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COMMON FIXED POINTS VERSUS INVARIANT APPROXIMATION
FOR NONCOMMUTATIVE MAPPINGS
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Abstract. The aim of this paper is to obtain common fixed points as invariant
approximation for noncommuting two pairs of mappings. As consequences, our
works generalize the recent works of Nashine [9] by weakening commutativity
hypothesis and by increasing the number of mappings involved.
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1. INTRODUCTION

Fixed-point theorems have been used at many places in approximation the-
ory. One of them is existence of invariant approximants where it is applied.
Number of results exists in the literature applying the fixed-point theorem to
prove the existence of invariant approximation.

Meinardus [8] was the first who used fixed-point theorem to prove the ex-
istence of an invariant approximation. Later, Brosowski [1] generalized that
result. Next, it was extended by Subrahmanyam [14]. Further, the linear-
ity of mapping and convexity condition was dropped from the hypothesis of
Brosowski [1] by Singh [11]. Subsequently Singh [12] underlying the necessity
of nonexpansiveness of his own result [11].

Next, Hicks and Humpheries [3] demonstrated that if the mapping condi-
tions satisfy only at the boundary of domain, then also the result given by
Singh [11] remains true. Furthermore, Sahab et al. [10] extended the result
of Hicks and Humpheries [3] and Singh [11] by considering two mappings. In-
terestingly, one linear and the other nonexpansive mappings. The result was
further improved using weak and strong topology by Jungck and Sessa [5].

Recently, Nashine [9] obtained some existence results on common fixed
points as invariant approximation for a class of contraction commutative three
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mappings in locally convex space. In this way, all the above mentioned results
are summarized and extended by Nashine [9].

The purpose of this paper is to extend the result of Nashine [9] by employing
compatible mappings in lieu of commuting mappings, and by using four map-
pings as opposed to three. For this purpose, we use the result of Jungck [5].
Finally, we derive some consequences from our main result.

2. PRELIMINARIES

Before we prove our main result, let us recall following definitions:

Definition 1. [7]. In the sequel (E , τ) will be a Hausdorff locally convex
topological vector space. A family {pα : α ∈ P} of seminorms defined on E is
said to be an associated family of seminorms for τ if the family {γU : γ > 0},
where U =

⋂n
i=1 Uαi and Uαi = {x : pαi(x) < 1}, forms a base of neighborhood

of zero for τ . A family {pα : α ∈ P} of seminorms defined on E is called an
augmented associated family for τ if {pα : α ∈ P} is an associated family with
the property that the seminorm max{pα, pβ} ∈ {pα : α ∈ P} for any α, β ∈ P.
The associated and augmented families of seminorms will be denoted by A(τ)
and A∗(τ), respectively. It is well known that if given a locally convex space
(E , τ), there always exists a family {pα : α ∈ P} of seminorms defined of E
such that {pα : α ∈ P} = A∗(τ). A subset M of E is τ -bounded if and only if
each pα is bounded on M.

The following construction will be crucial. Suppose that M is a τ -bounded
subset of E. For this set M, we can select a number λα > 0 for each α ∈ I
such thatM⊂ λαUα where Uα = {x : pα(x) ≤ 1}. Clearly, B =

⋂
α λαUα is τ -

bounded, τ -closed, absolutely convex and containsM. The linear span EB of B
in E is

⋃∞
n=1 nB. The Minkowski functional of B is a norm ‖.‖B on EB. Thus,

EB is a normed space with B as its closed unit ball and supα pα(x/λα) = ‖x‖B
for each x ∈ EB.

Definition 2. Let I and T be selfmaps on M. The map T is called
(i) A∗(τ)-nonexpansive if for all x, y ∈M

pα(T x− T y) ≤ pα(x− y),

for each pα ∈ A∗(τ).
(ii) A∗(τ)-I-nonexpansive if for all x, y ∈M

pα(T x− T y) ≤ pα(Ix− Iy),

for each pα ∈ A∗(τ).

For simplicity, we shall call A∗(τ)-nonexpansive (A∗(τ)-I-nonexpansive)
maps to be nonexpansive (I-nonexpansive).

