PRECONDITIONING BY AN EXTENDED MATRIX TECHNIQUE FOR CONVECTION-DIFFUSION-REACTION EQUATIONS

AURELIAN NICOLA* and CONSTANTIN POPA*

Abstract

In this paper we consider a preconditioning technique for the illconditioned systems arising from discretisations of nonsymmetric elliptic boundary value problems. The rectangular preconditioning matrix is constructed via the transfer operators between successive discretization levels of the initial problem. In this way we get an extended, square, singular, consistent, but mesh independent well-conditioned linear system. Numerical experiments are presented for a 2D convection-diffusion-reaction problem.

MSC 2000. 65F10, 65F20, 65N22, 65N55.
Keywords. Multilevel discretization, spectrally equivalent matrices, mesh independent preconditioning, positive semidefinite systems, CGLS algorithm.

1. INTRODUCTION

Let

$$
\begin{equation*}
A x^{*}=b \tag{1.1}
\end{equation*}
$$

be a linear system of equations, with A an $n \times n$ invertible matrix, $b \in \mathbb{R}^{n}$ and x^{*} its unique solution. If A is ill-conditioned a wide class of preconditioning techniques has been developed in the last 30 years (see [1], [3], [5], [7], [11] and references therein).

Usually these methods are of the form

$$
\begin{equation*}
A x^{*}=b \Leftrightarrow(P A Q)\left(Q^{-1} x^{*}\right)=P b, \tag{1.2}
\end{equation*}
$$

where the $n \times n$ invertible matrices P and Q are constructed in an appropriate way which ensures a much smaller or independent on n condition number for the preconditioned matrix $P A Q$ in (1.2). In this paper we shall consider a more general preconditioning technique which will include (1.2) as a particular case. For this, let $m \geq n$ and S be a full row rank $n \times m$ matrix. Then, the system (1.1) will be transformed as

$$
\begin{equation*}
\hat{A} \hat{x}=\hat{b}, \tag{1.3}
\end{equation*}
$$

[^0]with
\[

$$
\begin{equation*}
\hat{A}=S^{\mathrm{t}} A S, \hat{b}=S^{\mathrm{t}} b \tag{1.4}
\end{equation*}
$$

\]

The $m \times m$ matrix \hat{A} is no more invertible for $m>n$ (because $\operatorname{rank}(\hat{A})=n$), but the system (1.3) is consistent by construction. Moreover, for any solution $\hat{x} \in \mathbb{R}^{m}$ of (1.3), by multiplying on the left of (1.3) with S we get $S S^{\mathrm{t}} A S \hat{x}=$ $S S^{\mathrm{t}} b \Leftrightarrow G A S \hat{x}=G b \Leftrightarrow A(S \hat{x})=b \Leftrightarrow S \hat{x}=x^{*}$, where G is the $n \times n$ symmetric and positive definite matrix (SPD, for short) defined by

$$
\begin{equation*}
G=S S^{\mathrm{t}} \tag{1.5}
\end{equation*}
$$

and the superscript t denotes the transpose of a matrix. For any square matrix B we shall denote by $\sigma^{*}(B)$ the set of all its nonzero eigenvalues and by cond (B) its spectral condition number defined by

$$
\begin{equation*}
\operatorname{cond}(\mathrm{B})=\sqrt{\frac{\max \left\{\lambda, \lambda \in \sigma^{*}\left(B^{\mathrm{t}} B\right)\right\}}{\min \left\{\lambda, \lambda \in \sigma^{*}\left(B^{\mathrm{t}} B\right)\right\}}} \tag{1.6}
\end{equation*}
$$

With respect to the preconditioning procedure (1.3)-(1.4) we are interested whether it exists a constant $c>0$, independent on n and m such that

$$
\begin{equation*}
\operatorname{cond}(\hat{A}) \leq c \tag{1.7}
\end{equation*}
$$

