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INPUT-OUTPUT CONDITIONS FOR EXPONENTIAL TRICHOTOMY
OF DYNAMICAL SYSTEMS†

ADINA LUMINIŢA SASU∗ and BOGDAN SASU∗

Abstract. The aim of the paper is to provide new properties concerning the
property of uniform exponential trichotomy on the real line. We obtain a char-
acterization for uniform exponential trichotomy in terms of the solvability of an
associated integral equation.
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1. INTRODUCTION

Exponential trichotomy is a fundamental concept in the asymptotic theory
of evolution equations, which proceed from the central manifold theorem. We
say that an evolutionary system has exponential trichotomy if the main space
is decomposed at every moment intro three invariant subspaces: the stable,
unstable and neutral subspace, such that the solution on the first subspace is
exponentially stable, on the second subspace is exponentially expansive and
on the third subspace is bounded. The concept of exponential trichotomy for
differential equations has the origin in the remarkable works of Elaydi and
Hájek (see [1], [2]) and of Sacker and Sell (see [4]). Elaydi and Hájek studied
the exponential trichotomy of differential systems and of nonlinear differen-
tial systems, respectively, proving a number of interesting properties in these
cases (see [1], [2]). The case of linear differential systems described by lin-
ear skew-product flows on X × Θ was considered by Sacker and Sell in [4],
where the authors gave characterizations of the exponential trichotomy for
the case when X is a finite dimensional Banach space. The case of nonlinear
difference equations was considered by Elaydi and Janglajew in [3], where the
authors introduced new concepts of exponential dichotomy and exponential
trichotomy, using two different methods. In their first approach the authors
used the tracking method, while in their second approach they introduced a
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discrete analogue of dichotomy and trichotomy in variation. The case of evo-
lution families on the real line was considered for the first time in [8], where
we gave necessary and sufficient conditions for the existence of exponential
trichotomy. The concept considered in [8] does not assume that the families of
projections are uniformly bounded. Thus, we obtained that the p-admissibility
of the pair (Cb(R, X), Cc(R, X)) implies the decomposition of the space at ev-
ery moment into stable, unstable and neutral subspace according to Definition
2.2 in [8] (see Theorem 3.8 in [8]). The main problem was that the converse
implication was valid only under additional hypotheses (see Theorem 3.10 in
[8]). Taking into account that exponential trichotomy generalizes the concept
of exponential dichotomy for the case when the neutral subspace contains only
the zero vector, and that the family of the dichotomy projections is uniformly
bounded (see [6], Lemma 4.1), it is natural to work with families of trichotomy
projections which are uniformly bounded.

The aim of this paper is to obtain several important properties concerning
exponential trichotomy on the real line. First we consider a concept of expo-
nential trichotomy which is a direct generalization of the concept of exponen-
tial dichotomy (see e.g. [6], Definition 3.2). According to our study made in [8]
we point out that if an evolution family U = {U(t, s)}t≥s is exponentially tri-
chotomic with respect to three families of projections {Pk(t)}t∈R, k ∈ {1, 2, 3},
then the range of P1(t) is the linear subspace of all vectors x ∈ X with the prop-
erty that the corresponding orbit tends to zero at infinity, the range of P2(t) is
the subspace of all vectors x ∈ X with the property that admit bounded neg-
ative continuation and the corresponding orbit is bounded, and the range of
P3(t) is the linear subspace of all vectors x ∈ X with the property that admit
a negative continuation which tends to zero at minus infinity. In what follows,
we prove that an evolution family is uniformly exponentially trichotomic if and
only if there is p ∈ (1,∞) such that the pair (Cb(R, X), Cc(R, X)) is uniformly
p-admissible for it.

2. TRICHOTOMY OF EVOLUTION FAMILIES AND THE STRUCTURE THEOREM

The aim of this section is to recall some basic definitions and notations and
to establish the general context of our study.

