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Abstract. In this paper we give a general method to approximate the set of
all efficient solutions and the set of all weakly-efficient solutions for a multiple
criteria optimization problem involving generalized unimodal objective functions
on the feasible sets. This type of problems appear frequently in Economy, Math-
ematics, sometimes in Medico-Economics studies, etc.
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1. INTRODUCTION

Starting with an overview of the existing algorithms, the present paper
intends to give a general algorithm which compute the set of optimal solution
of an optimization problem, when the set on which the function is unimodal is
any compact subset of R (not necessarily interval or discreet set). A parallel
approach for this algorithm is also given.

Let f = (f1, . . . , fm) : D → Rm (m ∈ N∗, m = 2) be a vector-valued
function defined on a nonempty set D ⊂ R and S a subset of D. Consider the
multiple criteria optimization problem:

(MOP )
{

Minimize f(x)
subject to x ∈ S,(1)

where the partial ordering in the image space of the objective function is under-
stood to be induced by the standard ordering cone Rm

+ . More precisely, denot-
ing I := {1, . . . ,m}, we have for any x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ Rm:

x ≤ y ⇔ xi 5 yi, for all i ∈ I, and
∑
i∈I

xi <
∑
i∈I

yi.
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Recall (see e.g. [6]) that the set of efficient solutions, called by us the
efficient set, and the set of weakly-efficient solutions, called by us the weakly-
efficient set, of problem (1) are given, respectively, by:

Eff(S; f) := {x ∈ S | @ y ∈ S such that f(y) ≤ f(x)} ,

WEff(S; f) := {x ∈ S | @ y ∈ S such that f(y) < f(x)} .
In what follows we give a general method to approximate the sets Eff(S; f)

and WEff(S; f) in the hypothesis that the function f is lower unimodal on S.
We mention that the generalization of “unimodal function” notion was

made, until now, in the following three directions:
a) By replacing the real interval which was the definition domain of the

unimodal property (see [5]) with an arbitrary set of real numbers (see
[7]);

b) By working with multivariate functions, due to the fact that the do-
main of definition for the unimodal property is a compact interval in
Rn (see [1] and [4]);

c) By replacing the real univariate functions with vectorial univariate
function (see [8]). We mention, also, that the obtained results in the
third case contain, as particular cases, properties already known from
the first case. Analogously, the given algorithms in the case c) may be
successfully used in the case a), too.

2. UNIMODAL VECTORIAL FUNCTIONS ON A SET AND SOME OF THEIR

PROPERTIES

In the following we suppose thatD is a non empty subset of the real numbers
set R and m is a natural number, m = 2.

Definition 1. (see [8]) A function ϕ : D → R is said to be lower unimodal
on S ⊂ D if there exist u, v ∈ S satisfying the following conditions:

(LU1) ϕ(u) = ϕ(v);
(LU2) ϕ(x) > ϕ(y) whenever x, y ∈ S, x < y 5 u;
(LU3) ϕ(x) < ϕ(y) whenever x, y ∈ S, v 5 x < y;
(LU4) S ∩ [u, v] = {u, v}.

Remark 2. (see [8])
1) By (LU1)–(LU2) it follows that u 5 v, so (LU4) makes sense.
2) As a direct consequence of (LU1)–(LU4) we can easily deduce that for

any x, y ∈ S the following implications hold:
If x < y 5 v then ϕ(x) = ϕ(y);
If u 5 x < y then ϕ(x) 5 ϕ(y). �
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Definition 3. (see [8]) A function f = (f1, ..., fm) : D → Rm is said to be
lower unimodal on S ⊂ D if all its scalar components fi, i ∈ I = {1, ...,m},
are lower unimodal on S.

If f = (f1, ..., fm) : D → Rm is a lower unimodal function on S ⊆ D, by
ui, vi we denote, for every i ∈ I, the points u and v from Definition 1.

