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ON A THEOREM OF BAIRE
ABOUT LOWER SEMICONTINUOUS FUNCTIONS*

COSTICA MUSTATA

Abstract. A theorem of Baire concerning the approximation of lower semicon-
tinuous real valued functions defined on a metric space, by increasing sequences
of continuous functions is extended to the “nonsymmetric” case, i.e. for quasi-
metric spaces.
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1. PRELIMINARIES

In the last years there have been an increasing interest for the study of quasi-
metric spaces (spaces with asymmetric metric) motivated by their applications
in various branches of mathematics, and especially in computer science. A
direction of investigation is to study the possibility to extend to quasi-metric
spaces known results in metric spaces (see, for example, [2]-[7]).

The following classical result of Baire is well known [§], [9]. Every lower
semicontinuous real valued function defined on a metric space is the pointwise
limit of an increasing sequence of continuous functions. Analyzing the proof
of this result (see [9], Th. 2.2-23, p. 84), observe that every element of the
increasing sequence is a Lipschitz function. This fact suggest to use the semi-
Lipschitz functions defined in [10], [II], to obtain such a theorem for lower
semi-continuous real valued functions defined on a quasi-metric space.

This short Note presents some notions connected with quasi-metric spaces
and the result of Baire in this framework.

Let X be a non-empty set. A function d : X x X — [0,00) is called a
quasi-metric on X ([I0]) if the following conditions hold:

Q1) d(z,y) =d(y,z) =0 iff z = y;

Q2) d(z,2) < d(z,y) +d(y,z), for all z,y,z € X.

The function d : X x X — [0, 00) defined by d(z,y) = d(y, ), for all z,y € X
is also a quasi-metric on X, called the conjugate quasi-metric of d.
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The function d*(z,y) = max{d(z,y),d(z,y)} is a metric on X. If d can take
the value +o0, then it is called a quasi-distance on X.

Each quasi-metric d on X induces a topology 7(d) which has as a basis the
family of open balls (called forward open balls in [6]):

Bt (z,e):={ye X :d(z,y) <€}, x€ X, ¢ >0.
This topology is called the forward topology of X (3], [6]) and is denoted also
by 77. Observe that the topology 7+ is a Ty-topology [10]. If the conditions
Q1 is replaced by Qll s d(x,y) = 0 iff z = y, then 771 is a T}-topology ([10],
[T1]).

The pair (X,d) is called a quasi-metric space (Tp-separated, respectively
Ti-separated). A sequence (zp),>1 in the quasi-metric space (X,d) is called
7+-convergent to xg € X iff le d(xg, z,) = 0.

n—oo

Similarly, the topology 7(d) has as a basis the family of open balls:
B (z,e) : {ye X :d(y,x) <e}l,z € X, ¢ > 0.
This topology is denoted also by 7.
DEFINITION 1. ([10]). Let (X,d) be a quasi-metric space. A function f :

X — R is called d-semi-Lipschitz if there exists a number L > 0 (named a
d-semi-Lipschitz constant for f) such that

(1) f(@) = fy) < Ld(z,y),
for all z,y € X.

A similar definition can be given for d-semi-Lipschitz functions.

DEFINITION 2. The function f : X — R is called <j-increasing if f(z) <
f(y), whenever d(z,y) = 0.

One denotes by R‘i(d the set of all <j-increasing functions on X. The set
]R)gd is a cone in the linear space RX of real valued functions defined on X
[11].

For a d-semi-Lipschitz function f : X — R, put

(2) 1f1q = sup { LW a(z, ) > 0, 2,y € X

Then || f|, is the smallest d-semi-Lipschitz constant of f (see [7], [10], [11]).
Denote also

(3) d-SlipX := {fER)S(d:||f|d<oo},
the subcone of the cone Réd, of all d-semi-Lipschitz real valued functions on
(X,d). If § € X is a fixed, but arbitrary element, denote

d-SlippX := {f € d-SlipX : f(#) = 0}.

Then the functional [|-|; : d-SlippX — [0,00) is an asymmetric norm on
d-SlippX, i.e. this functional is subadditive, positively homogeneous and || f|, =
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0 iff f = 0. The pair (d-SlipoX, |-|;) is called the “normed cone” of d-semi-
Lipschitz real valued functions (vanishing at 8). The properties of this normed
cone are studied in [10], [II].

DEFINITION 3. Let (X,d) be a quasi-metric space and f : X — R, where
R = [—00, +00] is equipped with the natural topology. The function f is called
7T -lower semicontinuous (respectively 7T -upper semicontinuous) (7V-l.s.c, re-
spectively T+ -u.s.c., in short) at the point vg € X, if for every ¢ > 0 there
exists v > 0 such that for all x € BT (xg,7), f(x) > f(xo) — & (respectively

f(x) < f(xo) +¢)).

