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ITÔ EQUATION MODEL
FOR DISPERSION OF SOLUTES IN HETEROGENEOUS MEDIA
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Abstract. Transport processes in heterogeneous media such as ionized plasmas,
natural porous media, and turbulent atmosphere are often modeled as diffusion
processes in random velocity fields. Using the Itô formalism, we decompose
the second spatial moments of the concentration and the equivalent effective
dispersion coefficients in terms corresponding to various physical factors which
influence the transport. We explicitly define “ergodic” dispersion coefficients,
independent of the initial conditions and completely determined by local disper-
sion coefficients and velocity correlations. Ergodic coefficients govern an upscaled
process which describes the transport at large tine-space scales. The non-ergodic
behavior at finite times shown by numerical experiments for large initial plumes
is explained by “memory terms” accounting for correlations between initial po-
sitions and velocity fluctuations on the trajectories of the solute molecules.
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1. INTRODUCTION

Dispersion of solutes in spatially heterogeneous media, such as natural
porous media, turbulent atmosphere, or ionized plasmas, is often described
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3 Research Center Jülich, ICG-IV: Agrosphere Institute, 52425 Jülich, Germany, e-mail:
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as a two sale process, consisting of a local dispersion mechanism and random
space functions describing the medium properties at larger scales. Let Xl be
the l component of the trajectory of a solute molecule, governed by a disper-
sion process in a random velocity field V. To simplify matters, we consider
only the diagonal components ll of the various second moments. For a fixed
realization of the velocity, the second moment sll of the actual concentration
is given by the dispersion, or the mean-square displacement of the molecules
at a given time

(1) sll = 〈[Xl − 〈Xl〉DX0
]2〉DX0

.

The subscripts D and X0 in (1) denote respectively the average over the re-
alizations of the local dispersion and the space average with respect to the
initial distribution of molecules. A subscript V shall indicate averaging over
the ensemble of realizations of the random velocity field and ensemble averages
shall be noted by corresponding capital letters, e.g. Sll = 〈sll〉V .

The dispersion (1) provides a measure for the spatial extension of the so-
lute plume. Its dependence on time sll ∼ tα is commonly used to investigate
whether the transport is diffusive, α = 1, or it has anomalous behavior, α 6= 1.
Since it can be estimated, by either analytical approximations or numerical
simulations, without solving the transport equations [23, 9] this quantity is
particularly useful in investigations on pre-asymptotic transport regime, for
which generally there are no close form solutions. The aim of this paper is
to investigate the structure of various dispersion terms for transport processes
described by the Itô equation. Numerical simulations for a typical case of con-
taminant transport in groundwater will be used to illustrate the time behavior
of dispersion and its dependence of on initial conditions.

2. ITÔ FORMALISM

When the local dispersion is described as a diffusion-like process, the Itô
equation provides mathematically consistent and physically relevant descrip-
tions of the transport in random media. For instance, the validity of the Itô
equation as a model for the motion of the solute molecules at Darcy scale was
inferred from a microscopic description of the transport in saturated porous
media [2]. For a given realization V(x) of a time independent random velocity
field and a constant local dispersion coefficient D, the trajectories of the local
advection-dispersion process starting at t = 0 from X0 are solutions of the
integral Itô equation

(2) Xl(t) = X0l +
∫ t

0
Vl(X(t′))dt′ +Wl(t),

where Wl(t) =
∫ t
0 dWl(t′) is a stochastic integral which defines a Wiener pro-

cess with the properties

(3) 〈Wl〉D = 0, 〈W 2
l 〉D = 2Dt.
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The particular construction of the partial sums, which evaluates the integrand
at the left of the discretization interval, and the independence of the increments
dWl of the Wiener process lead to the cancelation of the average of the Itô
integral [11, 12]. For instance,

(4)
〈∫ t

0
Xl(t′)dWl(t′)

〉
D

= 0.

Taking into account that 〈dWl〉2D = 2Ddt, as follows from (3), and collecting
terms of first-order in dt and dW , the differential of a function of time and of
the l component of the Itô process (2), f(t, x) = f(t,Xl(t)), is computed as

df = ∂f

∂t
dt+ Vl

∂f

∂x
dt+D

d2f

∂x2 dt+ ∂f

∂x
dW,

where the derivatives are evaluated at x = Xl(t). This is a particular form of
the stochastic chain rule known as the Itô formula (see e.g. [12], Section 3.3),
which is mainly used in its integral form

f(t,Xl(t))− f(0, Xl(0)) =
∫ t

0

∂f(t′, Xl(t′))
∂t′

dt′(5)

+
∫ t

0

[
Vl(Xl(t′))

∂f(t′, Xl(t′))
dx +D

∂2f(t′, Xl(t′))
∂x2

]
dt′

+
∫ t

0

∂f(t′, Xl(t′))
∂x

dW (t′).

