ON A THEOREM OF Baire
ABOUT LOWER SEMICONtinuous FUNCTIONS

COSTICĂ MUSTĂTA

Abstract. A theorem of Baire concerning the approximation of lower semicontinuous real valued functions defined on a metric space, by increasing sequences of continuous functions is extended to the “nonsymmetric” case, i.e. for quasi-metric spaces.

Keywords. Quasi-metric space, semi-Lipschitz function, approximation.

1. PRELIMINARIES

In the last years there have been an increasing interest for the study of quasi-metric spaces (spaces with asymmetric metric) motivated by their applications in various branches of mathematics, and especially in computer science. A direction of investigation is to study the possibility to extend to quasi-metric spaces known results in metric spaces (see, for example, [2]–[7]).

The following classical result of Baire is well known [8], [9]. Every lower semicontinuous real valued function defined on a metric space is the pointwise limit of an increasing sequence of continuous functions. Analyzing the proof of this result (see [9], Th. 2.2-23, p. 84), observe that every element of the increasing sequence is a Lipschitz function. This fact suggest to use the semi-Lipschitz functions defined in [10], [11], to obtain such a theorem for lower semi-continuous real valued functions defined on a quasi-metric space.

This short Note presents some notions connected with quasi-metric spaces and the result of Baire in this framework.

Let X be a non-empty set. A function $d : X \times X \to [0, \infty)$ is called a quasi-metric on X ([10]) if the following conditions hold:

- Q_1 $d(x,y) = d(y,x) = 0$ if, and only if, $x = y$;
- Q_2 $d(x,z) \leq d(x,y) + d(y,z)$, for all $x, y, z \in X$.

The function $\overline{d} : X \times X \to [0, \infty)$ defined by $\overline{d}(x,y) = d(y,x)$, for all $x, y \in X$ is also a quasi-metric on X, called the conjugate quasi-metric of d.

*This work was supported by MEdC under grant 2CEEX06-11-96/19.09.2006.
†”T. Popoviciu” Institute of Numerical Analysis, P.O. Box 68-1, Cluj-Napoca, Romania, e-mail: cmustata@ictp.acad.ro, cmustata2001@yahoo.com.
The function \(d^*(x, y) = \max\{d(x, y), d(y, x)\} \) is a metric on \(X \). If \(d \) can take the value \(+\infty\), then it is called a quasi-distance on \(X \).

Each quasi-metric \(d \) on \(X \) induces a topology \(\tau(d) \) which has as a basis the family of open balls (called forward open balls in [6]):

\[
B^+(x, \varepsilon) := \{y \in X : d(x, y) < \varepsilon\}, \quad x \in X, \varepsilon > 0.
\]

This topology is called the forward topology of \(X \) ([3], [6]) and is denoted also by \(\tau^+ \).

Observe that the topology \(\tau^+ \) is a \(T_0 \)-topology [10]. If the conditions \(Q_1 \) is replaced by \(Q'_1 \):

\[
d(x, y) = 0 \text{ iff } x = y,
\]

then \(\tau^+ \) is a \(T_1 \)-topology ([10], [11]).

The pair \((X, d) \) is called a quasi-metric space (\(T_0 \)-separated, respectively \(T_1 \)-separated). A sequence \((x_n)_{n \geq 1} \) in the quasi-metric space \((X, d) \) is called \(\tau^+ \)-convergent to \(x_0 \in X \) iff

\[
\lim_{n \to \infty} d(x_0, x_n) = 0.
\]

Similarly, the topology \(\tau(d) \) has as a basis the family of open balls:

\[
B^-(x, \varepsilon) := \{y \in X : d(y, x) < \varepsilon\}, \quad x \in X, \varepsilon > 0.
\]

This topology is denoted also by \(\tau^- \).

Definition 1. ([10]). Let \((X, d) \) be a quasi-metric space. A function \(f : X \to \mathbb{R} \) is called \(d \)-semi-Lipschitz if there exists a number \(L \geq 0 \) (named a \(d \)-semi-Lipschitz constant for \(f \)) such that

\[
f(x) - f(y) \leq Ld(x, y),
\]

for all \(x, y \in X \).

A similar definition can be given for \(d \)-semi-Lipschitz functions.

Definition 2. The function \(f : X \to \mathbb{R} \) is called \(\leq d \)-increasing if

\[
f(x) \leq f(y), \text{ whenever } d(x, y) = 0.
\]

One denotes by \(R^X_{\leq d} \) the set of all \(\leq d \)-increasing functions on \(X \). The set \(\mathbb{R}^X_{\leq d} \) is a cone in the linear space \(\mathbb{R}^X \) of real valued functions defined on \(X \) [11].