A first answer to this question has been given by M. Griebel in [6]. In this respect, for symmetric elliptic boundary value problems (b.v.p.), he used for the construction of the preconditioner S in (1.4) the multigrid transfer operators between successive discretization levels of the initial problem. Unfortunately, Griebel's approach essentially uses the symetry of the b.v.p. In this paper, we extend Griebel's multilevel preconditioning procedure to nonsymmetric elliptic b.v.p. The paper is organized as follows: in section 2 we describe Griebel's preconditioner together with the related results in the case of symmetric eliptic b.v.p. In section 3 we introduce the general algebraic framework which gives us the possibility to extend Griebel's ideas to nonsymmetric b.v.p. and prove that the preconditioned matrix has a mesh independent condition number (Theorem 1). In section 4 we present numerical experiments with two versions of our preconditioning technique for a class of 2 D convection-diffusion-reaction problems.

2. GRIEBEL'S MULTILEVEL PRECONDITIONING

In [5] M. Griebel considered the following boundary value problem

$$
\left\{\begin{array}{cc}
L u=f, & \text { on } \Omega \tag{2.1}\\
u=g, & \text { on } \partial \Omega
\end{array}\right.
$$

where $\Omega=(0,1)^{d}$, (usually $d=1,2,3$) and L is a second order elliptic differential operator on Ω. The problem (2.1) can be discretized by appropriate finite differences (see [3]) or finite element techniques (see [7], [9]). In the later
case we may also suppose that a variational formulation is available in the following form: find $u \in U(\Omega)$ with

$$
\begin{equation*}
a(u, v)=\langle f, v\rangle_{L^{2}}, \quad \forall v \in V(\Omega) \tag{2.2}
\end{equation*}
$$

where $U(\Omega), V(\Omega)$ are Hilbert spaces of real valued functions defined on Ω, $a: U(\Omega) \times V(\Omega) \longrightarrow \mathbb{R}$ is a bilinear functional, $f \in L^{2}(\Omega)$ and $\langle\cdot, \cdot\rangle_{L^{2}},\|\cdot\|_{L^{2}}$ are the $L^{2}(\Omega)$ scalar product and norm. We shall also suppose that the bilinear functional a is such that the variational formulation (2.2) has a unique solution $u \in U(\Omega)$. In [5] M. Griebel considered a symmetric elliptic b.v.p. of the form (2.1)-(2.2) for which $U(\Omega)=V(\Omega)=H_{0}^{1}(\Omega)$ and a bilinear, symmetric, bounded and coercive, i.e.

$$
\begin{equation*}
|a(u, v)| \leq M\|u\|_{H_{0}^{1}}\|v\|_{H_{0}^{1}}, \quad a(u, u) \geq \mu\|u\|_{H_{0}^{1}}^{2}, \quad \forall u, v \in H_{0}^{1}(\Omega) \tag{2.3}
\end{equation*}
$$

where $\|v\|_{H_{0}^{1}(\Omega)}^{2}=\sum_{i=1}^{d}\left\|\frac{\partial v}{\partial x_{i}}\right\|_{L^{2}}^{2}+\|v\|_{L^{2}}^{2}$.
Remark 2.1. For $g=0$ there is a straightforward way to obtain a variational formulation as (2.2)-(2.3), whereas in the nonhomogeneous case, $g \neq 0$, we may use the approach from Chapter 7 in [7].

Let $k \geq 2$ be a given integer, $n_{k}=\left(2^{k}-1\right)^{d}$ and $B_{k}=\left\{\varphi_{1}^{(k)}, \ldots, \varphi_{n_{k}}^{(k)}\right\}$ a standard finite element basis (e.g. piecewise d-linear, see [9]). Then the linear system associated to (2.2) is

$$
\begin{equation*}
A_{k} x_{k}=b_{k}, \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(A_{k}\right)_{i j}=a\left(\varphi_{j}^{(k)}, \varphi_{i}^{(k)}\right),\left(b_{k}\right)_{i}=\left\langle f, \varphi_{i}^{(k)}\right\rangle_{L^{2}}, i, j=1, \ldots, n_{k} \tag{2.5}
\end{equation*}
$$