If the probability distribution of the Itô process (2) has a density p(x, t) with
respect to the Lebesgue measure, the expectation 〈f(X(t))〉DX0

=
∫
f(x)p(x, t)dx

of some function with compact support f(x) can be written by using the Dirac
δ distribution as 〈

∫
f(x)δ[x−X(t)]dx〉DX0

=
∫
f(x)〈δ[x−X(t)]〉DX0

dx. Hence,
the probability density is given by p(x, t) = 〈δ[x −X(t)]〉DX0 . Generalizing,
one obtains a hierarchy of consistent joint n-times probability densities [20],

p(x1, t1; x2, t2; · · · ; xn, tn) =(6)
〈δ[x1 −X(t1)]δ[x2 −X(t2)] · · · δ[xn −X(tn)]〉DX0

.

The densities (6) are projections on cylindrical sets {X(t1) = x1; X(t2) =
x2; · · ·X(tn) = xn} of the probability measure on the space of Itô processes
(2) starting from initial positions X0 [8, 33, 30, 11, 12]. In particular, the nor-
malized concentration is defined by the one-time probability density, c(x, t) =
p(x, t).

Doob ([8], Chap. VI.3) has proved that with the Itô interpretation of the
stochastic integral the solutions of the Itô equation, under suitable regularity
properties of its coefficients, are trajectories of the diffusion process with den-
sities of transition probabilities obeying a Fokker-Planck equation, and con-
versely, the trajectories of a diffusion process defined by the coefficients of the
Fokker-Planck equation are solutions of the Itô equation. The normalized con-
centration c verifies the same Fokker-Planck equation. In the case of constant
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coefficient D which we consider here, this is simply the advection-dispersion
equation
(7) ∂tc+∇(Vc) = D∇2c.

The connection with the Stratonovich equation and Fick’s law, for smoothly
variable D, can be established by using the Itô formula ([11], Section 4.3.6). Itô
formalism can also be used to account for variable porosity and discontinuous
D [14]. The equivalence between (2) and (7) is the basis for numerical methods
such as the particle tracking procedure in its Itô implementation, i.e. the
forward-time Euler scheme for equation (2) [12], or the GRW algorithm [29]
used in simulations presented in this paper.

We note here the difference between the Itô formalism and a somewhat
similar “Lagrangian” approach. In the latter, the concentration is defined by
the relation (6) for n = 1, without average over the realizations of the local
dispersion process. This Lagrangian concentration is the solution of a purely
advective equation, like that obtained by removing the dispersive term on the
right hand side of (7) ([11], p. 54). When the Lagrangian approach is extended
to advection-dispersion processes, the velocity field is of the form V + dW/dt
(e.g. [7, 10]). Since the derivative of the Wiener process does not exist ([11],
p. 69), the transformation from X0 to X is not one-to-one and has no unique
inverse. Or, these are necessary conditions for the definition of the “fluid parti-
cle” and for the rigorous Lagrangian approach [17]. However, the smoothness
and boundedness of the time derivative of the trajectory Xl(t) which permit
the use of a Lagrangian description [19] can be ensured by modeling the lo-
cal dispersion as a spatially correlated noise ([32], Section 7). Alternatively,
a Fokker-Planck equation for the probability density of the particle position
can be derived by applying a rigorous asymptotic analysis for small velocity
fluctuations to a Lagrangian trajectory equation [4]. Even if the conceptual
inconsistencies can be avoided in this way and equation (2) can be retrieved
as a limit case, the Lagrangian approach still differs from Itô formalism by
two important features. Firstly, joint probabilities of advective and dispersive
displacements have to be inferred from hypotheses and approximations [10].
Secondly, by using a Fourier representation for trajectories, the dependence
of the second moment on the local dispersion coefficient is introduced via the
relation between the characteristic function and the variance of the Gaussian
local dispersion process ([7], equation (3.11), [10], equation (14)). For our
purposes, the Itô formalism has the advantage of simplicity and clarity. It
relates dispersion and velocity statistics and yields first-order approximations
in real time-space domain, by using explicit averaging over local dispersion,
initial concentration distribution, and velocity realizations.

3. DISPERSION TERMS AND DISPERSION COEFFICIENTS

Assuming the existence and the uniqueness of the solutions of the Itô equa-
tion, the terms of the actual dispersion (4) can be computed as follows. From
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(2) and (3) one obtains the average of Xl, i.e. the l component of the plume
center of mass,

(8) 〈Xl〉DX0
(t) = 〈X0l〉X0

+
∫ t

0
〈Vl(X(t′))〉DX0

dt′.