Definition 1. A family U = {U(t, s)}t≥s of bounded linear operators on X
is called an evolution family if the following properties hold:

(i) U(t, t) = I (the identity operator), for all t ∈ R;
(ii) U(t, s)U(s, t0) = U(t, t0), for all t ≥ s ≥ t0;

(iii) there exist M ≥ 1 and ω > 0 such that ||U(t, t0)|| ≤Meω(t−t0), for all
t ≥ t0;

(iv) for every x ∈ X and every t0 ∈ R the mapping s 7→ U(s, t0)x is
continuous on [t0,∞) and the mapping t 7→ U(t0, t)x is continuous on
(−∞, t0].
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Definition 2. An evolution family U = {U(t, s)}t≥s is said to be uni-
formly exponentially trichotomic if there exist three families of projections
{Pk(t)}t∈R ⊂ B(X), k ∈ {1, 2, 3} and two constants K ≥ 1 and ν > 0 such
that:

(i) Pk(t)Pj(t) = 0, for all t ∈ R and k 6= j;
(ii) P1(t) + P2(t) + P3(t) = I, for all t ∈ R;

(iii) sup
t∈R
||Pk(t)|| <∞, for all k ∈ {1, 2, 3};

(iv) U(t, t0)Pk(t0) = Pk(t)U(t, t0), for all t ≥ t0 and k ∈ {1, 2, 3};
(v) ||U(t, t0)x|| ≤ Ke−ν(t−t0)||x||, for all x ∈ Im P1(t0) and all t ≥ t0;
(vi) 1

K ||x|| ≤ ||U(t, t0)x|| ≤ K||x||, for all x ∈ Im P2(t0) and all t ≥ t0;
(vii) ||U(t, t0)x|| ≥ 1

K eν(t−t0)||x||, for all x ∈ Im P3(t0) and all t ≥ t0;
(viii) the restriction Uk(t, t0)| : Im Pk(t0) → Im Pk(t) is an isomorphism,

for all t ≥ t0 and all k ∈ {2, 3}.

Let U = {U(t, s)}t≥s be an evolution family on X. For every t0 ∈ R, we
define

X1(t0) = {x ∈ X : lim
t→∞

U(t, t0)x = 0}.

We denote by FU (t0) the set of all functions ϕ : R− → X with the property
that

ϕ(t) = U(t+ t0, s+ t0)ϕ(s), ∀s ≤ t ≤ 0.
Let X2(t0) be the linear subspace of all x ∈ X with sup

t≥t0
||U(t, t0)x|| <∞ and

there is a function ϕx ∈ FU (t0) such that ϕx(0) = x and sup
s≤0
||ϕx(s)|| <∞.

Let X3(t0) be the linear subspace of all x ∈ X with the property that there
is a function λx ∈ FU (t0) such that λx(0) = x and lim

s→−∞
λx(s) = 0.

Lemma 3. U(t, t0)Xk(t0) ⊂ Xk(t), for all t ≥ t0 and k ∈ {1, 2, 3}.

Proof. See Lemma 2.1 in [8]. �

Theorem 4. (The structure theorem) Let U = {U(t, s)}t≥s be an evolution
family on X. If U is uniformly exponentially trichotomic with respect to the
families of projections {Pk(t)}t∈R, k ∈ {1, 2, 3}, then

Im Pk(t) = Xk(t), ∀t ∈ R,∀k ∈ {1, 2, 3}.

Proof. This follows from Theorem 3.9 in [8] and Definition 2 (iii). �

Remark 5. From Theorem 4 it follows that if an evolution family U =
{U(t, s)}t≥s is uniformly exponentially trichotomic with respect to three fam-
ilies of projections {Pk(t)}t∈R, k ∈ {1, 2, 3}, then these families are uniquely
determined by the conditions from Definition 2. �

Remark 6. For every t0 ∈ R, X1(t0) is called the stable subspace at the
point t0, X2(t0) is called the neutral subspace at the point t0 and, respectively,
X3(t0) is called the unstable subspace at the point t0. �
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3. ADMISSIBILITY AND UNIFORM EXPONENTIAL TRICHOTOMY

In this section we will obtain necessary and sufficient conditions for the
existence of uniform exponential trichotomy in terms of the solvability of an
associated integral equation.

Let X be a real or complex Banach space.
Notations Let p ∈ [1,∞) and let Lp(R, X) be the linear space of all

Bochner measurable functions f : R→ X with
∫
R ||f(s)||p ds <∞, which is a

Banach space with respect to the norm

||f ||p := (
∫
R
||f(s)||p ds)1/p.

Let Cb(R, X) be the linear space of all functions f : R→ X, which are contin-
uous and bounded, and let C0(R, X) := {f ∈ Cb(R, X) : lim

t→±∞
f(t) = 0}.