From the properties of the bilinear functional a it results that the matrix A_{k} is SPD. Let now

$$
\begin{equation*}
V_{1} \subset V_{2} \subset \cdots \subset V_{k} \tag{2.6}
\end{equation*}
$$

be a sequence of spaces of piecewise d-linear functions associated to a sequence of uniform, equidistant, nested grids

$$
\begin{equation*}
\Omega_{1} \subset \Omega_{2} \subset \cdots \subset \Omega_{k} \tag{2.7}
\end{equation*}
$$

$n_{q}=\left(2^{q}-1\right)^{d}$ the dimension of $V_{q}, q=1,2, \ldots$ and $B_{q}=\left\{\varphi_{1}^{(q)}, \ldots, \varphi_{n_{q}}^{(q)}\right\}$ the finite element basis in V_{q}. Let also $\hat{B}_{k} \subset V_{k}$ and m_{k} be given by

$$
\begin{equation*}
\hat{B}_{k}=B_{1} \cup B_{2} \cup \cdots \cup B_{k}, m_{k}=n_{1}+n_{2}+\cdots+n_{k} . \tag{2.8}
\end{equation*}
$$

The functions from \hat{B}_{k} are linearly dependent and generate the subspace V_{k}. Each function $\varphi_{j}^{(q)} \in V_{q} \subset V_{q+1}$ has a unique representation as an element of
V_{q+1}, of the form

$$
\begin{equation*}
\varphi_{j}^{(q)}=\sum_{i=1}^{n_{q+1}} c_{i j} \varphi_{i}^{(q+1)}, j=1, \ldots, n_{q} . \tag{2.9}
\end{equation*}
$$

We consider the $n_{q+1} \times n_{q}$ grid transfer matrix I_{q}^{q+1} given by

$$
\begin{equation*}
\left(I_{q}^{q+1}\right)_{i j}=c_{i j} \tag{2.10}
\end{equation*}
$$

and for $q=1,2, \ldots, k-1$ define the $n_{k} \times n_{q}$ matrices S_{q}^{k} by

$$
\begin{equation*}
S_{q}^{k}=I_{k-1}^{k} I_{k-2}^{k-1} \ldots I_{q}^{q+1} \tag{2.11}
\end{equation*}
$$

and the $n_{k} \times m_{k}$ matrix S_{k} (in block notation)

$$
S_{k}=\left[\begin{array}{c:c|c|c|c|c|ccc}
& & & & & & & 1 & \tag{2.12}\\
\\
S_{1}^{k} & S_{2}^{k} & \ldots & S_{k-1}^{k} & & & & \\
& & & & & & & \\
& & & & & & & & 1 \\
\\
& & & & 1
\end{array}\right]
$$

in which the last $n_{k} \times n_{k}$ block is the unit matrix. We then consider the

$$
\begin{aligned}
& B_{3}=\left\{\varphi_{1}^{(3)}, \varphi_{2}^{(3)}, \varphi_{3}^{(3)}, \varphi_{4}^{(3)}, \varphi_{5}^{(3)}, \varphi_{6}^{(3)} \varphi_{7}^{(3)}\right\} ; V_{3}=s p\left(B_{3}\right) \\
& B_{2}=\left\{\varphi_{1}^{(2)}, \varphi_{2}^{(2)}, \varphi_{3}^{(2)}\right\} ; V_{2}=s p\left(B_{2}\right) \\
& B_{1}=\left\{\varphi_{1}^{(1)}\right\} ; V_{1}=s p\left(B_{1}\right) \\
&\left\{\begin{array}{l}
\varphi_{1}^{(2)}=0.5 \varphi_{1}^{(3)}+\varphi_{2}^{(3)}+0.5 \varphi_{3}^{(3)} \\
\varphi_{2}^{(2)}=0.5 \varphi_{3}^{(3)}+\varphi_{4}^{(3)}+0.5 \varphi_{5}^{(3)} \\
\varphi_{3}^{(2)}=0.5 \varphi_{3}^{(5)}+\varphi_{6}^{(3)}+0.5 \varphi_{7}^{(3)} \\
I_{2}^{3}: n_{3} \times n_{2},(7 \times 3), l_{1}^{2}: n_{2} \times n_{1},(3 \times 1) \\
\varphi_{1}^{(1)}=0.5 \varphi_{1}^{(2)}+\varphi_{2}^{(2)}+0.5 \varphi_{3}^{(2)} \\
\end{array}\left[\begin{array}{lll}
0.5 & 0 & 0 \\
1 & 0 & 0 \\
0.5 & 0.5 & 0 \\
0 & 1 & 0 \\
0 & 0.5 & 0.5 \\
0 & 0 & 1 \\
0 & 0 & 0.5
\end{array}\right] ; l_{1}^{2}=\left[\begin{array}{l}
0.5 \\
1 \\
0.5
\end{array}\right]\right.
\end{aligned}
$$

