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Abstract. In this paper we give a general method to approximate the set of
all efficient solutions and the set of all weakly-efficient solutions for a multiple
criteria optimization problem involving generalized unimodal objective functions
on the feasible sets. This type of problems appear frequently in Economy, Math-
ematics, sometimes in Medico-Economics studies, etc.
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1. INTRODUCTION

Starting with an overview of the existing algorithms, the present paper
intends to give a general algorithm which compute the set of optimal solution
of an optimization problem, when the set on which the function is unimodal is
any compact subset of R (not necessarily interval or discreet set). A parallel
approach for this algorithm is also given.

Let f = (fi,---sfm) : D = R™ (m € N*, m 2 2) be a vector-valued
function defined on a nonempty set D C R and S a subset of D. Consider the
multiple criteria optimization problem:

Minimize f(z)

(1) (MOP) { subject to x € 5,

where the partial ordering in the image space of the objective function is under-
stood to be induced by the standard ordering cone R". More precisely, denot-
ing I :={1,...,m}, we have for any v = (z1,...,Zm), ¥y = (Y1,...,Ym) € R™:

r<y & x; vy, forall i€, and in<2yi.
icl iel
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Recall (see e.g. [0]) that the set of efficient solutions, called by us the
efficient set, and the set of weakly-efficient solutions, called by us the weakly-
efficient set, of problem are given, respectively, by:

Eff(S; f) := {x € S|Py € S such that f(y) < f(z)},
WEff(S; f) := {x € S| #y € S such that f(y) < f(z)}.

In what follows we give a general method to approximate the sets Eff(.S; f)
and WEff(S; f) in the hypothesis that the function f is lower unimodal on S.

We mention that the generalization of “unimodal function” notion was
made, until now, in the following three directions:

a) By replacing the real interval which was the definition domain of the
unimodal property (see [5]) with an arbitrary set of real numbers (see

[7);

b) By working with multivariate functions, due to the fact that the do-
main of definition for the unimodal property is a compact interval in
R™ (see [1] and [4]);

¢) By replacing the real univariate functions with vectorial univariate
function (see [8]). We mention, also, that the obtained results in the
third case contain, as particular cases, properties already known from
the first case. Analogously, the given algorithms in the case ¢) may be
successfully used in the case a), too.

2. UNIMODAL VECTORIAL FUNCTIONS ON A SET AND SOME OF THEIR
PROPERTIES

In the following we suppose that D is a non empty subset of the real numbers
set R and m is a natural number, m = 2.

DEFINITION 1. (see [8]) A function ¢ : D — R is said to be lower unimodal
on S C D if there exist u,v € S satisfying the following conditions:
(LUL)  o(u) = ¢(v);
( o(z) > ¢(y) whenever x,y € S, v <y < u;
(LU3) ¢(z) < ¢(y) whenever x,y € S, v < x <y;
(LU4) SN[u,v] ={u,v}.

REMARK 2. (see [§])

1) By (LU1)—(LU2) it follows that u < v, so (LU4) makes sense.

2) As a direct consequence of (LU1)—(LU4) we can easily deduce that for
any z,y € S the following implications hold:

If z <y =wv then p(x) 2 ¢(y);

If w<x<y then p(x) < p(y). O
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DEFINITION 3. (see [8]) A function f = (f1,...; fm) : D — R™ is said to be
lower unimodal on S C D if all its scalar components f;, i € I = {1,...,m},
are lower unimodal on S.

If f =1, fm): D — R™is a lower unimodal function on S C D, by
u;, v; we denote, for every i € I, the points u and v from Definition

In the following we remember some properties of the sets Eff(S; f) and
WESf(S; f) in the circumstances that the function f is lower unimodal on
S. The problem was studied in [9], where the authors showed that both the
sets Eff(S; f) and WEfE(S; f) can be completely determined by only using the
numbers uq, V1, .. ., Um, Uym. As in mentioned paper, we denote:

u:=minu;, v:=minwv;, U:=maxu; and T := maxw;.

i€l i€l el el
THEOREM 4. (see [9], Theorems 2.1, 2.2)
i) The set of weakly efficient solutions of problem admits the following

representation:
(2) WEL(S; f) = [u,7]NS.
ii) The set of efficient solutions of problem is given by the following
representation:
(3) Eff(S; f) = [min{v,u}, max{v,u}|NS.