By applying the Itô formula (5) to the function f(t,Xl(t) = [Xl(t) −
〈Xl〉DX0

(t)]2, with Xl(0)) = X0l, one obtains

[Xl(t)− 〈Xl〉DX0
(t)]2 = [X0l − 〈X0l〉X0

]2

− 2
∫ t

0
[Xl(t′)− 〈Xl〉DX0

(t′)]〈Vl(X(t′))〉DX0
dt′

+ 2
∫ t

0
[Xl(t′)− 〈Xl〉DX0

(t′)]Vl(X(t′))dt′ + 2Dt

+ 2
∫ t

0
[Xl(t′)− 〈Xl〉DX0

(t′)]dWl(t′).(9)

After averaging with respect to D and X0 and using the property (4) of the
Itô integral, the first term of (9) yields the deterministic initial second moment
Sll(0) = 〈[X0l − 〈X0l〉X0

]2〉X0
, the second and fourth terms are averaged out,

and one obtains the following explicit form of the dispersion (1):

sll(t) = 〈[Xl(t)− 〈Xl〉DX0
(t)]2〉DX0

= Sll(0) + 2Dt+ 2
∫ t

0
〈[Xl(t′)− 〈Xl〉DX0

(t′)]Vl(X(t′))〉DX0
dt′.(10)

Useful information on dispersion of a non-singular initial concentration dis-
tribution (not concentrated at a point) is obtained if the relative displacement
X̃l = Xl −X0l is introduced into (10),

sll(t) = Sll(0) + 2Dt+ 2
∫ t

0
〈[X̃l(t′)− 〈X̃l〉DX0

(t′)]Vl(X(t′))〉DX0
dt′

+ 2
∫ t

0
〈[X0l − 〈X0l〉X0

]Vl(X(t′))〉DX0
dt′.(11)

As follows from (2), X̃l is the solution of the Itô equation

(12) X̃l(t) =
∫ t

0
Vl(X̃(t′) + X0)dt′ +Wl(t),

with the drift coefficient defined by Vl(X̃(t) + X0) = Vl(X(t), t) and initial
condition X̃l = 0. From (12) and (3) we can see that the last term of (11) is
twice the spatial correlation between initial positions measured from the center
of mass of the initial plume X0l−〈X0l〉X0

and the mean relative displacements
〈X̃l〉D , which can also be expressed by twice the time integral of the spatial
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correlation between initial positions and mean velocities 〈Vl(X(t′))〉D sampled
on the trajectories of the Itô process starting from initial positions X0,

mll(t) = 2〈[X0l − 〈X0l〉X0
]〈X̃l〉D (t)〉X0

= 2
∫ t

0
〈[X0l − 〈X0l〉X0

]〈Vl(X(t′))〉D〉X0
dt′.(13)

Since the time behavior of mll defined by (13) tell us how much and how
long the solute molecules “remember” their starting points, it has been called
“memory term” [25, 24, 26, 27].

Considering the Itô process (12), applying the Itô formula (5) to the function
f(t, X̃l(t) = [X̃l(t) − 〈X̃l〉DX0

(t)]2, and taking the expectation, one finds that
the dispersion of the relative displacements 〈[X̃l − 〈X̃l〉DX0

]2〉DX0
is just the

sum of the second and third terms of (11). Hence, the total dispersion is

(14) sll(t) = Sll(0) + 〈[X̃l − 〈X̃l〉DX0
]2〉DX0

(t) +mll(t).

(A similar relation holds for the case D = 0 as well [19, 24]). Further, from the
identity 〈[X̃l−〈X̃l〉DX0

]2〉DX0
= 〈[X̃l−〈X̃l〉DX0V ]2〉DX0

− [〈Xl〉DX0
−〈Xl〉DX0V ]2

one obtains
(15) sll(t) = Sll(0) + x̃ll(t) +mll(t)− rll(t),
where the new terms x̃ll and rll are defined by

x̃ll(t) = 〈[X̃l − 〈X̃l〉DX0V ]2〉DX0

= 2Dt+ 2
∫ t

0
〈[X̃l(t′)− 〈X̃l〉DX0 V (t′)]ul(X(t′), t′)〉DX0

dt′,(16)

rll(t) = [〈Xl〉DX0
− 〈Xl〉DX0V ]2

=
∫ t

0

∫ t

0
〈ul(X(t′), t′)〉DX0

〈ul(X(t′′), t′′)〉DX0
dt′dt′′,(17)

and ul(X(t), t) = Vl(X(t))−〈Vl(X(t))〉DX0 V is the velocity fluctuation with re-
spect to the total average of the velocity sampled on trajectories 〈Vl(X(t))〉DX0V .
Hereafter the subscript V denotes the average over the ensemble of veloc-
ity realizations. The explicit form of (17) follows directly from Itô equation
(12), while (16) is derived from the Itô formula (5) applied to the function
f(t, X̃l(t) = [X̃l(t)− 〈X̃l〉DX0V (t)]2. Note that because the average velocity is
independent of X0 , the memory term (13) can also be expressed by correlations
initial positions-velocity fluctuations.

The relations (14) and (15) are simple identities and are strictly equivalent
to the definition (1) of the dispersion. They are independent of the model for
the trajectories of the transport process and apply for either Itô diffusions or
for discrete/continuous time Markov chains [26, 27]. The Itô model discussed
in this paper leads to the explicit forms (13), (16), and (17) of dispersion
terms, which, as shown in the next Section can be expressed as averages with
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respect to the probability densities (6) of the Itô process and lead to useful
first order approximations.