Fig. 1. Example of the one-dimensional functions.
preconditioned version of (2.4) (of the form (1.3)-(1.4)) (see Figure 1 for 1D case and 3 successive level of discretization)

$$
\begin{equation*}
\hat{A}_{k}=S_{k}^{t} A_{k} S_{k}, \hat{b}_{k}=S_{k}^{t} b_{k} \tag{2.13}
\end{equation*}
$$

It results that the $m_{k} \times m_{k}$ matrix \hat{A}_{k} is symmetric and positive semidefinite. M. Griebel proved (see [5] and [6] references therein) that the spectral condition number of the preconditioned matrix \hat{A}_{k} is mesh independent. He's proof is essentially based on the symmetry of A_{k} (and \hat{A}_{k}) and the fact that the $n_{k} \times n_{k}$ matrix G_{k} defined as in (1.5), i.e.

$$
\begin{equation*}
G_{k}=S_{k} S_{k}^{\mathrm{t}}, \tag{2.15}
\end{equation*}
$$

is spectrally equivalent (see the definition (3.1) in section 3) with the inverse of the standard discretized Laplacian Δ_{k} (5-point stencil, see [7]), which for picewise finite element basis functions and a variational formulation on $H_{0}^{1}(\Omega)$ as $(2.2)-(2.3)$ is defined by

$$
\begin{equation*}
\left(\Delta_{k}\right)_{i j}=\left\langle\varphi_{j}^{(k)}, \varphi_{i}^{(k)}\right\rangle_{H_{0}^{1}(\Omega)}, i, j=1, \ldots, n_{k} \tag{2.16}
\end{equation*}
$$

In the next section we shall present an extension of this procedure for nonsymmetric problems as (2.1).

3. THE GENERAL ALGEBRAIC FORMULATION

We shall start the presentation of our extension by a brief replay of some results related to spectrally equivalent matrices. In this sense we introduce the following notations: for an $n \times n$ SPD matrix A we shall denote by $\sigma(A), \rho(A)$ its spectrum and spectral radius and by $\lambda_{\min }(A), \lambda_{\max }(A)$ its smallest and biggest eigenvalue. For an arbitrary $m \times n$ matrix $T, N(T), R(T)$ will denote its null space and range, respectively; the notations $\langle\cdot, \cdot\rangle,\|\cdot\|$ will be used for the euclidean scalar product and norm on some vector space \mathbb{R}^{q}.

Definition 3.1. For A and B two $n \times n S P D$ matrices, we shall say that A is spectrally equivalent with B if there exist two positive constants $\alpha_{1}, \alpha_{2}>0$, independent on n such that

$$
\begin{equation*}
\alpha_{1} \leq \frac{\langle A x, x\rangle}{\langle B x, x\rangle} \leq \alpha_{2}, \forall x \in \mathbb{R}^{n}, x \neq 0 . \tag{3.1}
\end{equation*}
$$