If Cb0 := {f ∈ Cb(R, X) : lim
t→∞

f(t) = 0} and C0b := {f ∈ Cb(R, X) :
lim

t→−∞
f(t) = 0}, then Cb(R, X), C0(R, X), Cb0(R, X) and C0b(R, X) are Ba-

nach spaces with respect to the norm |||f ||| := sup
t∈R
||f(t)||. Let Cc(R, X) denote

the space of all continuous functions f : R→ X with compact support.
Let U = {U(t, s)}t≥s be an evolution family on X. We denote by VU the

linear space of all functions v : R→ X with the property that for every t0 ∈ R,
v(t0) ∈ X1(t0) ∪X3(t0). We associate with U the integral equation given by
the variation of constants formula:

(EU ) f(t) = U(t, s)f(s) +
∫ t

s
U(t, τ)v(τ)dτ, ∀t ≥ s,

where f ∈ Cb(R, X) and v ∈ Cc(R, X).

Definition 7. Let p ∈ (1,∞). The pair (Cb(R, X), Cc(R, X)) is said to be
uniformly p-admissible for U if there is L > 0 such that the following properties
hold:

(i) for every v ∈ Cc(R, X) there exist f ∈ Cb0(R, X) and g ∈ C0b(R, X)
such that the pairs (f, v) and (g, v) satisfy the equation (EU );

(ii) if v ∈ Cc(R, X) and f ∈ Cb0(R, X) ∪ C0b(R, X) are such that the pair
(f, v) satisfies the equation (EU ), then |||f ||| ≤ L max{||v||1, ||v||p};

(iii) if v ∈ Cc(R, X) ∩ VU and f ∈ C0(R, X) are such that the pair (f, v)
satisfies the equation (EU ), then |||f ||| ≤ L ||v||p.

The main result of this section is:

Theorem 8. Let p ∈ (1,∞). An evolution family U = {U(t, s)}t≥s is uni-
formly exponentially trichotomic if and only if the pair (Cb(R, X), Cc(R, X))
is uniformly p-admissible for U .

Proof. Necessity follows from Theorem 3.10 in [8].
Sufficiency. From Theorem 3.8 in [8] it follows that there are three families

of projections {Pk(t)}t∈R, k ∈ {1, 2, 3} and two constants K, ν > 0 such
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that conditions (i), (ii), (iv)–(viii) from Definition 2 are satisfied. Moreover,
Im Pk(t0) = Xk(t0), for all t0 ∈ R and k ∈ {1, 2, 3}.

It remains to prove that sup
t∈R
||Pk(t)|| <∞, for every k ∈ {1, 2, 3}. Let L > 0

be given by Definition 7 and let M,ω > 0 be given by Definition 1.
Step 1 We prove that there is γ > 0 such that

(3.1) ||U(t, t0)x|| ≤ γ ||x||, ∀x ∈ Im P1(t0) + Im P2(t0), ∀t ≥ t0.
Let α : R → [0, 2] be a continuous function with supp α ⊂ (0, 1) and∫ 1

0 α(τ) dτ = 1. Let t0 ∈ R and let x ∈ Im P1(t0) + Im P2(t0). We consider
the functions

v : R→ X, v(t) = α(t− t0)U(t, t0)x

f : R→ X, f(t) =
∫ t

−∞
α(τ − t0) dτ U(t, t0)x.

We have that v ∈ Cc(R, X). Observing that f(t) = U(t, t0)x, for t ≥ t0 + 1,
from x ∈ Im P1(t0) + Im P2(t0), we obtain that

sup
t≥t0+1

||f(t)|| <∞.

Since f(t) = 0, for t ≤ t0 we deduce that f ∈ C0b(R, X). In addition, it
is easily checked that the pair (f, v) satisfies the equation (EU ), so |||f ||| ≤
Lmax{||v||1, ||v||p}. This implies that
(3.2) ||U(t, t0)x|| = ||f(t)|| ≤ 2LMeω||x||, ∀t ≥ t0 + 1.
Setting γ = max{2LMeω,Meω}, from (3.2) we conclude that (3.1) holds.