In the following we remember some properties of the sets Eff(S; f) and
WEff(S; f) in the circumstances that the function f is lower unimodal on
S. The problem was studied in [9], where the authors showed that both the
sets Eff(S; f) and WEff(S; f) can be completely determined by only using the
numbers u1, v1, . . . , um, vm. As in mentioned paper, we denote:

u := min
i∈I

ui, v := min
i∈I

vi, u := max
i∈I

ui and v := max
i∈I

vi.

Theorem 4. (see [9], Theorems 2.1, 2.2)
i) The set of weakly efficient solutions of problem (1) admits the following

representation:
WEff(S; f) = [u, v] ∩ S.(2)

ii) The set of efficient solutions of problem (1) is given by the following
representation:

Eff(S; f) = [min{v, u},max{v, u}] ∩ S.(3)

Other important properties of lower unimodal functions will be given in that
follows. Let us suppose that S is a nonempty subset of D and f : D → Rm,
is a lower unimodal function on S. If c and d are elements of S, we introduce
the notations: I−c,d = {i ∈ I | fi(c) < fi(d)}, I0

c,d = {i ∈ I | fi(c) = fi(d)},
I+

c,d = {iI | fi(c) > fi(d)}.

Theorem 5. If a, b, c, d ∈ S are such that a 5 c < d 5 b, a 5 u, and v 5
b, and
(4) θ = inf{|x− y| | x, y ∈ [a, b] ∩ S, x 6= y},
then the following sentences are true:

(i) If I−c,d 6= ∅, then {u, v} ⊂ [a, d− θ] ∩ S;
(ii) If I−c,d = ∅ and I0

c,d 6= ∅, then {u, v} ⊂ [c, d] ∩ S;
(iii) If I−c,d = ∅ and I0

c,d = ∅, then {u, v} ⊂ [c+ θ, b] ∩ S;
(iv) If I+

c,d 6= ∅, then {u, v} ⊂ [c+ θ, b] ∩ S;
(v) If I+

c,d = ∅ and I0
c,d 6= ∅, then {u, v} ⊂ [c, d] ∩ S;

(vi) If I+
c,d = ∅ and I0

c,d = ∅, then {u, v} ⊂ [a, d− θ] ∩ S.

Proof. (i) As I−c,d 6= ∅, there is an i ∈ I such that fi(c) < fi(d) and, in
this case, Remark 2 implies ui, vi ∈ [a, d[∩S. Then vi < d and (4) implies
θ 5 d− vi or vi 5 d− θ. As ui 5 vi, we get ui 5 d− θ. Therefore,

u 5 ui 5 d− θ and v 5 vi 5 d− θ.
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These imply u ∈ [a, d− θ] ∩ S and v ∈ [a, d− θ] ∩ S, i.e. (i) holds.
(ii) As I−c,d = ∅, we have fi(c) = fi(d), for all i ∈ I. Then Remark 2 implies

c 5 ui 5 vi, for all i ∈ I. Therefore, c 5 u and c 5 v. On the other hand,
as I0

c,d 6= ∅, there is k ∈ I such that fk(c) = fk(d). In this case, Remark 2
gives c 5 uk 5 d and c 5 vk 5 d. It follows that u 5 uk 5 d and v 5 vk 5 d.
Therefore (ii) holds.

(iii) If I−c,d ∪ I0
c,d = ∅, then fi(c) > fi(d), for all i ∈ I. In this case, Remark

2 implies c < ui 5 vi 5 b, for all i ∈ I. Then u 5 v 5 b. Also, in view of (4),
we have

θ 5 ui − c and θ 5 vi − c, for all i ∈ I.

These imply c + θ 5 ui and c + θ 5 vi, for all i ∈ I. Therefore, we have
c+ θ 5 u and c+ θ 5 v. Hence (iii) holds.

In the same way we can prove that (iv)–(vi) are true. �

We will use the above results in the next section to elaborate a general
method for approximating the efficient set and the weakly-efficient set in a
unimodal vectorial optimization problems (i.e. in the problem (MOP) when
the function f is lower unimodal on S).