Other important properties of lower unimodal functions will be given in that
follows. Let us suppose that S is a nonempty subset of D and f: D — R™,
is a lower unimodal function on S. If ¢ and d are elements of S, we introduce

the notations: I_; = {i € I'| fi(c) < fi(d)}, Igd = {i e I|fi(e) = fi(d)},
I:d = {ZI‘fZ(C) > fz(d)}
THEOREM 5. Ifa,b,c,d € S are suchthat a Sc<d<b, alu,and 7=
b, and
(1) 0=int{lz —y| |2,y €a NS £y},
then the following sentences are true:
(i) If I 4 # 0, then {u,v} C [a, d — 0] N S;
(i) If 1 ,=0 andlod#@ then {u,v} C [c, d|NS;
(iii) If I_y =0 and I ; =0, then {u,v} C [c+6,b]NS;
(iv) If It # 0, then {u,v} C [c+0, b NS;
(v) IfIJr —@ andlod#@ then {w,v} C [c, d|NS;
i)

(v Ifljd—(i)andlod—(?) then {u,v} C [a,d—0]NS.

Proof. (i) As I_; # 0, there is an i € I such that f;(c) < fi(d) and, in
this case, Remark [2| implies w;, v; € [a, d[NS. Then v; < d and implies
0<d—wviorv; <d—0. As u; < v;, we get u; < d — 6. Therefore,

ulu;£d—0 and v<wv;<d-0.
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These imply u € [a,d — 0] NS and v € [a,d — 0] N S, i.e. (i) holds.

(ii) As I_, =0, we have fi(c) = fi(d), for all i € I. Then Remarkimplies
¢ S u; S, forall i € I. Therefore, ¢ £ u and ¢ < v. On the other hand,
as Igd # (), there is k € I such that fip(c) = fr(d). In this case, Remark
gives ¢ Sug, < dand ¢ S v S d. It follows that u S up S dand v £ v, S d.
Therefore (ii) holds.

(iii) If 1., U I((;),d =0, then f;(c) > fi(d), for all i € I. In this case, Remark
implies c<u; Sv; Sb, foralliel. Then u < v < b. Also, in view of ,
we have

0<wu;—c and 0= wv;—¢c, forall ¢el.

These imply ¢+ 6 < u; and ¢+ 60 < v;, for all i € I. Therefore, we have
¢+ 6 < uand ¢+ 6 < v. Hence (iii) holds.
In the same way we can prove that (iv)—(vi) are true. O

We will use the above results in the next section to elaborate a general
method for approximating the efficient set and the weakly-efficient set in a
unimodal vectorial optimization problems (i.e. in the problem (MOP) when
the function f is lower unimodal on S).

3. THE (UMA) ALGORITHM

In what follows we suppose that:

Hl. DCR;

H2. S is a nonempty, compact subset of D, and cardS = 2;

H3. f=(f1,- fm): D — R™ is a lower unimodal function on S, where
m is a natural and not a null number.

The following algorithm permits to obtain two sets WEF and EF. These sets
approximate the sets Eff(S; f) and WEff(S; f), with a given error € > 0.

We mention that an algorithm to approximate Eff(S; f) and WE(S; f), in
the case when the set S is a real compact interval, was given in [10] and other
algorithm, in the some condition, but more performance, [3]. In the special
case when S is a discrete set, the first algorithm to determine the sets Eff(.S; f)
and WEf(S; f) was given in [9] and other algorithm, in the some condition,
but more performance, in [g].