Assuming all necessary joint measurability conditions which allow permu-
tations of averages [32], the average over the ensemble of velocity realizations
Sll = 〈sll〉V can be expressed as [25, 24]
(18) Sll(t) = Sll(0) + 〈Xll〉X0

(t) +Qll(t) +Mll(t)−Rll(t),

where Xll = 〈[X̃l − 〈X̃l〉DV ]2〉DV is the one-particle dispersion and Qll =
〈[〈X̃l〉DV −〈X̃l〉DX0V ]2〉X0

is the spatial variance of one-particle center of mass
〈X̃l〉DV , which are related to the ensemble average X̃ll = 〈x̃ll〉V by the relation

(19) X̃ll(t) = 〈Xll〉X0
(t) +Qll(t).

The other two terms in (18) are respectively Mll = 〈mll〉V , the mean memory
term, and Rll = 〈rll〉V , the variance of the center of mass.

It is readily to check that the sum of the first four terms of (18) gives
the dispersion over the total ensemble consisting of realizations of the Wiener
process, initial positions, and velocity realizations,
(20) Σll = Sll(0) + 〈Xll〉X0

+Qll(t) +Mll = 〈[Xl − 〈Xl〉DX0V ]2〉DX0V .

The “ensemble dispersion” (20) is related to the ensemble average Sll of the
dispersion in single realizations of the random velocity field and to the variance
of the center of mass Rll by the identity
(21) Sll(t) = Σll(t)−Rll(t).
We note that the identity (21) is not subject to restrictions permitting per-
mutations of averages and has a single-realization correspondent,
(22) sll(t) = σll(t)− rll(t).
The new dispersion term occurring in (22) is given, according to (15), by
σll = Sll(0) + x̃ll +mll.

Dividing both sides of (15) by 2t one obtains an equivalent relation which
describes the structure of the effective dispersion coefficients deff

ll = Sll/(2t)
for a given realization of the velocity field:

(23) deff
ll (t) = Sll(0)

2t +D + dadv
ll (t) + dmem

ll (t)− dcm
ll (t).

The last three terms in (23) are respectively: the “advective coefficient”
dadv
ll = x̃ll/(2t) − D, associated to velocity fluctuations along trajectories,

the “memory coefficient” dmem
ll = mll/(2t), describing correlations between

velocity fluctuations and initial positions, and the “center of mass coefficient”
dcm
ll = rll/(2t), a contribution of the fluctuating center of mass velocity. An

identical relation holds for the corresponding ensemble averages. Among them,
the mean advective coefficient Dadv

ll = 〈dadv
ll 〉V = X̃ll/(2t)−D plays a special

role in modeling diffusion in random fields. If the random velocity field is sta-
tistically homogeneous and the solutions of the Itô equation (2) are pathwise
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unique, then the one-particle center of mass 〈X̃l〉DV and dispersion Xll are
independent of initial positions X0, and the mean memory term Mll vanishes
[27]. Then, according to (19), X̃ll = Xll and one defines an “ergodic” coeffi-
cient Derg

ll = Xll/(2t) [22]. Under the above conditions, the ergodic coefficient
is the sum between the local dispersion coefficient and the mean advective
coefficient,

(24) Derg
ll (t) = D +Dadv

ll (t).
Known mathematical results show that under suitable limiting conditions the
ergodic coefficient (24) tends to a “macrodispersion coefficient” governing an
up-scaled process for the ensemble averaged concentration (e.g. [22], equation
(4)).

If the velocity field has finite correlation range then it is ergodic [31], a
property which essentially determines the dispersion in case of large supports
of the initial concentration distributions [15, 26, 27]. Heuristically, under the
ergodic assumption one can replace space averages by ensemble averages, the
second term of (14) estimates the one-particle dispersion Xll, and one obtains
(25) sll(t) ≈ Sll(0) +Xll(t) +mll(t).
Accordingly, the dispersion coefficient for single realizations of the velocity
fields (23) can be approximated by

(26) deff
ll (t) ≈ Sll(0)

2t +Derg
ll (t) + dmem

ll (t).

Thus, if one proves that in the limit of large times velocity fluctuations decor-
relate from initial positions of the diffusing molecules, then the memory terms
become negligible and the single realizations of transport are governed by the
memory-free dispersion Xll, or equivalently by the ergodic dispersion coeffi-
cients Derg

ll . Such a behavior has been indicated by recent numerical investi-
gations [27].