3. THE (UMA) ALGORITHM

In what follows we suppose that:
H1. D ⊆ R;
H2. S is a nonempty, compact subset of D, and cardS = 2;
H3. f = (f1, ..., fm) : D → Rm is a lower unimodal function on S, where

m is a natural and not a null number.
The following algorithm permits to obtain two sets WEF and EF. These sets
approximate the sets Eff(S; f) and WEff(S; f), with a given error ε > 0.

We mention that an algorithm to approximate Eff(S; f) and WEff(S; f), in
the case when the set S is a real compact interval, was given in [10] and other
algorithm, in the some condition, but more performance, [3]. In the special
case when S is a discrete set, the first algorithm to determine the sets Eff(S; f)
and WEff(S; f) was given in [9] and other algorithm, in the some condition,
but more performance, in [8].

In the UMA Algorithm, we use the following notations:

I−k for I−ck,dk
and I0

k for I0
ck,dk

;

I
+
k for I+

ck,dk
and I

0
k for I0

ck,dk
.



5 Methods for solving unimodal multiple criteria optimization problems 63

The serial (UMA) Algorithm

Step 1. Set
k := 0, h := 0, sw := 1, sw := 1, S1 := S, S1 := S,
a1 := min S, a1 := min S, b1 := max S, b1 := max S,
and proceed.

Step 2. If sw = 0, then go to step 12; else proceed.
Step 3. Increase k by 1 and proceed.
Step 4. Set µk := inf{|x− y| | x, y ∈ Sk, x 6= y}, and proceed.
Step 5. Take ck ∈ Sk and dk ∈ Sk, such that

(5)
ak < ck < dk < bk, if card Sk > 3,
ak = ck < dk < bk, if card Sk = 3,
ak = ck < dk = bk, if card Sk = 2,

and proceed.
Step 6. Build the sets I−k = {i ∈ I | fi(ck) < fi(dk)} and

I0
k = {i ∈ I | fi(ck) = fi(dk)} and proceed.

Step 7. If I−k 6= ∅ then set Sk+1 := Sk ∩ [ak, dk − µk],
ak+1 := minSk+1, bk+1 := maxSk+1, uk := ck, vk := ck,
and go to step 10; else go to the next step.

Step 8. If I0
k 6= ∅ then set Sk+1 := Sk ∩ [ck, dk], ak+1 := minSk+1,

bk+1 := maxSk+1, uk := ck, vk := dk, and go to step 10, else go to
the next step.

Step 9. Set Sk+1 := Sk ∩ [ck + µk, bk], ak+1 := minSk+1, bk+1 := maxSk+1,
uk := dk, vk := dk, and proceed.

Step 10. If bk − ak < ε/2, or card Sk = 2, then proceed; else go to step 12.
Step 11. Set sw := 0, and proceed.
Step 12. If sw = 0, then go to step 22; else proceed.
Step 13. Increase h by 1 and proceed.
Step 14. Set νh := inf{|x− y| | x, y ∈ Sh, x 6= y}, and proceed.
Step 15. Take ch ∈ S and dh ∈ S, such that

(6)
ah < ch < dh < bh, if card Sh > 3,
ah < ch < dh = bh, if card Sh = 3,
ah = ch < dh = bh, if card Sh = 2,

and proceed.
Step 16. Build the sets I

+
h = {i ∈ I | fi(ch) > fi(dh)}, and

I
0
h = {i ∈ I | fi(ch) = fi(dh)}, and proceed.

Step 17. If I+
h 6= ∅ then set Sh+1 := Sh ∩ [ch + νh, bh],

ah+1 := minSh+1, bh+1 := maxSh+1, uh := dh, vh := dh,
and go to step 20, else proceed.

Step 18. If I0
h 6= ∅ then set Sh+1 := Sh ∩ [ch, dh],

ah+1 := minSh+1, bh+1 := maxSh+1, uh := ch, vh := dh,
and go to step 20, else proceed.
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Step 19. Set Sh+1 := Sh ∩ [ah, dh − νh],
ah+1 := minSh, bh+1 := maxSh+1, uh := ch, vh := ch, and proceed.