Following the concept of compatible due to Jungck [4], we have
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Definition 3. [4]. A pair of self-mappings (T , I) of a locally convex space
(E , τ) is said to be compatible if pα(T Ixn − IT xn) → 0, whenever {xn} is a
sequence in E such that T xn, Ixn → t ∈ E .

Every commuting pair of mappings is compatible but the converse is not
true in general.

Definition 4. [9]. Let x0 ∈ M. We denote by PM(x0) the set of best
M-approximant to x0, i.e., if PM(x0) = {y ∈ M : pα(y − x0) = dpα(x0,M)
for all pα ∈ A∗(τ)}, where

dpα(x0,M) = inf{pα(x0 − z) : z ∈M}.
Definition 5. [9]. The map T :M→ E is said to be demiclosed at 0 if,

for every net {xn} inM converging weakly to x and {T xn} converging strongly
to 0, we have T x = 0.

Throughout this paper F(T ) (resp. F(I)) denotes the set of fixed point of
mapping T (resp. I).

The following result of Jungck [5] is needed in the sequel:

Theorem 6. [5]. Let A,B,S and T be self mappings of a complete metric
space (X , d). Suppose that S and T are continuous, the pairs (A,S) and
(B, T ) are compatible, and that A(X ) ⊂ T (X ) and B(X ) ⊂ S(X ). If there
exists k ∈ (0, 1) such that

d(Ax,By) ≤kmax{d(Ax,Sx),d(By,T y),d(Sx,T y),12 [d(Ax, T y)+d(By,Sx)]},

then there is a unique point z in X such that z = Az = Bz = Sz = T z.

3. MAIN RESULT

Lemma 7. Let A and S be compatible self-maps of a τ -bounded subset M
of a Hausdorff locally convex space (E , τ). Then A and S be two compatible on
M with respect to ‖.‖B.

Proof. By hypothesis for each pα ∈ A∗(τ),

(1) pα(ASxn − SAxn)→ 0,

whenever {xn} is a sequence in M such that Axn,Sxn → t ∈M.
Taking supremum on both sides, we get

sup
α
pα(ASxn−SAxnλα

)→ 0,

‖ASxn − SAxn‖B → 0,
whenever {xn} is a sequence in M such that Axn,Sxn → t ∈M. �

We use a technique of Tarafdar [15] to obtain the following common fixed
point theorem which generalize Theorem 6.



80 Hemant Kumar Nashine 4

Theorem 8. LetM be a nonempty τ -bounded, τ -sequentially complete sub-
set of a Hausdorff locally convex space (E , τ). Let A,B,S and T be self map-
pings of M with A(M) ⊂ T (M) and B(M) ⊂ T (M). If (A,S) and (B, T )
are compatible pairs, S and T are nonexpansive and satisfying
(2) pα(Ax− By) ≤ L(x, y),
where

L(x, y) = hmax{pα(Ax− Sx), pα(By − T y), pα(Sx− T y),

1
2 [pα(Ax− T y) + pα(By − Sx)]}

for all x, y ∈ M, and pα ∈ A∗(τ), where h ∈ (0, 1), then A,B,S and T have
a unique common fixed point in M.

Proof. Since the norm topology on EB has a base of neighborhood of zero
consisting of τ -closed sets andM is τ -sequentially complete, therefore,M is a
‖.‖B-sequentially complete subset of (EB, ‖.‖B) [15, Theorem 1.2]. By Lemma
7, A and S are ‖.‖B-compatible maps of M. Similarly, by the Lemma 7, B
and T are ‖.‖B-compatible maps of M. From (2) we obtain for x, y ∈M,

sup
α
pα(Ax−Byλα

) ≤ hmax{sup
α
pα(Ax−Sxλα

), sup
α
pα(By−T yλα

), sup
α
pα(Sx−T yλα

),

1
2 [sup

α
pα(Ax−T yλα

) + sup
α
pα(By−Sxλα

)]}.

Thus
‖Ax− By‖B ≤ hmax{‖Ax− Sx‖B, ‖By − T y‖B, ‖Sx− T y‖B,(3)

1
2 [ ‖Ax− T Sy‖B + ‖By − Sx‖B]}.