In the UMA Algorithm, we use the following notations:

— — 0 0 .
I, for ngék and [ for ngzdk’

7r + 79 0
I, for Iﬁkﬁk and I for IEk,dk'
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The serial (UMA) Algorithm
Step 1. Set
k:=0,h:=0, sw:=1, sw:=1, S;:=8, S1:= 5,
a, :=min S, @ :=min S, b; := max S, by := max S,
and proceed.
Step 2. If sw =0, then go to step 12; else proceed.
Step 3. Increase k by 1 and proceed.
Step 4. Set pi:=inf{|lz —y| | =,y €Sy, = #y}, and proceed.
Step 5. Take ¢, € §;. and d;, € S}, such that
ap < Cp <dk <bk7 if card ﬁk > 3,
(5) kagk<dk<bk, if card §k237
ap = Ck <dk :bk, if card ﬁk = 2,
and proceed.
Step 6. Build the sets I, = {i € I| fi(cy) < fi(dy)} and
10 = {i € T| file) = fi(dy)} and proceed.
Step 7. If I, # () then set Sy, := S, N [ag, di, — pxl,
Qpyp i=min Sy, by = max Sy, Wy 1=, Vg = G
and go to step 10; else go to the next step.
Step 8. If IV # () then set Sy 1 := S N [c, dil, @iy = min Sy,
bpyq = max Sp,q, Uy := ¢, U = dy, and go to step 10, else go to
the next step.
Step 9. Set Spy1 =S, N [cp + pik, bl aqy :=min Sy, by := max Sy,
Uy = dy, vy = d, and proceed.
Step 10. If b, — a;, < &/2, or card S, = 2, then proceed; else go to step 12.
Step 11. Set sw := 0, and proceed.
Step 12. If sw = 0, then go to step 22; else proceed.
Step 13. Increase h by 1 and proceed.
Step 14. Set vy, :=inf{|lz —y| | =,y € Sy, x # y}, and proceed.
Step 15. Take ¢, € S and dj, € S, such that
ap < cp < Eh < Bh, if card ?h > 3,
(6) ap < cp < Eh = Bh, if card ?h =3,
ap = cp < Eh = Bh, if card ?h =2,
and proceed.
Step 16. Build the sets TZ = {ieI|fi(en) > fi(dp)}, and
T, = {i € I|fi(en) = fi(dp)}, and proceed.
Step 17. If 7; # () then set Spy1:= Sp N [Ch + vp, bal,
Gp41 = Min Sh+1, bh+1 ‘= max Sh+1a ap = dp, Up :=dp,
and go to step 20, else proceed.
Step 18. If 72 # 0 then set Spy1 := Sy N [en, dp),

Gp41 = Min Sh—l—la bh+1 = max Sh+17 Up, := Cp, Up :=dp,
and go to step 20, else proceed.
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Step 19. Set §h+1 ::Eh ﬂi[ah, dp, — I/hL,
Qpt1 :=min Sy, bpyy 1= max Spy1, Up 1= Cp, Up 1= Cp, and proceed.
Step 20. If b, —ay < €/2, or card Sy, < 2, then proceed; else go back to step 2.
Step 21. Set sw := 0.
Step 22. If sw # 0, then go back to step 2.
Step 23. Set WEF :={x € S| u;, £ = < v} and proceed.
Step 24. If vj, < Uy then set EF :={z € S|y, Sz <up};
else set EF :={z € S |u, <z < v}
Step 25. Stop.

THEOREM 6. In the hypotheses H1-H3, if k is a natural number and the
numbers @y, ..., Ay 01y evvy Opy Upy ey U, Vg, ..., Uy, are the points given by the
UMA Algorithm, one have
(7) u, v €S, forallje{l,.. k}.

If, in addition, card S} < 2, then
(8) up = U, v = 0.

Proof. First we prove that holds. The proof is by induction. Step 1
gives S; = S. As u, v € S, obviously u, v € S;. Therefore, if £k = 1, then
@ is true. Let now consider & > 1, and let be j € {1,....,k — 1}. We prove
that if u, v € §j, then

(9) U, VE Sjy.

From the algorithm it follows that b, — a; = £/2, and card S; > 2, for all
i € {1,....,k — 1}. Therefore card §; = 3. If ¢; and d; are the points chosen

at the j** iteration, three cases are possible:
— . - _ 0 . - _ 0 _
1) lj # 0; 2) lj =0, and lj #0; 3) lj = (), and lj =0.

If I # 0, from Step 7 we have S;.y := S, N[a;, d; — p;]. On the other
hand, Theorem |5 gives u, v € [a;, d; — j1;] N S. But, in view of the induction
hypothesis, we have u, v € S;. Therefore @ holds. By analogy, it can be
proved that @ is true, in the other two cases. Therefore, because is true
for j = 1, by induction, we can conclude that holds for all j € {1,...,k}.