Step 20. If bh− ah < ε/2, or card Sh 5 2, then proceed; else go back to step 2.
Step 21. Set sw := 0.
Step 22. If sw 6= 0, then go back to step 2.
Step 23. Set WEF := {x ∈ S | uk 5 x 5 vh} and proceed.
Step 24. If vk 5 uh then set EF := {x ∈ S | vk 5 x 5 uh};

else set EF := {x ∈ S | uh 5 x 5 vk}.
Step 25. Stop.

Theorem 6. In the hypotheses H1–H3, if k is a natural number and the
numbers a1, ..., ak, b1, ..., bk, u1, ..., uk, v1, ..., vk are the points given by the
UMA Algorithm, one have
(7) u, v ∈ Sj , for all j ∈ {1, ..., k}.
If, in addition, card Sk 5 2, then
(8) uk = u, vk = v.

Proof. First we prove that (7) holds. The proof is by induction. Step 1
gives S1 = S. As u, v ∈ S, obviously u, v ∈ S1. Therefore, if k = 1, then
(7) is true. Let now consider k > 1, and let be j ∈ {1, ..., k − 1}. We prove
that if u, v ∈ Sj , then
(9) u, v ∈ Sj+1.

From the algorithm it follows that bi − ai = ε/2, and card Si > 2, for all
i ∈ {1, ..., k − 1}. Therefore card Sj = 3. If cj and dj are the points chosen
at the jth iteration, three cases are possible:

1) I−j 6= ∅; 2) I−j = ∅, and I0
j 6= ∅; 3) I−j = ∅, and I0

j = ∅.

If I−j 6= ∅, from Step 7 we have Sj+1 := Sj ∩ [aj , dj − µj ]. On the other
hand, Theorem 5 gives u, v ∈ [aj , dj − µj ] ∩ S. But, in view of the induction
hypothesis, we have u, v ∈ Sj . Therefore (9) holds. By analogy, it can be
proved that (9) is true, in the other two cases. Therefore, because (7) is true
for j = 1, by induction, we can conclude that (7) holds for all j ∈ {1, ..., k}.

Now we prove that, if, in addition, card Sk = 2, then uk = u and vk = v.
First we mention that, from (7), we get u, v ∈ Sk. As card Sk = 2, Step

5 gives ck = ak and dk = bk. Therefore Sk = {ak, bk}. Three cases may
appear: I−k 6= ∅; I−k = ∅ and, I0

k 6= ∅; I−k = ∅, and I0
k = ∅.

If I−k 6= ∅, in view of Theorem 5 we have {u, v} ⊆ [ak, dk[∩Sk = {ak}.
Then, we get u = v = ak. On the other hand, Step 7 gives uk = vk = ck.
As ck = ak, equality (8) holds.

In the second case, as I0
k 6= ∅, there is i ∈ I such that ui = ck = ak and

vi = dk = bk. Therefore u = ak. For all i ∈ I \ I0
k we have ui = vi = dk = bk.

Hence, vi = dk = bk for all i ∈ I. Therefore v = bk. On the other hand, Step
8 gives uk = ck = ak and vk = ck = bk. Again, (8) holds.
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If I−ck,dk
= ∅ and I0

ck,dk
= ∅, Theorem 5 gives {u, v} ⊆]ck, bk] ∩ S = {bk}.

On the other hand, Step 9 gives uk = vk = dk = bk. Hence (8) holds, too. �

In the same manner we can prove:

Theorem 7. In the hypotheses H1–H3, if h is a natural number and the
numbers a1, ..., ah, b1, ..., bh, u1, ..., uh, v1, ..., vh are the points given by the
UMA Algorithm, then u, v ∈ [aj , bj ], for all j ∈ {1, ..., h}. If, in addition,
card Sh 5 2, then uh = u, vh = v.