Note that, if S and T are nonexpansive on a τ -bounded, τ -sequentially
compact subset M of E , then S and T are also nonexpansive with respect to
‖.‖B and hence ‖.‖B-continuous ([7]). A comparison of our hypothesis with
that of Theorem 6 tells that we can apply Theorem 6 to M as a subset of
(EB, ‖.‖B) to conclude that there exists a unique z ∈ M such that z = Az =
Bz = Sz = T z. �

Theorem 9. LetM be a nonempty τ -bounded, τ -sequentially complete and
q-starshaped subset of a Hausdorff locally convex space (E , τ). Let A,B,S and
T be self mappings of M with A(M) ⊂ T (M) and B(M) ⊂ S(M). Suppose
(A,S) and (B, T ) are compatible pairs, A and B are continuous, S and T are
nonexpansive and affine, S(M) =M = T (M), p ∈ F(S) ∩ F(T ). If A,B,S
and T satisfy the following:
(4) pα(Ax− By) ≤ L(x, y),
where

L(x, y) = hmax{pα(Ax− Sx), pα(By − T y), pα(Sx− T y),

1
2 [pα(Ax− T y) + pα(By − Sx)]}
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for all x, y ∈M and pα ∈ A∗(τ), where h ∈ (0, 1), then A,B,S and T have a
common fixed point in M provided one of the following conditions hold:

(i) M is τ -sequentially compact;
(ii) A,B are compact maps;

(iii) M is weakly compact in (E , τ), S and T are weakly continuous and
S −A and T − B are demiclosed at 0.

Proof. Choose a monotonically nondecreasing sequence {kn} of real num-
bers such that 0 < kn < 1 and lim sup kn = 1. For each n ∈ N, define
An,Bn :M→M as follows:

(5) Anx = knAx+ (1− kn)p, Bnx = knBx+ (1− kn)p.
Obviously, for each n, An and Bn mapM into itself sinceM is q-starshaped.
As S is affine, (A,S) are compatible and p ∈ F(S), so

AnSx = knASx+ (1− kn)p,

SAnxn = S(knAx+ (1− kn)p) = knSAx+ (1− kn)Sp.
Since (A,S) are compatible, we have

0 ≤ limn pα(AmSxn − SAmxn)
≤ limn pα(ASxn − SAxn) + limn(1− km)pα(p− Sp)
= 0,

whenever limn Sxn = limnAxn = t ∈M for all n and for each x ∈M. Hence
{An} and S are compatible on M for each n and An(M) ⊆ M = T (M).
Similarly, we can prove Bn and T are compatible for each n and Bn(M) ⊆
M = S(M).

For all x, y ∈M, pα ∈ A∗(τ) and for all j ≥ n (n fixed), we obtain from (4)
and (5) that

pα(Anx− Bny) = kn pα(Ax− Sy) ≤ kj pα(Ax− By)
≤ pα(Ax− By)
≤ hmax{pα(Ax− Sx), pα(By − T y), pα(Sx− T y),

1
2 [pα(Ax− T y) + pα(By − Sx)]}

≤ hmax{pα(Ax−Anx) + pα(Anx− Sx),
pα(By − Bny) + pα(Bny − T y), pα(Sx− T y),
1
2 [pα(Ax−Anx) + pα(Anx− T y)+
pα(By − Bny) + pα(Bny − Sx)]},

pα(Anx− Bny) ≤ hmax{(1− kn)pα(Ax− p) + pα(Anx− Sx),
(1− kn)pα(By − p) + pα(Bny − T y), pα(Sx− T y),
1
2 [(1− kn)pα(Ax− p) + pα(Anx− T y)+
(1− kn)pα(By − p) + pα(Bny − Sx)]}.
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Hence for all j ≥ n, we have

(6)

pα(Anx− Bny) ≤ hmax{(1− kj)pα(Ax− p) + pα(Anx− Sx),
(1− kj)pα(By − p) + pα(Bny − T y), pα(Sx− T y),
1
2 [(1− kj)pα(Ax− p) + pα(Anx− T y)+
(1− kj)pα(By − p) + pα(Bny − Sx)]}.