Since, as shown by (24), the ergodic behavior is basically governed by the
advective coefficients, we analyze them here in more detail. The structure of
the advective coefficient dadv

ll = x̃ll/(2t)−D is that of the second term of (16),

2tdadv
ll (t) = 2

∫ t

0
〈[X̃l(t′)− 〈X̃l〉DX0 V (t′)]ul(X(t′), t′)〉DX0

dt′,

which, using the Itô equation (12), can be rewritten as

2tdadv
ll (t) =

∫ t

0

∫ t

0
〈ul(X(t′), t′)ul(X(t′′), t′′)〉DX0

dt′dt′′(27)

+ 2
∫ t

0

〈
Wl(t′)ul(X(t′), t′)

〉
DX0

dt′.

In the case of homogeneous random velocity fields, which have vanishing mean
fluctuations, the ensemble average of the second term of (27) vanishes. Hence,
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the mean advective coefficient Dadv
ll is solely determined by velocity correla-

tions and does not contain contributions from the cross-correlation between
velocity fluctuations and Wiener process [26]. We show in the following that
the single-realization coefficient dadv

ll has a similar structure. For that, we
consider the solution of the Itô equation (2) constructed by successive approx-
imations

(28) X
(k)
l (t) = X0l +

∫ t

0
Vl(X(k−1)(t′))dt′ +Wl(t).

If the drift coefficient Vl(x) of the Itô equation is Lipschitz continuous, then
X

(k)
l converges in mean-square for k −→ ∞ to the exact solution Xl ([12],

p. 133). The proof of convergence involves expectations of the squares of the
terms of (28) and does not require a prescribed Wiener process. So, we can
construct weak solutions, for instance by Euler scheme, of the equations for
successive iterations k of (28) with different Wiener processes independent of
each other. In practice, this is always the case if the seed of the random number
generator used in the weak Euler scheme is not resetted at the initial value after
each iteration. This procedure yields a process that is not generally sample-
path equivalent to Xl but has the same probability law ([12], p. 144). Under
these conditions ul(X(k−1)(t′), t′) is independent of Wl(t′) at each iteration
step, and since the successive approximations converge the second term of (27)
vanishes. Thus, the advective coefficients in single-realizations of the velocity
field are completely determined by correlations of velocity field sampled by
the diffusion process,

(29) 2tdadv
ll (t) = x̃ll − 2Dt =

∫ t

0

∫ t

0
〈ul(X(t′), t′)ul(X(t′′), t′′)〉DX0

dt′dt′′.

This result was also obtained within a more laborious approach based on
Fokker-Planck equation and Kolmogorov’s definitions of drift and diffusion
coefficients, under the assumption that the first two moments of the concen-
tration field are finite at finite times [21]. Numerical simulations also show that
contributions arising from cross-correlations between velocity fluctuations and
diffusion jumps, replacing the Wiener process in weak schemes, are of the order
of the numerical precision [28].

4. FIRST-ORDER APPROXIMATIONS

To write the dispersion terms (13), (16), and (17) as moments of the joint
probabilities (6) of the Itô process, we define the projection of the continuous
Eulerian velocity Vl(x) on the trajectory X(t) by using the Dirac measure δ,

(30) Vl(X(t)) =
∫
Vl(x)δ[x−X(t)]dx.
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We note by c(x0) = c(x, 0) the initial normalized concentration distribution
given by (6) for n = 1 and t = 0, express the two-times joint probability densi-
ties as transition probabilities multiplied by c(x0), p(x0 ; x, t) = p(x, t|x0)c(x0),
and the actual concentration as c(x, t) =

∫ t
0 p(x0 ; x′, t′)dx0 [11]. Considering

the form given by (29) of the dispersion term (16) and using (30) one obtains

x̃ll(t) =2Dt+ 2
∫ t

0

∫ t

0
dt′dt′′

∫
c(x0)dx0∫ ∫

ul(x′, t′)ul(x′′, t′′)p(x′, t′|x′′, t′′)p(x′′, t′′|x0)ull(x′,x′′)dx′dx′′.(31)

Similarly, for the memory term (13) and center of mass fluctuations term (17),
we have
(32)

mll(t) = 2
∫ t

0
dt′
∫
c(x0)dx0

(
x0l
−
∫
x′0lc(x′0)dx′0

)∫
ul(x′, t′)p(x′, t′|x0)dx′,

rll(t) =
∫ t

0

∫ t

0
dt′dt′′

∫ ∫
c(x01)c(x02)dx01dx02∫ ∫

ul(x′, t′)ul(x′′, t′′)p(x′, t′|x01)p(x′′, t′′|x02)dx′dx′′.(33)

The relations (31–33) achieve the explicit form of the decomposition (15)
of the dispersion. Such relations were also derived for the more general case
of space-time dependent velocity and local dispersion coefficient, from the
definition of the drift and diffusion coefficients of the Fokker-Planck equation
and the assumption that the first two moments of the concentration field are
finite at finite times [21].