The following results come easily:

Remark 8. If µ(S) > 0 and ε 5 µ(S), then the UMA Algorithm stops after
a finite number of iterations, Eff(S; f) = EF and WEff(S; f) = WEF. �

Remark 9. If cardSk > 2, for all natural number k, and there is a conver-
gent sequence (δk)k∈N∗ such that

lim
k→+∞

δk = 0 and bk − ak 5 δk, for all k ∈ N∗,

then the sequences (uk)k∈N∗ and (vk)k∈N∗ are convergent and lim
k→+∞

uk =
u, lim

k→+∞
vk = v.

Similarly results can be given for the sequences (uh)h∈N∗ , and (vh)h∈N∗ . �

If A and B are two real intervals, we set:

lng(A \B) = 0, if A \B = ∅;
lng (A \B) = w2 − w1, if A \B = [w1, w2];
lng(A \B) = w2 − w1 + w4 − w3, if A \B = [w1, w2] ∪ [w3, w4].

Remark 10. In the hypotheses H1–H3, if ε > 0 and the sets EF and
WEF are built with the UMA algorithm, then lng(WEF \WEff(S; f)) 5 ε,
lng(WEff(S; f)\WEF) 5 ε, lng (EF\Eff(S; f)) 5 ε, and lng (Eff(S; f)\EF)
5 ε. �

4. PARTICULAR CASES

In what follows, we show how, from the UMA algorithm, one can obtain
the methods given in [3], [8], [9] and [10].

4.1. S is a compact interval. In view of [9], Remark 1.1, when S is a
compact interval and the function f : [a, b] → Rm is lower unimodal on S,
then ui = vi = xi, for all i ∈ {1, ...,m}, where {xi} = Arg min

x∈S
fi(x).

Therefore u = v and u = v. Also, it is known that, if S = [a, b], then, for
each natural numbers k = 1, we have card Sk > 3. Therefore, one can choose
the points ck, dk ∈ Sk satisfying the conditions: ak < ck < dk < bk and
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ck − ak = bk − dk. For this, one takes as tk any real numbers satisfying the
conditions 0 < tk < 1/2 and put
(10) ck = ak + tk(bk − ak), dk = bk − tk(bk − ak).
Then
(11) bk+1 − ak+1 = (1− tk)(bk − ak).
In view of the UMA algorithm, we have u = v ∈ [ak, bk], and uk, vk ∈ [ak, bk].
Therefore, if (tk)m

k=1 is a finite sequence of real numbers with 0 < tk < 1/2,
for each k ∈ {1, ...,m}, and if the sequence of sets (Sk)m

k=1 is constructed by
the UMA algorithm, where we take ck and dk using (10), then

|u− uk| 5 (1− tk−1)(bk−1 − ak−1) =
= (1− tk−1)(1− tk−2)(bk−2 − ak−2)

= ... =
k−1∏
j=1

(1− tj) · (b− a)

and
|v − vk| 5 (1− tk−1)(bk−1 − ak−1) =

= (1− tk−1)(1− tk−2)(bk−2 − ak−2)

= ... =
k−1∏
j=1

(1− tj) · (b− a).

Analogously, if (th)m
h=1 is a finite sequence of real numbers with 0 < th <

1
2 ,

for each h ∈ {1, ...,m}, and if the sequence of sets (Sh)m
h=1 is constructed by

the UMA algorithm, where
(12) ch = ah + th(bh − ah), dh = bh − th(bh − ah),
then we have

|u− uh| 5
h−1∏
j=1

(1− tj) · (b− a) and |v − vh| 5
h−1∏
j=1

(1− tj) · (b− a).

Hence, if we put WEF = [uk, vh]∩ S, then we have lng(WEF \WEff(S; f)) 5
(Πk−1

j=1(1− tj) + Πh−1
j=1 (1− tj) · (maxS −minS) and lng(WEff(S; f) \WEF) 5

(Πk−1
j=1(1−tj)+Πh−1

j=1 (1−tj) ·(maxS−minS). A similar result can be obtained
for the sets EF and Eff(S; f). In order to decrease the number of computations
for the values of f, one may choose tk such that dk+1 = ck, if (I−k

⋃
I0

k) 6= ∅,
and ck+1 = dk, if (I−k ∪ I

0
k) = ∅. Therefore, we have either

bk+1 − tk+1(bk+1 − ak+1) = ck, or ak+1 + tk+1(bk+1 − ak+1) = dk.