As lim kj = 1, from (6), for every n ∈ N, we have

(7)

pα(Anx− Bny) = limj pα(Anx− Bny)
≤ h limj{max{(1− kj)pα(Ax− p) + pα(Anx− Sx),

(1− kj)pα(By − p) + pα(Bny − T y), pα(Sx− T y),
1
2 [(1− kj)pα(Ax− p) + pα(Anx− T y)+
(1− kj)pα(By − p) + pα(Bny − Sx)]}.

This implies that, for every n ∈ N,

(8) pα(Anx− Bny) ≤ hmax{pα(Anx− Sy), pα(Bnx− T x), pα(Sx− T y),
1
2 [pα(Anx− T y) + pα(Bny − Sx)]},

for all x, y ∈M and for all pα ∈ A∗(τ).
Moreover, S and T being nonexpansive on M, implies that S and T are

‖.‖B-nonexpansive and, hence, ‖.‖B-continuous. Since the norm topology on
EB has a base of neighborhood of zero consisting of τ -closed sets and M
is τ -sequentially complete, then M is a ‖.‖B-sequentially complete subset of
(EB, ‖.‖B) (see proof of Theorem 1.2 in [15]). Thus, from Theorem 8, for every
n ∈ N, An,Bn, S and T have unique common fixed point xn in M, i.e.,

(9) xn = Anxn = Bnxn = Sxn = T xn,

for each n ∈ N.
(i) AsM is τ -sequentially compact and {xn} is a sequence inM, then {xn}

has a convergent subsequence {xm} such that xm → y ∈ M. As A,B and
S, T are continuous and

xm = Sxm = Amxm = kmAxm + (1− km)p,

xm = T xn = Bmxm = kmBxm + (1− km)p,
then it follows that y = T y = Sy = Ay = By.

(ii) As A is compact and {xn} is bounded, then {Axn} has a subsequence
{Axm} such that {Axm} → z ∈M. Now we have

xm = Amxm = kmAxm + (1− km)p

Proceeding to the limit as m → ∞ and using the continuity of S and A, we
have Sz = z = Az. Similarly, we can show Bz = z = T z.

(iii) The sequence {xn} has a subsequence {xm} converges to u ∈M. Since
S is weakly continuous and so as in (i), we have Su = u. Now,

xm = Sxm = Amxm = kmAxm + (1− km)p
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implies that
Sxm −Axm = (1− km)[p−Axm]→ 0

as m→∞. The demiclosedness of S−A at 0 implies that (S −A)u=0. Hence
Su = u = Au. Similarly, we can show T u = u = Bu, when T − B is demiclosed
at 0. This completes the proof.

�

An immediate consequence of the Theorem 9 is as follows:

Corollary 10. Let M be a nonempty τ -bounded, τ -sequentially complete
and q-starshaped subset of a Hausdorff locally convex space (E , τ). Let A,B,S
and T be self mappings of M with A(M) ⊂ T (M) and B(M) ⊂ S(M).
Suppose (A,S) and (B, T ) are compatible pairs, A and B are continuous, S
and T are nonexpansive, and affine, S(M) =M = T (M), p ∈ F(S)∩F(T ).
If A,B,S and T satisfy the following:
(10) pα(Ax− By) ≤ L(x, y),
where

L(x, y) = hmax{pα(Ax− Sx), pα(By − T y), pα(Sx− T y),

1
2pα(Ax− T y), 1

2pα(By − Sx)}
for all x, y ∈M and pα ∈ A∗(τ), where h ∈ (0, 1), then A,B,S and T have a
common fixed point in M under each of the conditions (i)–(iii) of Theorem 9.

Next, in the Theorem 9 and Corollary 10, if A,B,S and T are commuting
mappings, then we get the following result:

Corollary 11. Let M be a nonempty τ -bounded, τ -sequentially complete
and q-starshaped subset of a Hausdorff locally convex space (E , τ). Let A,B,S
and T be self commuting mappings of M with A(M) ⊂ T (M) and B(M) ⊂
S(M). Suppose A and B are continuous, S and T are nonexpansive, and
affine, S(M) =M = T (M), p ∈ F(S) ∩ F(T ). If A,B,S and T satisfy (4)
or (10) for all x, y ∈ M and pα ∈ A∗(τ), where h ∈ (0, 1), then A,B,S and
T have a common fixed point in M under each of the conditions (i)–(iii) of
Theorem 9.