Now we prove that, if, in addition, card S, = 2, then w;, = u and v, = v.

First we mention that, from , we get u, v € Si. As card S, = 2, Step
5 gives ¢, = a5, and d;, = by. Therefore S, = {a;, b,}. Three cases may
appear: I, # 0; I; = 0and, I{ #0; I, =0, and I} = 0.

If I, # 0, in view of Theorem [5| we have {u,v} C [a, di[NS}, = {ax}
Then, we get u = v = a;. On the other hand, Step 7 gives u, = v, = .
As ¢, = ay, equality holds.

In the second case, as 12 # (), there is i € I such that u; = ¢, = a; and
v; = dy, = by. Therefore u = ay. For all i € I'\ I} we have u; = v; = dj, = by.
Hence, v; = dj, = by, for all i € I. Therefore v = b;. On the other hand, Step
8 gives u, = ¢, = a;, and v, = ¢, = b,. Again, holds.
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1, . = = and IO = 0, Theoremlglves {w,v} Cleg, bl NS = {b}.
On the other hand, Step 9 gives u, = v, = d;, = b,. Hence . holds, too. [

In the same manner we can prove:

THEOREM 7. In the hypotheses H1-H3, if h is a natural number and the
numbers @i, ...,ap, b1,...,bn, Ui, .oy Upy UL, ..oy U are the points given by the
UMA Algorithm, then uw,v € [ay, b;], for all j € {1,...,h}. If, in addition,
card S;, < 2, thenu, = @, v, = V.

The following results come easily:

REMARK 8. If 4(S) > Oand e < u(S), then the UMA Algorithm stops after
a finite number of iterations, Eff(S; f) = EF and WEff(S; f) = WEF. O

REMARK 9. If card ) > 2, for all natural number k, and there is a conver-
gent sequence (0j)ren+ such that
lim 0, =0 and b, —a; =< J;, forall k € N*,

k—4o00

then the sequences (uy)ren+ and (v )ren+ are convergent and klim up =
—+o00

u, lim v, = v.
k—-+o0

Similarly results can be given for the sequences (up)nen, and (Tp)pen<. O

If A and B are two real intervals, we set:
Ing(A\ B) =0, if A\ B = 0;
Ing (A\ B) = wy —wy, if A\ B = [w1, wal;
Ing(A\ B) = wy — w1 + wyg —ws, if A\ B = [wi, we] U [ws, wa].
REMARK 10. In the hypotheses H1-H3, if ¢ > 0 and the sets EF and
WEF are built with the UMA algorithm, then Ing(WEF \ WEff(S; f)) < ¢

Ing(WEfE(S; f)\WEF) < ¢, Ing (EF\ Eff(S; f)) < ¢, and Ing (Eff(S; f) \ EF)
< e O

4. PARTICULAR CASES

In what follows, we show how, from the UMA algorithm, one can obtain
the methods given in [3], [8], [9] and [10].

41. S is a compact interval. In view of [9], Remark 1.1, when S is a

compact interval and the function f : [a, b — R™ is lower unimodal on S,

then u;, = v; = x;, forall ¢ € {1,...,m}, where {z;} = Arg mig fi(x).
e

Therefore uw = v and @ = v. Also, it is known that, if S = [a, b], then, for
each natural numbers k 2 1, we have card S; > 3. Therefore, one can choose
the points ¢, d;, € S satisfying the conditions: a;, < ¢, < d;, < b, and
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¢, — a, = by — d.. For this, one takes as t; any real numbers satisfying the
conditions 0 < ¢, < 1/2 and put

(10) ¢ = a +tp(by —ag), di = b —t(by — ag)-
Then
(11) b1 — @y = (1 — 1) (b — ag)-

In view of the UMA algorithm, we have u = v € [ay, by], and uy, vy, € [ay, byl-
Therefore, if (t;)j, is a finite sequence of real numbers with 0 < t;, < 1/2,
for each k € {1,...,m}, and if the sequence of sets (5’ k) ', is constructed by
the UMA algorlthm where we take ¢;, and dj, using , then

lu—up| = (1 —tp_1)(bp—1 —ap—1) =
= (1—%_1)( — ) (bp—2 — ay_2)
= ng (1-2t;)-(b—a)
and
v — vl (1= tp1)(bpe1 — ap—1) =

I 1IA

(1- %:11)(1 — tp—2)(bp—2 — @i—2)
= 1;[ (l—tj)-(b—a).