Then the numbers tk, k ∈ N, have to satisfy the condition
(13) (1− tk+1)(1− tk) = tk.

Analogously, we may choose the sequence (th)h∈N∗ such that
(14) (1− th+1)(1− th) = th.
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By choosing particular values for the sequence (tk)k∈N∗ , such that (13) is
satisfied, and particular values for the sequence (th)h∈N∗ such that (14) is
satisfied, we obtain a particular type of methods, which, by analogy with the
real case, we call the methods of successive section. Two important sub-cases
are given further on.

Case I. If tk = t, for each k ∈ N∗, and th = t, for each h ∈ N∗, then (13)
and (14) imply (1 − t)2 = t, i.e. t2 − 3t + 1 = 0. The above equation has
two solutions. If we choose

tk = 3−
√

5
2 , t

h = 3−
√

5
2 , for each h ∈ N∗,

then we call the resulting method, the method of the “gold section”.
Case II. It is known that the Fibonacci numbers Fk, k ∈ N∗, satisfy the

following recurrence formula

Fk+1 = Fk + Fk−1, for each k ∈ N∗, k = 3, F1 = F2 = 1.

Let m ∈ N∗. It is easy to see that, if we choose

(15) tk = tk = Fm−k+1
Fm−k+3

, for each k ∈ {1, ...,m},

then

(1− tk+1)(1− tk) = (1− th+1)(1− th) = Fm−k+1
Fm−k+3

= tk, ∀ k ∈ {1, ...,m− 1}.

As
0 <

Fm−k+1
Fm−k+3

= Fm−k+1
Fm−k+2 + Fm−k+1

<
Fm−k+1
2Fm−k+1

= 1
2 ,

the numbers tk, tk, k ∈ {1, ...,m}, given by (15), satisfy condition (13) and
(14). The method of successive section obtained using (15) is known as the
“Fibonacci’s method” (see [3]).

4.2. S is a finite set. Let be S = {x1, ..., xn}, where n ∈ N, n = 2, and
x1 < x2 < ... < xn. In this case, in the first step of the UMA algorithm, we
have a = x1 and b = xn, and, therefore, a1 = a1 = x1 and b1 = b1 = xn.
Then S1 = S1 = {x1, ..., xn}. Therefore card S1 = card S1 = n, and, in
each iterations, card Sk ∈ N∗ and card Sh ∈ N∗. We suppose that, at each
iteration, k, we rewrite the elements of the set Sk, such that

Sk = {xk
1, ..., x

k
nk
}, and xk

1 < xk
2 < ... < xk

nk
,

where nk = card Sk. Two cases may appear: nk = 2, or nk > 3.
If at the k iteration we have nk > 3, then we may choose ck = xk

m and
dk = xk

m+1, where m = [nk/2], in the step 5 of the UMA algorithm.
If at the k iteration we have nk = 2, then we may choose dk = xk

2 in the
step 5 of the UMA algorithm.

Analogously, in each iteration, we may choose the points ch and dh. These
specifications being done, the UMA algorithm is the same as the algorithm
given in [8].
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Table 1. Results of the UMA Algorithm

it ak bk ck dk uk vk sw ak bk ck dk uk vk sw

1 0 1 1
4

1
2

1
4

1
4 1 0 1 1

4
1
2

1
2

1
2 1

2 0 1
2

1
8

1
4

1
8

1
8 1 1

4 1 1
2 1 1

2
1
2 1

3 0 1
4

1
16

1
8

1
8

1
8 1 1

4
1
2

1
4

1
2

1
2

1
2 0

4 1
16

1
4

1
16

1
8

1
8

1
8 1 0

5 1
8

1
4

1
8

1
4

1
8

1
8 0 0

4.3. S is an infinite set, but not a real interval. The UMA algorithm
can also be used in the case when the set S is infinite but not a real interval,
situation which could not be accomplished by the other cited methods.