Similar definitions can be given for 7~ -L.s.c. and 77 -u.s.c real valued func-
tions on (X, d). B

Observe that f : X — Ris 77-ls.c iff —f is 7 -u.s.c and f is 77-u.s.c iff
—fis 77 -ls.c.

The result of Baire in this framework is:

THEOREM 4. (Baire). Let (X, d) be a quasi-metric space and f : X — R be

a 77- Ls.c function on X. Then there exists a sequence (F},),>1, F;, € d-SlipX
such that (F,(x))n>1, © € X, is increasing and lim Fo(z) = f(z), v € X.
- n o

Proof. a) Suppose firstly that f(z) > 0, forallz € X. Forx € X and n € N,
let

(4) Fo(x) =inf{f(2) +n-d(z,2): 2z € X}.
Obviously that
() 0 < Fu(z) < f(2) + nd(z,2) = f(z).

If x,y,z € X, then

= (f(2) + nd(y, 2)) + nd(z, y).
Taking the infimum with respect to z, one obtains
Fo(z) < Fu(y) + nd(z, y),
ie.
Fo(z) = Fa(y) < n-d(z,y),
for all ,y € X. This means that ||F,|; < n and F, € d-SlipX, for every
n=1,2,3,..

If n < m, by the definition (4) it follows F,,(x) < Fi,,(x), z € X, so that the
sequence (Fy,(x))p>1 is increasing and bounded by f(z), x € X. Consequently
there exists the limit nh_)ngo F.(z) = h(z), and h(z) < f(z), z € X.

In fact h(z) = f(x), for every x € X. Indeed, let n € N and = € X. By
definition of F,,(x), for every € > 0, there exists z, € X such that

Fo(x) + € > f(zn) +nd(x, zy) > nd(x, z,),
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and because F,(x) + ¢ < f(x) + €, it follows
f(z)+e>nd(x,z,),
and then
d(z,zn) <

(f(x) + ).

For n — oo it follows that the sequence (zp)p>1 is 7
because f is supposed 7-ls.c.,

lim inf f(z,) > f(z).

n—oo

S|

T-convergent to x, and

(see 9], p. 127).
Consequently, for every € > 0 there exists ng € N such that, for every
n > no,

(6) f(zn) = fz) —
By and @ it follows

E(z) > f(zn) —e+nd(x,z,) > f(zn) — > f(x) — 2¢,
for n > np. By one obtains

0 < Fo(z) T f(2),

for all z € X.

b) Now, let f be a bounded and 77-1.s.c function on X. Then there exists
M > 0 such that |f(x)| < M, for all x € X. Denoting g(z) = f(z)+ M, z € X,
one obtains g(z) > 0, and g is 71-ls.c., on X.

From the part a), there exists the sequence (Gp)n>1, Gn € d-SlipX, n =
1,2,3,...such that 0 < Gy (z) T g(x) = f(x)+M. This means that the sequence
(Fn)n>1, Fn =G, —M, n=1,2,3... is increasing and converges in every point
z of X to f(z). Moreover |Fy(z)| < M,z € X,n=1,2,3,....

c¢) Now, we consider the general case, i.e., f : X — R is an arbitrary 7+-lLs.c.
function.

Using the Baire function (see [1]) ¢ : [—o0, +00] = [—1,1],

—1, for z = —o0,
o(z) = %m,for—oo<x<oo,

1, for x = 400

which is a Lipschitz increasing isomorphism, it follows that o f : R— [—1,1]
is bounded and 7-l.s.c. on X.

By the previous point b), there exists a sequence (Hy,),>1 with H,, € d-SlipX
such that

Hu(z) 1 (po f)(x), v € X.
Consequently, the sequence (F,)n>1, Fy(z) = (¢! o Hy)(x), z € X, is in-
creasing and lim F,(z) = f(z), z € X.
n—oo |:|
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For 7F-u.s.c functions on X, one obtains:

THEOREM 5. Let (X, d) be a quasi-metric space and f: X — R a 71 -u.s.c.
function. Then there exists a sequence (Gp)n>1, Gn € d-SlipX, n =1,2,3, ...
such that (Gn(z))n>1, © € X, is monotonically decreasing and le Gn(z) =

- n oo

f(x), z € X.

Proof. If f is 7T-u.s.c., then —f is 77 -l.s.c on X. By Theorem 1, there
exists a sequence (F,),>1 in d-SlipX, monotonically increasing and pointwise
convergent to — f. Then the sequence G,, = —F,,,n = 1,2, ..., has the following
properties: G, = —F, € d-SlipX, and G,(z) | f(x), nlggo Gn, = f(z), z €

X.
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