For a \(d \)-semi-Lipschitz function \(f : X \to \mathbb{R} \), put

\[
\|f\|_d = \sup \left\{ \frac{f(x) - f(y)}{d(x, y)} : d(x, y) > 0, \quad x, y \in X \right\}.
\]

Then \(\|f\|_d \) is the smallest \(d \)-semi-Lipschitz constant of \(f \) (see [7], [10], [11]).

Denote also

\[
d\text{-SlipX} := \left\{ f \in \mathbb{R}^X_{\leq d} : \|f\|_d < \infty \right\},
\]

the subcone of the cone \(\mathbb{R}^X_{\leq d} \), of all \(d \)-semi-Lipschitz real valued functions on \((X, d) \). If \(\theta \in X \) is a fixed, but arbitrary element, denote

\[
d\text{-Slip}_0X := \{ f \in d\text{-SlipX} : f(\theta) = 0 \}.
\]

Then the functional \(\|\cdot\|_d : d\text{-Slip}_0X \to [0, \infty) \) is an asymmetric norm on \(d\text{-Slip}_0X \), i.e. this functional is subadditive, positively homogeneous and \(\|f\|_d = \)
0 if \(f = 0 \). The pair \((d\text{-}
abla \text{lip}_X, \| \cdot \|_d)\) is called the “normed cone” of \(d\text{-}
abla \text{lip}_X\) real valued functions (vanishing at \(\theta \)). The properties of this normed cone are studied in [10], [11].

Definition 3. Let \((X, d)\) be a quasi-metric space and \(f : X \to \mathbb{R} \), where \(\mathbb{R} = [-\infty, +\infty] \) is equipped with the natural topology. The function \(f \) is called \(\tau^+\) -lower semicontinuous (respectively \(\tau^+\) -upper semicontinuous) \((\tau^+\text{-u.s.c}, \text{respectively } \tau^+\text{-u.s.c.}, \text{in short})\) at the point \(x_0 \in X \), if for every \(\varepsilon > 0 \) there exists \(r > 0 \) such that for all \(x \in B^+(x_0, r) \), \(f(x) > f(x_0) - \varepsilon \) (respectively \(f(x) < f(x_0) + \varepsilon \)).

Similar definitions can be given for \(\tau^-\) -l.s.c. and \(\tau^-\) -u.s.c real valued functions on \((X, d)\).

Observe that \(f : X \to \mathbb{R} \) is \(\tau^+\) -l.s.c iff \(-f\) is \(\tau^-\) -u.s.c and \(f \) is \(\tau^+\) -u.s.c iff \(-f\) is \(\tau^-\) -l.s.c.

The result of Baire in this framework is:

Theorem 4. \((\text{Baire})\). Let \((X, d)\) be a quasi-metric space and \(f : X \to \mathbb{R} \) be a \(\tau^+\) -l.s.c function on \(X \). Then there exists a sequence \((F_n)_{n \geq 1}, F_n \in d\text{-}\nabla \text{lip}X\) such that \((F_n(x))_{n \geq 1}, x \in X\), is increasing and \(\lim_{n \to \infty} F_n(x) = f(x), \ x \in X \).

Proof. a) Suppose firstly that \(f(x) \geq 0 \), for all \(x \in X \). For \(x \in X \) and \(n \in \mathbb{N} \), let

\[
F_n(x) = \inf \{ f(z) + n \cdot d(x, z) : z \in X \}.
\]

Obviously that

\[
0 \leq F_n(x) \leq f(x) + nd(x, x) = f(x).
\]

If \(x, y, z \in X \), then

\[
F_n(x) \leq f(z) + nd(x, z) \leq f(z) + nd(x, y) + nd(y, z) = (f(z) + nd(y, z)) + nd(x, y).
\]

Taking the infimum with respect to \(z \), one obtains

\[
F_n(x) \leq F_n(y) + nd(x, y),
\]

i.e.

\[
F_n(x) - F_n(y) \leq n \cdot d(x, y),
\]

for all \(x, y \in X \). This means that \(\| F_{n,d} \| \leq n \) and \(F_n \in d\text{-}\nabla \text{lip}X \), for every \(n = 1, 2, 3, \ldots \).

If \(n \leq m \), by the definition \([4] \) it follows \(F_n(x) \leq F_m(x), x \in X \), so that the sequence \((F_n(x))_{n \geq 1}\) is increasing and bounded by \(f(x), x \in X \). Consequently there exists the limit \(\lim_{n \to \infty} F_n(x) = h(x), h(x) \leq f(x), x \in X \).