If we write this by $A \approx B$ the following results are known (see e.g. [1, 3, 4]).
Proposition 3.2. (i) The matrix A is spectrally equivalent with B if and only if for a decomposition of the form $B=C C^{\mathrm{t}}$ we have

$$
\begin{equation*}
\alpha_{1} \leq \lambda_{\min }\left(C^{-1} A C^{-\mathrm{t}}\right) \leq \lambda_{\max }\left(C^{-1} A C^{-\mathrm{t}}\right) \leq \alpha_{2}, \tag{3.2}
\end{equation*}
$$

for some a_{1}, a_{2} independent on n. Moreover, inequalities (3.2) are independent on the decomposition of B.
(ii) If $A \approx B$ then $B \approx A$ and $A^{-1} \approx B^{-1}$;
(iii) If $A \approx B$ and $B \approx C$, then $A \approx C$.

Remark 3.3. Relation (3.2) makes the connection between the spectral equivalence and preconditioning. Indeed, by taking into account that the spectral condition number of an SPD matrix T is defined as (see also (1.6))

$$
\begin{equation*}
\operatorname{cond}(T)=\frac{\lambda_{\max }(T)}{\lambda_{\min }(T)} \tag{3.3}
\end{equation*}
$$

from (3.2) it results that, if the matrices A and B are spectrally equivalent, then B is a "good preconditioner" for A, i.e.

$$
\begin{equation*}
\operatorname{cond}\left(C^{-1} A C^{-t}\right) \leq \frac{\alpha_{2}}{\alpha_{1}} \tag{3.4}
\end{equation*}
$$

let us know consider a general (nonsymmetric) system of the form (1.1) and let M, R be the matrices defined by

$$
\begin{equation*}
M=\frac{1}{2}\left(A+A^{\mathrm{t}}\right), R=\frac{1}{2}\left(A-A^{\mathrm{t}}\right) . \tag{3.5}
\end{equation*}
$$

Because

$$
\begin{equation*}
M^{\mathrm{t}}=M, R^{\mathrm{t}}=-R \tag{3.6}
\end{equation*}
$$

it results that both matrices are normal (see e.g. [1]). We shall suppose that M is positive definite, i.e.

$$
\begin{equation*}
\langle M x, x\rangle>0, \forall x \neq 0 . \tag{3.7}
\end{equation*}
$$

Our extension of the previous Griebel's preconditioning procedure is based on the following assumptions.

Assumption A1. The matrix M is spectrally equivalent with G^{-1} (G from (1.5) and S as in (1.4)), i.e. there exist the positive constants α_{1}, α_{2}, independent on n, such that

$$
\begin{equation*}
\alpha_{1} \leq \frac{\langle M x, x\rangle}{\left\langle G^{-1} x, x\right\rangle} \leq \alpha_{2}, \forall x \in \mathbb{R}^{n}, x \neq 0 . \tag{3.8}
\end{equation*}
$$

Assumption A2. It exists a constant $\beta \geq 0$, independent on n and m, such that

$$
\begin{equation*}
\rho(G R) \leq \beta \tag{3.9}
\end{equation*}
$$

The following results shows that the preconditioned matrix \hat{A} from (1.4) is well-conditioned.

Theorem 3.4. In the above hypothesis and under the assumptions A 1 and A2 we have for the matrix \hat{A} in (1.3)-(1.4)

$$
\begin{equation*}
\operatorname{cond}(\hat{A}) \leq \frac{\alpha_{2}+\beta}{\alpha_{1}} \tag{3.10}
\end{equation*}
$$

For proving Theorem 1 we need two auxiliary results which will be presented in what follows.

Lemma 3.5. We have the equality

$$
\begin{equation*}
\sigma^{*}(\hat{A})=\sigma(G A) \tag{3.11}
\end{equation*}
$$

Proof. Let first $\lambda \in \sigma^{*}(\hat{A})$. Then, for some nonzero vector z we have the following sequence of equalities, in which the last one shows that $\lambda \in \sigma(G A)$.

$$
\hat{A} z=\lambda z \Longrightarrow S^{\mathrm{t}} A S z=\lambda z \Longrightarrow S S^{\mathrm{t}} A S z=\lambda S z \Longrightarrow G A(S z)=\lambda S z
$$

