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ON THE MULTI-DECADAL OSCILLATION
OF ATLANTIC TROPICAL STORM ACTIVITY

CONSTANTIN ANDRONACHE∗, NICOLAE SUCIU† and CĂLIN VAMOŞ�

Abstract. Long term Atlantic tropical storm activity is described by the time
series of the yearly Accumulated Cyclone Energy (ACE) Index for the time
interval 1851-2007. ACE is a measure of total wind energy for North Atlantic
basin and land falling tropical cyclone activity. Since the ACE index reflects
a combination of storm intensity and duration it is a better measure of overall
activity and likely damage than the number of either basin or land falling tropical
storms or hurricanes. The yearly ACE time series is non-stationary, and one step
toward detecting possible long-term quasi-periods is to detrend the original data.
In this paper, we use a procedure for data transformation by which ACE index
is fitted in least square sense with polynomials of increasing order, followed by
detrend. It is shown that, with some approximation, the obtained time series
is cyclostationary, and a multi-decadal oscillation is detectable, as indicated by
the power spectrum analysis.
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1. INTRODUCTION

The North Atlantic tropical storm (ATS) and hurricane activity typically
occurs during June-November (also called hurricane season), due in part to
increased sea surface temperature, which favors cyclone development and in-
tensification [5, 7, 9, 16]. An average hurricane season features approximately
9 named storms, with a standard deviation of 4 (a tropical named storm has
a maximum sustained surface wind of at least 39 mph, while a hurricane has
a maximum sustained surface wind of at least 74 mph; 1 mph = 1.609344
km/h = 0.44704 m/s). In this context, “Named storms” refers to all tropical
storms, hurricanes, and subtropical storms and such distinction is made to
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exclude mid-latitude cyclones. A measure of the North Atlantic tropical cy-
clone total seasonal activity is the Accumulated Cyclone Energy (ACE) index.
The “total seasonal activity” describes the collective intensity and duration of
Atlantic named storms occurring during a given season. The ACE index is a
wind energy index, defined as the sum of the squares of the maximum sus-
tained surface wind speed measured every six hours for all named systems
while they are at least tropical storm strength. The annual number of named
storms, NS, and the ACE Index show significant inter-annual variability, a
positive trend over the time interval 1851-2007, and oscillatory component at
multi-decadal scale. These time series, as many others encountered in Geo-
sciences, exhibit non-stationarity, and are generally too short for detection of
well defined multi-decadal quasi-periodicities. Additional problems are related
to possible non-homogeneities caused by changes in the observing systems in
the last over 150 years. To analyze such non-stationary time series, one step
is to create approximate stationary (or cyclostationary) time series. In this
process, the removal of the time series trend is an important transformation
[6, 20].

The number of Atlantic tropical storms show a strong trend din the last few
decades. It has been debated that this trend has possibly been influenced by
global warming [4, 3, 15, 19]. Thus, the evolution of ATS activity in the future
may be influenced by competing factors such as global warming and internal
dynamics of the atmosphere-ocean system [11]. The goal of this paper is to
report results from a new technique of approximation of non-stationary time
series used for ATS activity analysis at multi-decadal time scales.

2. METHOD

We examine time series of Atlantic tropical storm annual data from 1851-
2007. We use annual data, since in this study we focus on variations on
multi-decadal time scales. Inter-annual variability and significant variations
on periods of less than a decade are not considered here. The yearly num-
ber of ATS is based on National Oceanic and Atmospheric Administration
(NOAA) re-analysis project (see [12, 13]). The project is concerned with trop-
ical cyclones of the North Atlantic Ocean, Caribbean Sea and Gulf of Mexico.
Observed quantities analyzed in the present study, most of which are from the
hurricane re-analysis available for each year include: (1) number of tropical
named storms (NS); (2) number of hurricanes (H), defined as tropical storm
with surface wind speed larger than 74 mph; (3) number of major hurricanes
(MH) defined as hurricanes of category 3, 4, and 5 (surface wind speed larger
than 111 mph); (4) accumulated cyclone energy (ACE) index [1]. The classifi-
cation of hurricanes in 5 categories is based on the widely used scale defined by
Saffir and Simpson [17]. We present the distributions of the Pearson correlation
coefficients, r(a, b), between variables a and b, obtained by the bootstrapping
method, resampling 50000 times the original time series. Bootstrapping is a
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statistical technique for estimating the sampling distribution of an estimator
by sampling with replacement from the original sample set (Figure 1). The
purpose is to derive robust estimates of the correlation coefficient [2].
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Fig. 1. Distribution of the correlation coefficient between pairs of variables shown in paren-
thesis. For example, r(H, NS) represents the correlation coefficient between the number of

hurricanes (H) and the total number of storms (NS).
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Fig. 2. The normalized ACE Index (y), the 7-order polynomial least square fit (y7), and
the detrended (d7) time series versus time.
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Fig. 3. Autocorrelation function of y and d7 versus lag (in years).
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Fig. 4. The annual normalized ACE Index (y), and its n-order polynomial least square fit
time series (yn), versus time.