With the exception of some solvable problems, as for instance in the case of
transport in perfectly stratified flows [1, 5], the ensemble average of (31–33)
cannot be computed exactly. The difficulty arises from the highly non-linear
dependence of probability densities in these relations on the velocity Vl(X(t))
sampled on trajectories which, in their turn, are determined by the velocity
field [1]. Exact calculations of the ensemble averages require the knowledge
of the entire infinite-dimensional probability distribution in a function space
of all the realizations of the velocity field (see [18], p. 571). Even in the
advective case (D = 0) when this functional probability can be constructed,
the functional integration can be carried out only in particular circumstances
for which the results can be obtained directly [16]. In principle, the problem
of ensemble averaging can be handled by iterating indefinitely the transport
equation around a particular solution independent of velocity realizations [3,
1, 13].

Iterations of the advection-dispersion equation (7) are usually done in La-
place-Fourier space, but one expects to obtain an exact ensemble average
dispersion only when the velocity field is modeled as a white noise in space [5].
Alternatively, the solution X(t) of the Itô equation (2) can be approximated
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by successive approximations (28), starting with some trajectory X(0)(t) that
is independent of velocity statistics. The second iteration is already highly
complex. In this approximation, the argument of ul in (16), (17), and (29)
has to be replaced by X(1). But, as shown by (28), X(1) depends on the
values of the velocity Vl at X(0)(t′) for all times between 0 and t. Hence, an
infinite-dimensional probability distribution is needed to compute ensemble
averages.

The approximation by the first iteration of the Itô equation, Xl(t) ≈ X
(1)
l (t),

which is equivalent to the most-used first-order approximations in velocity
fluctuations [23], simplifies matters considerably. Now, as follows from (28),
the argument of Vl is replaced by X(0), which is independent of the realiza-
tion of the velocity field. The probability densities (6) computed from the
trajectories X(0) become independent of velocity statistics as well. Since the
nonlinearity of the initial problem is removed, useful ensemble averages can
be computed under the only assumptions that the velocity field is statisti-
cally homogeneous and satisfies conditions for existence and uniqueness of the
trajectories of the Itô process. Then, the mean of the velocity fluctuations
on trajectories 〈ul〉V = 0 and, accordingly to (32), the mean memory term
Mll = 〈mll〉V vanishes. Further, by taking the ensemble average of (31) one
obtains the first-order approximation

X̃ll(t) = 2Dt+
∫ t

0

∫ t

0
dt′dt′′

∫
c(x0)dx0∫ ∫

p(x′, t′|x′′, t′′)p(x′′, t′′|x0)ull(x′,x′′)dx′dx′′,(34)

where ull(x′,x′′) = 〈ul(x′)ul(x′′)〉V is the Eulerian velocity correlation. The
approximated variance of the center of mass is similarly obtained by ensemble
averaging (33),

Rll(t) =
∫ t

0

∫ t

0
dt′dt′′

∫ ∫
c(x01)c(x02)dx01dx02∫ ∫
p(x′, t′|x01)p(x′′, t′′|x02)ull(x′,x′′)dx′dx′′.(35)

If the initial solution X(0) is a diffusion in the ensemble mean velocity field
U = 〈V〉V , then the probability densities in (34–35) are those of a Gaussian
process of mean x0 + Ut and dispersion 2Dt. Since the Gaussian transition
probability and the Eulerian correlation of the homogeneous velocity field are
invariant to space translations, (34) is independent of x0. It is also easily to
see that for homogeneous velocity fields the first order approximation of the
term Qll from (19) vanishes. Hence, as it follows from (19), X̃ll given by (34)
is a first-order approximation of the one-particle dispersion Xll. Due to the
simplicity of this approximation which uses Gaussian probability densities, the
averages (34–35), as well as the standard deviations of the single realization
terms x̃ll and rll, can be computed, at least by numerical integration, for given
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two- and four-points Eulerian correlations. We note that such computations
can be achieved in space-time domains, avoiding the tedious technique based
Laplace and Fourier representations [3]. The latter are however essential tools
for higher order approximations [13].

For the advection-dominated transport problem considered in simulations
presented in the next Section, consistent asymptotic expansions of (2) are
obtained when one starts with the solution X(0) given by the deterministic
trajectory X0 + Ut of the ensemble mean velocity [23]. Then, as follows
from (6), the conditional probabilities from (34-35) degenerate to Dirac delta
measures, p(x′, t′|x0) = δ[x′− (x0 + Ut′)] and p(x′, t′; x′′, t′′|x0) = δ[x′− (x0 +
Ut′)]δ[x′′ − (x0 + Ut′′)] and one obtains

(36) X̃ll(t) = 2Dt+
∫ t

0

∫ t

0
dt′dt′′

∫
c(x0)ull(x0 + Ut′; x0 + Ut′′)dx0 ,

(37) Rll(t) =
∫ t

0

∫ t

0
dt′dt′′

∫ ∫
c(x01)c(x02)ull(x01 +Ut′; x02 +Ut′′)dx01dx02 .