Conversely, let $\lambda \in \sigma(G A)$. Then, $\lambda \neq 0$ and for some nonzero vector y we have $G A y=\lambda y$. Using the invertibility of the SPD matrix G we define $w=G^{-1} y \neq 0$ and get

$$
G A G w=\lambda G w \Longleftrightarrow S S^{\mathrm{t}} A S S^{\mathrm{t}} w=\lambda S S^{\mathrm{t}} w
$$

Thus, because the application $S^{\mathrm{t}}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is injective, the vector $z=S^{\mathrm{t}} w$ will be nonzero and $S \hat{A} z=\lambda S z$, i.e.

$$
\begin{equation*}
\hat{A} z-\lambda z \in N(S) \tag{3.12}
\end{equation*}
$$

On the other hand, from (1.4) we get

$$
\hat{A} z-\lambda z=S^{\mathrm{t}} A S z-\lambda S^{\mathrm{t}} w \in R\left(S^{\mathrm{t}}\right)
$$

which together with (3.12) gives us $\hat{A} z-\lambda z=0$, i.e. $\lambda \in \sigma^{*}(\hat{A})$.
Lemma 3.6. Let $G=C C^{\mathrm{t}}$ with C an $n \times n$ invertible matrix and $\bar{A}, \bar{M}, \bar{R}$ defined by

$$
\begin{equation*}
\bar{A}=C^{\mathrm{t}} A C, \bar{M}=C^{\mathrm{t}} M C, \bar{R}=C^{\mathrm{t}} R C, \tag{3.13}
\end{equation*}
$$

with A, M, R from (3.5). Then

$$
\begin{equation*}
\lambda_{\min }(\bar{M}) \geq \alpha_{1}, \quad \lambda_{\max }(\bar{M}) \leq \alpha_{2} \tag{3.14}
\end{equation*}
$$

Proof. Because M (see (3.6)-(3.7)) is SPD, so will be \bar{M} from (3.13). Then, by also using Assumption A1 we get

$$
\begin{gathered}
\lambda_{\min }(\bar{M})=\min _{x \neq 0} \frac{\langle\bar{M} x, x\rangle}{\langle x, x\rangle}=\min _{x \neq 0} \frac{\langle M C x, C x\rangle}{\langle x, x\rangle}= \\
\min _{y \neq 0} \frac{\langle M y, y\rangle}{\left\langle C^{-1} y, C^{-1} y\right\rangle}=\min _{y \neq 0} \frac{\langle M y, y\rangle}{\left\langle G^{-1} y, y\right\rangle} \geq \alpha_{1} .
\end{gathered}
$$

The proof of the second inequality in (3.14) results by a similar procedure.
Proof of Theorem 1. According to [3] (Theorem 1), from (3.13)-(3.14) we obtain

$$
\begin{equation*}
\lambda_{\min }\left(\bar{A}^{\dagger} \bar{A}\right) \geq\left(\lambda_{\min }(\bar{M})\right)^{2}, \quad \lambda_{\max }\left(\bar{A}^{\dagger} \bar{A}\right) \leq\left(\lambda_{\max }(\bar{M})+\rho(\bar{R})\right)^{2} . \tag{3.15}
\end{equation*}
$$

Moreover, from (3.13) and (3.9) it follows that

$$
\begin{equation*}
\rho(\bar{R})=\rho\left(C^{\mathrm{t}} R C\right)=\rho\left(C C^{\mathrm{t}} R\right)=\rho(G R) \leq \beta \tag{3.16}
\end{equation*}
$$

Now, by using (3.11) and some well-known properties of the spectrum and spectral radius of matrices, we successively get

$$
\begin{align*}
& \sigma^{*}\left(\hat{A}^{\mathrm{t}} \hat{A}\right)=\sigma^{*}\left(S A^{\mathrm{t}} S S^{\mathrm{t}} A S\right)=\sigma^{*}\left(S^{\mathrm{t}}\left(A^{\mathrm{t}} G A\right) S\right)=\sigma\left(G\left(A^{\mathrm{t}} G A\right)\right)= \\
& \quad \sigma\left(C C^{\mathrm{t}}\left(A^{\mathrm{t}} G A\right)\right)=\sigma\left(C^{\mathrm{t}}(A G A) C\right)=\sigma\left(C^{\mathrm{t}} A^{\mathrm{t}} C C^{\mathrm{t}} A C\right)=\sigma\left(\bar{A}^{\mathrm{t}} \bar{A}\right) \tag{3.17}
\end{align*}
$$