Analogously, if ()7 is a finite sequence of real numbers with 0 <, < 3,

for each h € {1,...,m}, and if the sequence of sets (S;)7", is constructed by
the UMA algorithm, where

(12) e, = ap+th(bp, —an), dp = by —tp(by, — an),
then we have
el el
@—m < [[(1-F)-(b—a) and o—w < [[(1—7)- (b a).
j=1 i=1

Hence, if we put WEF = [u;,, 7] NS, then we have Ing(WEF \ WEff(S;f)) <
(H?;ll(l —t;) + Hhil( — ;) - (max S —min S) and Ing(WEff(S;f) \ WEF) =
(H;:ll(l —t; )—I—Hh 1(1—%;)-(max S —min S). A similar result can be obtained
for the sets EF and Eff(S; f). In order to decrease the number of computations
for the values of f, one may choose t;, such that dj, ., = ¢, if (I;; UI}) # 0,
and ¢y = dy, if (I U 1) = (). Therefore, we have either
b1 = L1 (b1 = Q1) = Gy OF Gppr + L1 (Opir — Gpy1) =

Then the numbers t;, k € N, have to satisfy the condition

(13) (1 —tp)(I =) = 4.

Analogously, we may choose the sequence (¢p)pen+ such that

(14) (1 —tpe1)(1 —t) = tp.
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By choosing particular values for the sequence (t)gen+, such that (13]) is
satisfied, and particular values for the sequence (tp)pen+ such that is
satisfied, we obtain a particular type of methods, which, by analogy with the
real case, we call the methods of successive section. Two important sub-cases
are given further on.

Case I. If t;, =t, for each k € N*, and ¢, = t, for each h € N*, then
and (14)) imply (1 — )2 = ¢, ie. > —3t+1 = 0. The above equation has
two solutions. If we choose

t, = 3%/57 = 3;2‘/5, for each h € N*,

then we call the resulting method, the method of the “gold section”.
Case II. 1t is known that the Fibonacci numbers Fj, k € N*, satisfy the
following recurrence formula

Fyy1 = Fy, + F_q, foreach ke N*, k23, F} = F», = 1.

Let m € N*. It is easy to see that, if we choose

(15) b, =t = 5:%21;, for each k € {1,...,m},
then
z 7 Fp_
(I —tpy)X =) = (L —thp)(X —tp) = TZE =ty Vke{l,...,m— 1}
As
0 < Em—kt1 _ Fon—k11 Fo—pi1 1
Fo—k+3 ~ Fo—kt2+ Fngt1 2Fm—gy1 27

the numbers t, tx, k& € {1,...,m}, given by , satisfy condition and
(14). The method of successive section obtained using is known as the
“Fibonacci’s method” (see [3]).

4.2. S is a finite set. Let be S = {z1,...,2,}, where n € N, n =2 2, and
r1 < X2 < ... < xp. In this case, in the first step of the UMA algorithm, we
have a = z; and b = x,, and, therefore, a; = @) = z; and b = by = .
Then S; = S1 = {z1,...,2,}. Therefore card S; = card S; = n, and, in
each iterations, card S, € N* and card S;, € N*. We suppose that, at each
iteration, k, we rewrite the elements of the set Sk, such that

S = {fﬂlf»,l”flk . and a2f <ab <. <ab

ng?

where ny = card Sj,. Two cases may appear: ng = 2, or ng > 3.

If at the k iteration we have nj; > 3, then we may choose ¢, = «
dj, = aF, .|, where m = [ng/2], in the step 5 of the UMA algorithm.

If at the k iteration we have ng = 2, then we may choose dj = x’§ in the
step 5 of the UMA algorithm.

