dx = \int_{a}^{b} f(x) dx - \frac{b-a}{2} [f(x_{1}) + f(x_{2})] - \frac{1}{135} \left(\frac{b-a}{2}\right)^{5} \gamma_{4}$$

and

(8)
$$\int_{a}^{b} \left[\Gamma_{4} - f^{(4)}(x)\right] \varphi(x) dx = -\int_{a}^{b} f(x) dx + \frac{b-a}{2} \left[f(x_{1}) + f(x_{2})\right] + \frac{1}{135} \left(\frac{b-a}{2}\right)^{5} \Gamma_{4}$$

On the other hand, we have:

(9)
$$\int_{a}^{b} [f^{(4)}(x) - \gamma_4] \varphi(x) dx \le \max_{x \in [a,b]} |\varphi(x)| \int_{a}^{b} |f^{(4)}(x) - \gamma_4| dx,$$

where

(10)
$$\max_{x \in [a,b]} |\varphi(x)| = \frac{1}{384} (1 - 4\xi^3) (b - a)^4 = \frac{9 - 4\sqrt{3}}{3456} (b - a)^4,$$

and

(11)
$$\int_{a}^{b} |f^{(4)}(x) - \gamma_{4}| dx = \int_{a}^{b} (f^{(4)}(x) - \gamma_{4}) dx$$
$$= f'''(b) - f'''(a) - \gamma_{4}(b - a)$$
$$= (S_{3} - \gamma_{4})(b - a).$$

From the relations (7), (9), (10) and (11) we obtain:

(12)
$$\int_{a}^{b} f(x) dx - \frac{b-a}{2} [f(x_1) + f(x_2)]$$

$$\leq -\frac{1}{17280} (b-a)^5 (41\gamma_4 - 45S_3 + 180\xi^3 S_3 - 180\xi^3 \gamma_4).$$

In the same way we have:

(13)
$$\int_{a}^{b} \left[\Gamma_{4} - f^{(4)}(x)\right] \varphi(x) dx \le \max_{x \in [a,b]} |\varphi(x)| \int_{a}^{b} |\Gamma_{4} - f^{(4)}(x)| dx$$

and

(14)
$$\int_{a}^{b} |\Gamma_{4} - f^{(4)}(x)| dx = \int_{a}^{b} (\Gamma_{4} - f^{(4)}(x)) dx$$
$$= \Gamma_{4}(b - a) - f'''(b) + f'''(a)$$
$$= (\Gamma_{4} - S_{3})(b - a).$$

Using (8), (10), (13) and (14) we obtain the inequality:

(15)
$$\int_{a}^{b} f(x) dx - \frac{b-a}{2} [f(x_1) + f(x_2)]$$
$$\geq -\frac{1}{17280} (b-a)^5 (41\Gamma_4 - 45S_3 + 180\xi^3 S_3 - 180\xi^3 \gamma_4).$$

Inequalities (4) follow from the inequalities (12) and (15).

To prove the second part of the theorem we consider the function $f(x) = (x-a)^4$. It is easy to show that all the three members of the double inequality (4) have in common the value $-\frac{1}{180}(b-a)^5$. This completes the proof. \Box

In the following theorem double inequalities for R[f] are presented.

Theorem 2. If the function $f \in C^4[a,b]$ then:

(16)
$$\frac{1}{17280}(b-a)^{5}(49\gamma_{4}-45S_{3}+180\xi^{3}S_{3}-180\xi^{3}\gamma_{4})$$

$$\leq \int_{a}^{b} f(x)dx - \frac{b-a}{2}[f(x_{1})+f(x_{2})]$$

$$\leq \frac{1}{17280}(b-a)^{5}(49\Gamma_{4}-45S_{3}+180\xi^{3}S_{3}-180\xi^{3}\Gamma_{4}),$$

where γ_4, Γ_4, ξ and S_3 are given in Theorem 1. Moreover,

$$\gamma_4 = \min_{x \in [a,b]} f^{(4)}(x), \quad \Gamma_4 = \max_{x \in [a,b]} f^{(4)}(x),$$

and the inequalities (16) are sharp.