Obviously, (36) is also a first-order approximation of the one-particle disper-
sion Xll. Since the velocity field is assumed to be statistically homogeneous,
the one-particle velocity correlation from (36) depends only on time differences
t′′− t′. The two-particle correlation from (37) instead depends on both t′′− t′
and the separation lag x02 − x01 .

For either the inconsistent approximation (34–35) or the consistent one,
(36–37), the ensemble average dispersion takes on the simpler form
(38) Sll(t) = Sll(0) +Xll(t)−Rll(t),
which was the starting point in many applications to transport in natural
porous media presented in the hydrological literature (see references in [26]).
For small velocity fluctuations, the approximations (34) and (36) of the memo-
ry-free one-particle dispersion Xll are very close to each other at all times
([23], Figure 2). The first-order approximations (34–35) also give reasonably
good estimations for the ensemble average Sll but they yield considerable
overestimations, by 40% to 80%, of the fluctuations of the single-realization
dispersion sll at early times ([23], Figure 4). Therefore, such approximations
might not be accurate enough for investigations of memory effects caused by
terms mll (13), which manifest themselves in the pre-asymptotic regime.

5. NUMERICAL SIMULATIONS

A numerical experiment was conducted for a typical situation of contami-
nant transport in groundwater. We considered an isotropic two-dimensional
aquifer system. The log-hydraulic conductivity was modeled as a statistically
homogeneous random space function with exponentially decaying correlation,
small variance σ2 = 0.1, and correlation length λ = 1 m. The realizations of
the velocity field were generated numerically, as first order approximations in
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σ, by a superposition of 6400 periodic modes [9]. A constant local dispersion
coefficient D = 0.01 m2/day was chosen. For the fixed mean flow velocity
U = 1 m/day the Péclet number got a typical value Pe = Uλ/D = 100.
We obtained ensembles of transport realizations with the “global random
walk algorithm” [29], namely by tracking simultaneously in every simulation
1010 particles that were initially uniformly distributed in rectangular domains
L1λ × L2λ, (for details on the implementation of the numerical method see
[22], Appendix A. To reduce the statistical oscillations (for both means and
standard deviations of the memory terms) to less than Dt at all times, we sim-
ulated the dispersive transport in R = 1024 realizations of the velocity field
for every initial condition. For narrow slab sources, statistical estimations for
Pe =∞ were also done by simulating advective transport using the same en-
semble of velocities. To avoid artificial trapping phenomena ([22], Appendix
B1), these simulations were limited to a period equal to 100 Ut/λ.

In the following we present some numerical results illustrating the memory
effects on solute dispersion in the pre-asymptotic regime and the attainment
of an ergodic behavior in the long time limit.

Comparisons for different dimensions of slab sources oriented across the l-
direction have shown that the difference between the second moment Σll of the
ensemble average concentration field and the initial second moment Sll(0) is
practically independent of the length of the initial slab source ([26], Figure 2).
This indicates that, for the case of slab sources perpendicular to the l-direction
and statistically homogeneous velocity fields, the relation (20) simplifies and
the one-particle dispersion can be approximated by Xll ≈ Σll − Sll(0). Using
this approximation, we estimated the longitudinal and transverse one-particle
dispersion, X11 and X22, from Σ11 computed for the slab source (λ, 100λ)
and from Σ22 for the slab (100λ, λ). Further, since the spatial variance of the
one-particle center of mass Qll was found to be negligible small ([24], Figure
2), we estimated the ensemble average memory terms for slabs oriented along
l-axis, according to (20), by Mll ≈ Σll − Sll(0) − Xll and the corresponding
standard deviations by SD(mll) ≈ SD(σll). Actually, for the case of large slabs
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considered here Σll ≈ Sll and SD(σll) ≈ SD(sll) ([26], Figures 2, 3, 5) and
both the mean and standard deviations of the memory terms can be computed
with the aid of the ergodic estimate (25) [27]. The results for longitudinal and
transverse memory coefficients are presented in Figures 1 and 2, respectively.
The thin lines in Figures 1 and 2 correspond to [Mll ± SD(mll)/R1/2]/(2Dt),
where R = 1024 is the number of realizations used for statistical estimates.

The average memory coefficients M11 for longitudinal slabs (Figure 1) and
M22 for transverse slabs (Figure 2) have significant non-vanishing values at
finite times and approach to zero after hundreds of dimensionless times Ut/λ.
The decrease of the standard deviations indicates that the memory terms
mll converge to zero for t → ∞, in the mean square limit. The comparison
with the case Pe = ∞ shows that there are no important differences with
respect to the purely advective transport. For the square source (100λ, 100λ)
the average memory terms are smaller than the local dispersion 2Dt. In
the pre-asymptotic regime the standard deviations are considerably large:
SD[mll(100, 100)]/(2Dt) ∼ 8 for l = 1, 2, SD[m22(1, 100)]/(2Dt) ∼ 20, and
SD[m11(100, 1)]/(2Dt) ∼ 100.