Analogously, in each iteration, we may choose the points ¢, and dj,. These
specifications being done, the UMA algorithm is the same as the algorithm

given in [§].

k

v, and



68 Liana Lupsa and Ioana Chiorean 10

Table 1. Results of the UMA Algorithm

itlag | by | cp | dip | up | Vi | SW | @k b | T | di | U | Dy | 50
T 1T 1T [T | 1T T [T 1 1T [ 1T

MEEEEE S S-S N EEE A R A
T I I A o
31013l sglglgltlglalglals]5]|0
7 S S s o s 0
T B e

5| glglglalglglO 0

4.3. S is an infinite set, but not a real interval. The UMA algorithm
can also be used in the case when the set S is infinite but not a real interval,
situation which could not be accomplished by the other cited methods.

ExAMPLE 11. Let be S = {&& |n € N}U{0} and f = (f1, f2) : [0, 1] — R?
the function given by

fi(z) =]z —1/2|, fa(z) = |z —1/6], for all z € [0, 1].
O

Obviously, f is lower unimodal on S. If we apply the UMA algorithm,
taking ¢ = 1/100, we have to make 5 iterations, in order to compute the sets
WEF and EF, as can be seen in Table 1.

Therefore

WEF = (L33} BF= (L4}

5. THE PARALLEL UMA ALGORITHM

The presented UMA Algorithm is thought for a serial implementation. Due
to the fact that its second part (Steps 11-20) contains the same type of in-
structions as the first part (Steps 2-10), the time of execution can be reduced
by using parallel calculus.

There are several way of using more that one processor, but we shall consider
a parallel execution of Master-Slave type (see [2]). In the created network, we
have a Master processor, with the identification number (ID) equal with 1,
and three Slaves processors, with IDs equal to 2, 3 and 4. All the proces-
sors memorize the whole program, but each of them will perform exactly the
instructions needed, according with its ID number.

A possible parallel algorithm is the following;:

If ID =1 then let {Master execution}

k=0; h=0;

@, = minS; @; = min S; b; = max S; b; = max S;

bool = 0; {for the points of minimum}
Repeat

k=k+1;

pe = inf{|z —y[ [ 2,y € [ar, b] N S}

Send Message to Slaves (ay,, by, bool)



11 Methods for solving unimodal multiple criteria optimization problems

69

Receive Message from Slaves (flag);
If flag = 0 then a; 1 = ag;
b1 = max{[ay, dj, — pg] N S}
It falg =1 then aj1 = ¢; bpy1 = di;
Uy = O Vg = dy;
If flag = 2 then a;,y = min{[c; + pi, bx] N S};
Ebk+1 = by up = dy; v, = dy,
Until b, — a5, < o5 ot card[ay, b,] NS = 2;

bool = 1; {for the points of maximum}
Repeat
h=h+1;
vy, = inf{|z —y| | 2,y € [@n, byl N S};
Send Message to Slaves (@, by, bool);
Receive Message from Slaves (flag);
If flag = 0 then @p11 = min{[¢; + vp, by] N S}
bht1 = bn; Up = dp; Up = dp;
If flag = 1 then @y 1 = Ch; bpy1 = dp; Up = Cp;
Tp = dp;
If flag = 2 then @y, 1 = an; bpy1 = max{[an,d, — vy] N S};
Uy, = dp; U =dp,
Until by, — @y, < g or card[ay, b, NS < 2;
Compute (WEF);
Compute (EF)
else
If bool = 0 then
Receive Message from Master (ay, by, bool) {Slaves execution}
For ID = 2,4 in parallel do
Verify (card[ag, by] N S);
Take (cy, dp);
Compare (f(Qk)v f(dk)v flag);
End For;
Send Message to Master (flag)
else
if bool = 1 then
Receive Message from Master (@y, by, bool);
For ID = 2,4 in parallel do
Verify (card[ay, by] N S);
Take (¢y, dp);
Compare (f(e), /@), flag);
End For
Send Message to Master (flag);
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REMARK 12. The cell named “flag” takes values corresponding with the
cases enounced in Theorem 2.3, so

0; ifI;d#@orI;d#Q)
flag=q 1; if (I_;=0and 1D, # 0) or (I, =0 and 12, # 0)
2;  else
]

REMARK 13. Using this type of parallel execution, the amount of com-
putation, and consequently the execution time, reduces at least three times,
compared with the serial algorithm. O
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