Then, from (3.15), (3.17), (1.6), (3.14) and (3.9), we obtain (3.10) and the proof is complete.

Remark 3.7. We have to observe that, beside the specific properties mentioned in the above assumptions A1 and A2, our preconditioning method requests only the invertibility of the system matrix in (1.1) and the fact that its symmetric part is SPD. These properties are fulfilled by a large class of finite element or finite differences discretizations of elliptic boundary value problems (b.v.p.), see e.g. [8]).

4. NUMERICAL EXPERIMENTS

We considered in our experiments the convection-diffusion-reaction problem

$$
\begin{cases}-\Delta u+\gamma \frac{\partial u}{\partial x}+\delta u & =f, \text { in } \Omega=(0,1)^{2} \tag{4.1}\\ u & =0 \text { on } \partial(\Omega),\end{cases}
$$

where $\gamma \in(0, \infty)$ and the right hand side f such that the unique exact solution is $u(x, y)=x y(1-x)(1-y) \mathrm{e}^{x y}$ (see [3]). The problem was discretized using the classical 5 -point stencil finite differences on k successive grids. On each grid, the number of interior nodes is $n_{q}=\left(2^{q}-1\right)^{2}, q=k, \ldots, 1$, such that the system on the finest level (2.4) has dimension n_{k}. We used in our experiments two types of intergrid transfer operators, I_{q}^{q+1} and $J_{q}^{q+1}, q=k-1, \ldots, 1$ defined (in stencil notation) by

$$
\left[I_{q}^{q+1}\right]=\frac{1}{4}\left[\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \tag{4.2}\\
\frac{1}{2} & 1 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right]_{h},\left[J_{q}^{q+1}\right]_{h}=\frac{1}{16}\left[\begin{array}{ccc}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}\right]_{h}
$$

The preconditioning $n_{k} \times m_{k}$ matrix S_{k} was constructed as in (2.11)-(2.12) and the extended preconditioned system and matrix G_{k} as in (2.13)-(2.15). For solving the initial system (2.4) and the preconditioned one (2.13)-(2.14) we used the CGLS (Conjugate Gradient for Least Squares) algorithm from [1], with the stopping rules, respectively

$$
\begin{equation*}
\left\|A_{k} x_{k}-b_{k}\right\| \leq 10^{-6},\left\|\hat{A}_{k} \hat{x}_{k}-\hat{b}_{k}\right\| \leq 10^{-6} \tag{4.3}
\end{equation*}
$$

The results (number of iterations versus the dimension of the finest grid n_{k} and the convection coefficient γ (for the reaction coefficient $\delta=0$)) are presented in Tables 1-3. We observe in Tables $2-3$ the mesh independence behaviour of the preconditioned system for both choices of intergrid transfer operators, together with γ-dependence for fixed k and n_{k}. Moreover in Table 4 we can see that $\hat{A_{k}}$ remains a sparse matrix and (because of the mesh independence of the preconditioning) the computational time for solving the system (2.13)(2.14) (constructed with I_{q}^{q+1} from (4.2) is much less, for bigger dimensions, than for solving the nonpreconditioned one (2.4).