Step 2 We prove that sup
t∈R
||P3(t)|| < ∞. Indeed, for every t ∈ R we set

P (t) := P1(t) + P2(t).
Let γ > 0 be given by Step 1 and let T > 0 be such that eνT > Kγ.
Let t0 ∈ R and let x ∈ X with P (t0)x 6= 0 and P3(t0)x 6= 0. Then

MeωT
∣∣∣∣∣∣ P (t0)x
||P (t0)x|| + P3(t0)x

||P3(t0)x||

∣∣∣∣∣∣ ≥ ∣∣∣∣∣∣U(t0 + T, t0)
(

P (t0)x
||P (t0)x|| + P3(t0)x

||P3(t0)x||

)∣∣∣∣∣∣
≥
(

1
K eνT − γ

)
.

Setting α = (eνT − γK)/(KMeωT ) we obtain that

(3.3)
∣∣∣∣∣∣ P (t0)x
||P (t0)x|| + P3(t0)x

||P3(t0)x||

∣∣∣∣∣∣ ≥ α.
In addition,∣∣∣∣∣∣ P (t0)x

||P (t0)x|| + P3(t0)x
||P3(t0)x||

∣∣∣∣∣∣ =(3.4)

= 1
||P3(t0)x||

∣∣∣∣∣∣(I − P (t0))x+ ||P3(t0)x||
||P (t0)x|| P (t0)x

∣∣∣∣∣∣ ≤
≤ 1
||P3(t0)x|| (||x||+ | ||P3(t0)x|| − ||P (t0)x|| |) ≤ 2||x||

||P3(t0)x|| .

From (3.3) and (3.4) we have that
||P3(t0)x|| ≤ (2/α)||x||.
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If P (t0)x = 0, then x = P3(t0)x. Then, taking α3 = max{(2/α), 1} we obtain
that

||P3(t0)x|| ≤ α3 ||x||, ∀x ∈ X,∀t0 ∈ R.
Step 3 We prove that sup

t∈R
||Pk(t)|| <∞, for k ∈ {1, 2}.

From Step 2 we have that q := sup
t∈R
||P1(t) + P2(t)|| <∞.

Let h > 0 be such that K2e−νh < 1 and let δ := (1−K2e−νh)/(KMeωh).
Let t0 ∈ R. Let x ∈ X with P1(t0)x 6= 0 and P2(t0)x 6= 0. From

Meωh
∣∣∣∣∣∣ P1(t0)x
||P1(t0)x|| + P2(t0)x

||P2(t0)x||

∣∣∣∣∣∣ ≥
≥
∣∣∣∣∣∣U(t0 + h, t0)

(
P1(t0)x
||P1(t0)x|| + P2(t0)x

||P2(t0)x||

)∣∣∣∣∣∣ ≥ 1
K −Ke−νh

we obtain that
(3.5)

∣∣∣∣∣∣ P1(t0)x
||P1(t0)x|| + P2(t0)x

||P2(t0)x||

∣∣∣∣∣∣ ≥ δ.
In addition,∣∣∣∣∣∣ P1(t0)x

||P1(t0)x|| + P2(t0)x
||P2(t0)x||

∣∣∣∣∣∣ = 1
||P1(t0)x||

∣∣∣∣∣∣P1(t0)x+ ||P1(t0)x||
||P2(t0)x|| P2(t0)x

∣∣∣∣∣∣ =(3.6)

= 1
||P1(t0)x||

∣∣∣∣∣∣(P1(t0) + P2(t0))x+ ||P1(t0)x||−||P2(t0)x||
||P2(t0)x|| P2(t0)x

∣∣∣∣∣∣ ≤
≤ 2||(P1(t0)+P2(t0))x||

||P1(t0)x|| ≤ 2q||x||
||P1(t0)x|| .

From (3.5) and (3.6) we deduce that
(3.7) ||P1(t0)x|| ≤ (2q/δ)||x||.
If P2(t0)x = 0, then x ∈ Im(P1(t0) + P3(t0)). Then
(3.8) ||P1(t0)x|| = ||x− P3(t0)x|| ≤ (1 + α3)||x||.
Setting α1 := max{(2q/δ), 1 + α3} from (3.7) and (3.8) it follows that

||P1(t0)x|| ≤ α1 ||x||, ∀x ∈ X,∀t0 ∈ R.

Since for every t0 ∈ R, P2(t0) = I−(P1(t0)+P3(t0)), the proof is complete. �
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