Example 11. Let be S = { 1
2n |n ∈ N}∪{0} and f = (f1, f2) : [0, 1]→ R2

the function given by
f1(x) = |x− 1/2|, f2(x) = |x− 1/6|, for all x ∈ [0, 1].

�

Obviously, f is lower unimodal on S. If we apply the UMA algorithm,
taking ε = 1/100, we have to make 5 iterations, in order to compute the sets
WEF and EF, as can be seen in Table 1.

Therefore
WEF = {1

8 ,
1
4 ,

1
2}, EF = {1

8 ,
1
4 ,

1
2}.

5. THE PARALLEL UMA ALGORITHM

The presented UMA Algorithm is thought for a serial implementation. Due
to the fact that its second part (Steps 11–20) contains the same type of in-
structions as the first part (Steps 2–10), the time of execution can be reduced
by using parallel calculus.

There are several way of using more that one processor, but we shall consider
a parallel execution of Master-Slave type (see [2]). In the created network, we
have a Master processor, with the identification number (ID) equal with 1,
and three Slaves processors, with IDs equal to 2, 3 and 4. All the proces-
sors memorize the whole program, but each of them will perform exactly the
instructions needed, according with its ID number.

A possible parallel algorithm is the following:
If ID = 1 then let {Master execution}
k = 0; h = 0;
a1 = minS; a1 = minS; b1 = maxS; b1 = maxS;

bool = 0; {for the points of minimum}
Repeat
k = k + 1;
µk = inf{|x− y| | x, y ∈ [ak, bk] ∩ S};
Send Message to Slaves (ak, bk, bool)
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Receive Message from Slaves (flag);
If flag = 0 then ak+1 = ak;

bk+1 = max{[ak, dk − µk] ∩ S}
If falg = 1 then ak+1 = ck; bk+1 = dk;

uk = ck; vk = dk;
If flag = 2 then ak+1 = min{[ck + µk, bk] ∩ S};

bk+1 = bk; uk = dk; vk = dk

Until bk − ak <
ε

2; or card[ak, bk] ∩ S = 2;
bool = 1; {for the points of maximum}

Repeat
h = h+ 1;
νh = inf{|x− y| | x, y ∈ [ah, bh] ∩ S};
Send Message to Slaves (ah, bh, bool);
Receive Message from Slaves (flag);
If flag = 0 then ah+1 = min{[cj + νh, bh] ∩ S};

bh+1 = bh; uh = dh; vh = dh;
If flag = 1 then ah+1 = ch; bh+1 = dh; uh = ch;

vh = dh;
If flag = 2 then ah+1 = ah; bh+1 = max{[ah, dh − νh] ∩ S};

uh = dh; vh = dh

Until bh − ah <
ε

2 or card[ah, bh] ∩ S ≤ 2;
Compute (WEF);
Compute (EF)

else
If bool = 0 then
Receive Message from Master (ak, bk, bool) {Slaves execution}
For ID = 2, 4 in parallel do

Verify (card[ak, bk] ∩ S);
Take (ck, dk);
Compare (f(ck), f(dk), f lag);

End For;
Send Message to Master (flag)

else
if bool = 1 then

Receive Message from Master (ah, bh, bool);
For ID = 2, 4 in parallel do

Verify (card[ah, bh] ∩ S);
Take (ch, dh);
Compare (f(ch), f(dh), f lag);

End For
Send Message to Master (flag);
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Remark 12. The cell named “flag” takes values corresponding with the
cases enounced in Theorem 2.3, so

flag =


0; if I−c,d 6= ∅ or I+

c,d 6= ∅
1; if (I−c,d = ∅ and I0

c,d 6= ∅) or (I+
c,d = ∅ and I0

c,d 6= ∅)
2; else

.

�

Remark 13. Using this type of parallel execution, the amount of com-
putation, and consequently the execution time, reduces at least three times,
compared with the serial algorithm. �
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