In fact \(h(x) = f(x) \), for every \(x \in X \). Indeed, let \(n \in \mathbb{N} \) and \(x \in X \). By definition \([4] \) of \(F_n(x) \), for every \(\varepsilon > 0 \), there exists \(z_n \in X \) such that

\[
F_n(x) + \varepsilon > f(z_n) + nd(x, z_n) \geq nd(x, z_n),
\]
and because \(F_n(x) + \epsilon \leq f(x) + \epsilon \), it follows
\[
f(x) + \epsilon \geq nd(x, z_n),
\]
and then
\[
d(x, z_n) \leq \frac{1}{n} (f(x) + \epsilon).
\]
For \(n \to \infty \) it follows that the sequence \((z_n)_{n \geq 1}\) is \(\tau^+\)-convergent to \(x \), and because \(f \) is supposed \(\tau^+\)-l.s.c.,
\[
\liminf_{n \to \infty} f(z_n) \geq f(x).
\]
(see [9], p. 127).
Consequently, for every \(\epsilon > 0 \) there exists \(n_0 \in \mathbb{N} \) such that, for every \(n \geq n_0 \),
\[
(6) \quad f(z_n) \geq f(x) - \epsilon.
\]
By (4) and (6) it follows
\[
F_n(x) > f(z_n) - \epsilon + nd(x, z_n) \geq f(z_n) - \epsilon \geq f(x) - 2\epsilon,
\]
for \(n > n_0 \). By (5) one obtains
\[
0 \leq f_n(x) \uparrow f(x),
\]
for all \(x \in X \).

b) Now, let \(f \) be a bounded and \(\tau^+\)-l.s.c function on \(X \). Then there exists \(M > 0 \) such that \(|f(x)| \leq M \), for all \(x \in X \). Denoting \(g(x) = f(x) + M, x \in X \), one obtains \(g(x) \geq 0 \), and \(g \) is \(\tau^+\)-l.s.c., on \(X \).

From the part a), there exists the sequence \((G_n)_{n \geq 1}\), \(G_n \in d\text{-Slip}X, n = 1, 2, 3, \ldots \) such that \(0 \leq G_n(x) \uparrow g(x) = f(x) + M \). This means that the sequence \((F_n)_{n \geq 1}\), \(F_n = G_n - M, n = 1, 2, 3, \ldots \) is increasing and converges in every point \(x \) of \(X \) to \(f(x) \). Moreover \(|F_n(x)| \leq M, x \in X, n = 1, 2, 3, \ldots \).

c) Now, we consider the general case, i.e., \(f : X \to \mathbb{R} \) is an arbitrary \(\tau^+\)-l.s.c. function.

Using the Baire function (see [11]) \(\varphi : [-\infty, +\infty] \to [-1, 1] \),
\[
\varphi(x) = \begin{cases}
-1, & \text{for } x = -\infty, \\
\frac{x}{1 + |x|}, & \text{for } -\infty < x < \infty, \\
1, & \text{for } x = +\infty
\end{cases}
\]
which is a Lipschitz increasing isomorphism, it follows that \(\varphi \circ f : \mathbb{R} \to [-1, 1] \) is bounded and \(\tau^+\)-l.s.c. on \(X \).

By the previous point b), there exists a sequence \((H_n)_{n \geq 1}\) with \(H_n \in d\text{-Slip}X \) such that
\[
H_n(x) \uparrow (\varphi \circ f)(x), \quad x \in X.
\]
Consequently, the sequence \((F_n)_{n \geq 1}\), \(F_n(x) = (\varphi^{-1} \circ H_n)(x), x \in X \), is increasing and \(\lim_{n \to \infty} F_n(x) = f(x), x \in X \).

□
For \(\tau^+\)-u.s.c functions on \(X \), one obtains:

Theorem 5. Let \((X, d)\) be a quasi-metric space and \(f : X \to \mathbb{R} \) a \(\tau^+\)-u.s.c. function. Then there exists a sequence \((G_n)_{n \geq 1} \), \(G_n \in d\text{-Slip}X \), \(n = 1, 2, 3, \ldots \) such that \((G_n(x))_{n \geq 1}, x \in X \), is monotonically decreasing and \(\lim_{n \to \infty} G_n(x) = f(x), x \in X \).

Proof. If \(f \) is \(\tau^+\)-u.s.c., then \(-f\) is \(\tau^-\)l.s.c on \(X \). By Theorem 1, there exists a sequence \((F_n)_{n \geq 1} \) in \(\mathcal{D}\text{-Slip}X \), monotonically increasing and pointwise convergent to \(-f\). Then the sequence \(G_n = -F_n, n = 1, 2, \ldots \), has the following properties: \(G_n = -F_n \in d\text{-Slip}X \), and \(G_n(x) \downarrow f(x), \lim_{n \to \infty} G_n = f(x), x \in X \). □

REFERENCES

Received by the editors: March 27, 2008.