As application of Theorem 9, we prove the following more general result in
invariant approximation theory:

Theorem 12. Let A,B,S and T be self-mappings of a Hausdorff locally
convex space (E , τ) and M a subset of E such that A,B(∂M) ⊆ M, where
∂M stands for the boundary of M and x0 ∈ F(A) ∩ F(B) ∩ F(S) ∩ F(T ).
Suppose that A and B are continuous, (A,S) and (B, T ) are compatible pairs,
S and T are nonexpansive and affine on D = PM(x0). Further, suppose A,B,
S and T satisfy (4) for each x, y ∈ D, pα ∈ A∗(τ) where h ∈ (0, 1). If D is
nonempty q-starshaped with p ∈ F(S) ∩ F(T ) and S(D) = D = T (D), then
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A,B, S and T have a common fixed point in D provided one of the following
conditions hold:

(i) D is τ -sequentially compact;
(ii) A,B are compact mappings;

(iii) D is weakly compact in (E , τ), S and T are weakly continuous and
S −A and T − B are demiclosed at 0.

Proof. First, we show that A and B are self map on D, i.e., A,B : D 7→ D.
Let y ∈ D, then Sy and T y ∈ D, since S(D) = D = T (D). Also, if y ∈ ∂M,
then Ay ∈M, since A(∂M) ⊆M. Now since Ax0 = Bx0 = x0 = Sx0 = T x0,
so for each pα ∈ A∗(τ), we have from (4)

pα(Ay − x0) = pα(Ay − Bx0) ≤ L(y, x0).
This imply that Ay is also closest to x0, so Ay ∈ D. Similarly By ∈ D.
Consequently A, B, S and T are selfmaps on D. The conditions of Theorem 9
(i)–(iii) are satisfied and, hence, there exists a w ∈ D such that Aw = Bw =
Sw = w = T w. This completes the proof. �

An immediate consequence of the Theorem 12 is as follows:
Corollary 13. Let A,B,S and T be self-mappings of a Hausdorff locally

convex space (E , τ) and M a subset of E such that A,B(∂M) ⊆ M, where
∂M stands for the boundary of M and x0 ∈ F(A) ∩ F(B) ∩ F(S) ∩ F(T ).
Suppose that A and B are continuous, (A,S) and (B, T ) are compatible pairs,
S and T are nonexpansive and affine on D = PM(x0). Further, suppose A,B,
S and T satisfy (4) for each x, y ∈ D, pα ∈ A∗(τ) where h ∈ (0, 1). If D is
nonempty q-starshaped with p ∈ F(S) ∩ F(T ) and S(D) = D = T (D), then
A,B, S and T have a common fixed point in D under each of the conditions
(i)–(iii) of Theorem 12.

Next, in the Theorem 12 and Corollary 13, if A,B,S and T are commuting
mappings, then we get the following result:

Corollary 14. Let A,B,S and T be self commuting mappings of a Haus-
dorff locally convex space (E , τ) and M a subset of E such that A,B(∂M) ⊆
M, where ∂M stands for the boundary of M and x0 ∈ F(A)∩F(B)∩F(S)∩
F(T ). Suppose that A and B are continuous, S and T are nonexpansive and
affine on D = PM(x0). Further, suppose A,B, S and T satisfy (4) or (10)
for each x, y ∈ D, pα ∈ A∗(τ) where h ∈ (0, 1). If D is nonempty q-starshaped
with p ∈ F(S) ∩ F(T ) and S(D) = D = T (D), then A, B, S and T have a
common fixed point in D under each of the conditions (i)–(iii) of Theorem 12.

Remark 15. In the light of the comment given by Jungck [4], that every
commuting pair of mappings is compatible but the converse is not true in
general, and by using four mappings as opposed to three, our results general-
ize the results of Nashine [9] by weakening commutativity hypothesis and by
increasing the number of mappings involved and consequently other related
results, also [1, 2, 3, 6, 8, 10, 11, 12, 13, 14]. �
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