Proof. By using the relations (7), (9), (10) and (11) it follows:

(17)
$$-\int_{a}^{b} f(x) dx + \frac{b-a}{2} [f(x_{1}) + f(x_{2})]$$

$$\leq -\frac{1}{17080} (b-a)^{5} (49\gamma_{4} - 45S_{3} + 180\xi^{3}S_{3} - 180\xi^{3}\gamma_{4}).$$

Analogously, using the relations (8), (13), (14) and (15) we obtain:

(18)
$$\int_{a}^{b} f(x) dx - \frac{b-a}{2} [f(x_1) + f(x_2)]$$

$$\leq \frac{1}{17980} (b-a)^5 (49\Gamma_4 - 45S_3 + 180\xi^3 S_3 - 180\xi^3 \Gamma_4).$$

From the relations (17) and (18) result the inequalities (16). To prove that the double inequalities (16) are exact we follow the steps of the proof for Theorem 1. \Box

Theorem 3 gives us the inequalities which do not depend on S_3 .

Theorem 3. In the assumptions of Theorem 1, we have:

(19)
$$\frac{1}{34560}(b-a)^{5}(41\gamma_{4}-49\Gamma_{4}-180\xi^{3}\gamma_{4}+180\xi^{3}\Gamma_{4})$$

$$\leq \frac{b-a}{2}[f(x_{1})+f(x_{2})]-\int_{a}^{b}f(x)\mathrm{d}x$$

$$\leq \frac{1}{34560}(b-a)^{5}(41\Gamma_{4}-49\gamma_{4}+180\xi^{3}\gamma_{4}-180\xi^{3}\Gamma_{4}).$$
If
$$\gamma_{4}=\min_{x\in[a,b]}f^{(4)}(x), \quad \Gamma_{4}=\max_{x\in[a,b]}f^{(4)}(x),$$

then the inequalities (19) are sharp.

Proof. Multiplying the inequality (16) with (-1) and adding it with the inequality (4) we obtain the double inequalities (19). Considering the function $f(x) = (x - a)^4$ and calculating all the three members of the inequality (19) the value obtained is $-\frac{1}{180}(b-a)^5$. The double inequalities are sharp. This completes the proof.

REFERENCES

- [1] CERONE, P., Three Points Rules in Numerical Integration, Nonlinear Anal. Theory Methods Appl., 47, no. 4, pp. 2341–2352, 2001.
- [2] CERONE, P. and DRAGOMIR, S.S., Midpoint-Type Rules from an Inequalities Point of View, Handbook of Analytic-Computational Methods in Applied Mathematics, Editor: G. Anastassiou, CRC Press, New York, pp. 135–200, 2000.
- [3] CERONE, P. and DRAGOMIR, S.S., Trapezoidal-Type Rules from an Inequalities Point of View, Handbook of Analytic-Computational Methods in Applied Mathematics, Editor: G. Anastassiou, CRC Press, New York, pp. 65–134, 2000.
- [4] Dragomir, S.S., Agarwal, R.P. and Cerone, P., On Simpson's Inequality and Applications, J. Inequal. Appl., 5, pp. 533–579, 2000.
- [5] DRAGOMIR, S.S., PECARIĆ, J. and WANG, S., The Unified Treatment of Trapezoid, Simpson and Ostrowski Type Inequalities for Monotonic Mappings and Applications, Math. Comput. Modelling, 31, pp. 61–70, 2000.

- [6] HELJIU, M., Double Inequalities of Newton's Quadrature Rule, Revue D'Analyse Numerique et de Theorie de L'Aproximation, 35, no. 2, pp. 141−147, 2006.

 □
- [7] IONESCU, D.V., Numerical Integration, Ed. Tehnică, București, 1957 (in Romanian).
- [8] UJEVIC, N., Some Double Integral Inequalities and Applications, Acta Math. Univ. Comenianae, 71, no. 2, pp. 187, 2002.
- [9] UJEVIC, N., Double Integral Inequalities of Simpson Type and Applications, J. Appl. Math. & Computing, 14, no. 1-2, pp. 213–223, 2004.

Received by the editors: March 11, 2008.