Apparently, the occurrence of non-vanishing mean memory terms disagrees
with theoretical considerations and first order approximations which predict
their cancelation for transport in statistically homogeneous velocity fields. We
note that the fact that first order approximations presented in Section (4)
cancel the mean memory terms is not surprising. The memory terms (32)
depend only linearly on velocity fluctuations, unlike the other two dispersion
terms, (31) and (33), which have a quadratic dependence. Hence, contributions
of the order of velocity variance to the mean memory terms can still arise if a
second iteration step is performed.

In fact, there are no sufficient theoretical arguments that mean memory
terms should vanish for the velocity fields considered in the numerical exper-
iment. The ensemble average of (13) vanish if and only if the one-particle
statistics is independent of initial conditions. This can be the case if the ve-
locity field is statistically homogeneous and if there are unique solutions of the
transport equations [6, 32]. A prerequisite for the existence of pathwise unique
strong solutions of Itô equation (2) is the Lipschitz continuity of the sample
velocity field ([12], Theorem 4.5.3). Or, the sufficient condition for sample
continuity, that is the existence of the second derivative of the correlation
function at the origin [31], is not fulfilled for exponential correlations as those
of the velocity fields generated numerically. Since this does not exclude the
existence of continuous samples, we estimated numerically the Lipschitz con-
stant K = |V (x+ ∆x)− V (x)|/∆x for velocity samples V (x) generated with
6400 periodic modes on a straight line (Figure 3) and for a sinusoidal velocity
(Figure 4). The latter is continuous even for exponential correlations ([31], p.
67), and Figure 4 indicates indeed the existence of a Lipschitz constant. But
for the noisy velocity sample from Figure 3 we found that K increases with



15 Itô equation model for dispersion of solutes in heterogeneous media 235

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

|∆
V

| /
 ∆

x

space steps

∆x = 0.01
∆x = 0.001

∆x = 0.0001

Fig. 3. Estimation of Lipschitz con-
stant for noisy velocity sample with 6400

modes.

0

2

4

6

8

10

12

10 20 30 40 50 60 70 80 90 100

|∆
V

| /
 ∆

x

space steps

∆x = 0.01
∆x = 0.001

∆x = 0.0001

Fig. 4. Estimation of Lipschitz constant
for smooth sinusoidal velocity sample.

decreasing ∆x. Thus, very likely at the limit of an infinite number of modes
the resulting velocity field is not Lipschitz continuous.

6. DISCUSSION AND CONCLUSIONS

Since the Itô formalism leads to a consistent model of dispersion in het-
erogeneous media, we propose it as an alternative to questionable attempts,
discussed at the end of Section 2, aiming at extending the Lagrangian descrip-
tion to diffusion processes.

Using the Itô model, we obtained an explicit decomposition of the second
moments and dispersion coefficients in terms accounting for different physical
factors that govern the process (Section 3) and we derived first order approxi-
mations of such dispersion quantities (Section 4). In particular, the influence of
the location, shape, and dimensions of the support of the initial concentration
in case of space variable coefficients of the transport equations is quantified
by memory terms. The physical explanation of the memory terms consists of
correlations between initial positions and the velocity experienced by solutes
molecules when diffusion takes place in a space variable velocity field.

The results presented in Figures 1 and 2 supply a numerical evidence that
velocities sampled on the trajectories of the Itô diffusion (2) decorrelate from
initial positions and the memory terms (13) vanish after a sufficiently large
time. Then, according to (25-26), the physically observable transport process,
corresponding to single replicates of the random velocity field, is governed by
the one-particle dispersion and by the ergodic dispersion coefficient.

At finite times, however, memory terms can be large and can produce non-
ergodic behavior with respect to the one-particle dispersion. The persistence
of such memory effects, over hundreds of days in the conditions of the nu-
merical experiment presented above, should be carefully considered when er-
godic dispersion coefficients are used in practice. The definition (13) and
the Cauchy-Schwartz inequality m2

ll(t) ≤ 4Sll(0)〈〈X̃l〉2D〉X0
show that memory

terms increase with the increase of the dimension, and of the corresponding
second moment Sll(0), of the initial concentration distribution. Numerical
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results indicate that the increase is more pronounced for asymmetric initial
concentration distributions ([27], Figure 2).

Non-vanishing mean memory terms shown in Figures 1 and 2 warn that
the mean behavior of the pre-asymptotic dispersion is not always described by
the well known relation (38). This happens for instance when the samples of
the velocity fields, as for instance those with exponential correlations analyzed
in Figures 3 and 4, do not fulfill the smoothness requirements which ensure
the existence of strong unique solutions of the transport equations. In such
circumstances, that are incompatible with analytical results derived from Itô
or Fokker-Planck equations, the transport process can still be analyzed with
general relations like (14–15) or (21–23). It is nevertheless noticeable that
even in the worse case of velocity fields with exponential correlations, there is
a large time behavior described by the ergodic coefficient (24) [22].
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