Table 1. No preconditioning.

n_{k} / γ	0	50	100	200
225	120	109	96	143
961	489	342	249	239
3969	1940	1290	849	602
16129	7599	4737	3230	2120

Table 2. Preconditioning with I_{q}^{q+1} from (4.2).

m_{k} / γ	0	50	100	200
284	25	56	111	274
1245	28	61	109	255
5214	30	60	103	228
21343	33	61	107	214

Table 3. Preconditioning with J_{q}^{q+1} from (4.2).

m_{k} / γ	0	50	100	200
284	34	64	115	295
1245	46	71	116	250
5214	54	71	114	222
21343	61	71	105	199

Table 4. Sparsity and computational time (for J_{q}^{q+1}).

k	n_{k}	m_{k}	$\operatorname{spa}(\mathrm{~A})$	$\operatorname{spa}\left(\widehat{A}_{k}\right)$	Time $\left(A_{k} ; b_{k}\right)$	Time $\left(\widehat{A}_{k} ; \hat{b}_{k}\right)$
3	49	59	9%	19%	0.01	0.03
4	225	284	2%	6.6%	0.09	0.10
5	961	1245	0.5%	2.1%	0.73	0.56
6	3969	5214	1.2%	6.8%	10	3.59
7	16129	21343	0.03%	0.2%	204	19
8	65025	86368	0.007%	0.06%	3370	102

5. CONCLUSIONS AND FURTHER WORK

In this paper we presented an extension of Griebel's preconditioning technique from [5], for symmetric elliptic boundary value problems to nonsymmetric problems if the form (4.1). The extension, formulated in Section 3 in a very general algebraic form is based on the assumptions A1 and A2, which controls the symmetric and, respectively skew-symmetric part of the system matrix A. We applied this extension to the (nonsymmetric) boundary value problem (4.1), using a finite differences discretization and a classical coarsening. We used the two versions of intergrid transfer operators from (4.2). In both cases, the results presented in Tables 2 and 3 show a mesh-independence behaviour. For I_{k-1}^{k} the symmetric part M_{k} of A_{k} is exactly the 5-point stencil Laplacian Δ_{k} (see [3], [7]), thus the assumption A1 holds. Unfortunately we have not yet a similar result for the J_{k-1}^{k} operators and also for the second assumption A2, in both cases from (4.2). Work is in progress on this direction.

REFERENCES

[1] Björck, A., Numerical Methods for Least Squares Problems, SIAM Philadelphia, 1996.
[2] Briggs, L. W., A Multigrid Tutorial, SIAM Philadelphia, 1987.
[3] Elman, H. C. and Schultz M. H., Preconditioning by fast direct methods for nonselfadjoint nonseparable elliptic equations, SIAM J. Numer. Anal., 23, no. 1, pp. 44-57, 1986.
[4] Golub, G. H. and van Loan, C. F., Matrix Computations, The John's Hopkins Univ. Press, Baltimore, 1983.
[5] Griebel, M., Multilevel algorithms considered as iterative methods on semidefinite systems. SIAM J. Sci. Comput., 15, no. 3, pp. 547-565, 1994.
[6] Griebel, M., Zenger, C. and Zimmer, S., Multilevel Gauss-Seidel-algorithms for full and sparse grid problems. Computing, 50, pp. 127-148, 1993.
[7] Hackbusch, W., Elliptic Differential Equations. Theory and Numerical Treatment, Springer-Verlag, Berlin, 1987.
[8] Hackbusch, W., Iterative Solution of Large Sparse Systems of Equations, SpringerVerlag, Berlin, 1994.
[9] Marchouk, G. and Agochkov, V., Introduction aux Méthodes des Éléments Finis, Éditions MIR, Moscou, 1985.
[10] Oden, J.T. and Reddy, J.N., An Introduction to the Mathematical Theory of Finite Elements, John Wiley and Sons, Inc., 1976.
[11] Oswald, P., Multilevel Finite Element Approximations, Teubner Skripten zur Numerik, Stuttgart, 1994.
[12] Popa, C., Preconditioning conjugate gradient method for nonsymmetric systems, Intern. J. Computer Math., 58, pp. 117-133, 1995.

Received by the editors: May 26, 2008.

[^0]: *Faculty of Mathematics and Computer Science, Ovidius University, Blvd. Mamaia 124, 900527 Constanţa, Romania, e-mail: \{anicola, cpopa\}@univ-ovidius.ro.