3. RESULTS

We determined that there is significant, positive correlation between NS, H,
MH, and ACE as shown in Figure 1. We note that all correlation coefficients
(r) are substantial, with a lower correlation coefficient r(MH, NS) between the
number of major hurricanes and the number of tropical storms. By contrast,
ACE seems highly correlated with MH and H and somehow less correlated
with NS. This confirms that ACE is indeed a better quantification of the
effects of the most intense hurricanes. In the light of these results, we limit
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Fig. 5. Detrended n-order polynomial least square fit of the normalized ACE, dn. (By
definition dn = yn − xn, where xn is the linear fit of yn).
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Fig. 6. Power spectrum density of y, y7 and d7. We note that PSD(y) shows spikes at high
frequency, while PSD(y7), and PSD(d7) show spikes only at low frequency (corresponding

to a multi-decadal oscillation with average quasi-period of about 65 years).

our presentations to the variable ACE, while the methodology used here can
be easily applied to any variable from the re-analysis data set. The results for
the other variables described above, are similar.

In the following, we denote the original ACE Index by y0, and ymax =
max(y0). Thus, y = y0/ymax is the normalized ACE index which will be used
in this study. Since we are concerned here only with variability on multi-
decadal time scales of y, we generate time series that are approximations of
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the original data set. The method used to generate these approximations of y
is to take the n-order polynomial least squares fit (LSF) of y, and the result
is denoted by yn. Thus, for example, y1 is the first order polynomial LSF
of y, also known as linear trend of the time series. We note that low order
n (between 1 and 5) will provide a good description of the linear trend in
the data, while high order n (greater than 20, for example) tends to describe
the data in greater detail, close to the original data set. We expect that for
a relatively low order n, the yn is a good approximation of the trend and
possibly major oscillatory components in the data. This is valid for relatively
short time series, that contains only few oscillations of the presumed quasi-
periodic process. For time series that contain a large number of oscillations of
the quasi-periodic process, the power spectrum analysis is generally sufficient
to detect without ambiguity the quasi-periods.

To find out the appropriate polynomial order, we calculate yn with n =
1, 2, 3, ..., 30, and monitor the total absolute residual of the approximation.
The total absolute residual of the n-order approximation is given by the sum∑N

1 |y − yn|, where N is the number of terms in the time series y, and n is
the order of the polynomial. By increasing n we find that the total absolute
residual decreases with n, and becomes approximately stationary for n ≥ 7.
For n between 10 and 30 there is a lower rate of change in the total absolute
residual.

We find that yn, for n = 7, 8 or 9, provide a good approximation of y
variations at multi-decadal time scales. The next step in our analysis is to
detrend yn (which is obtained by removing the linear trend from yn). Thus,
the new time series, denoted dn, are defined by dn = yn − xn, where xn is the
linear fit of yn. The resulted time series dn is a better approximation of the
oscillations at large time scales. In the following we illustrate results for n = 7
polynomial LSF of y. Figure 2 shows that normalized ACE, y, has significant
inter-annual variability, some apparent oscillatory component and a positive
trend, especially in the last few decades. Firstly, we note that the time series,
y7, is a fit of ACE, which tends to represent ATS variations at time scales over
a decade. Secondly, we note that y7 has a positive trend, so y7 is detrended to
produce the time series d7 as described above. Thus, d7 shows the oscillatory
part of y at decade time scales and is closer to a stationary time series (or,
more exactly to a cyclostationary time series). We note that polynomial fit
cannot be used outside the range of time interval considered, and also that
high order polynomial fit does not necessarily improve data representation and
can lead to large residuals especially at the the extremes of the time series.

To illustrate the periodic structure of y and d7, we calculate the autocor-
relation function (ACF) of y and d7 (Figure 3). We note that ACF(y) is
noisy, and strongly influenced by inter-annual and short term variability in
y. In contrast, ACF(d7) has significant periodicity with approximate period
between 60 and 70 years.
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Figure 4 illustrates the annual normalized ACE Index (y), and its n-order
polynomial least square fit (LSF) time series (yn), versus time. Only several
selected n-order polynomials are shown, for figure clarity. Generally, we found
that low n-order polynomial LSF produce a good approximation of the linear
trend, while for n between 7 and 10, we obtain a better representation of
the oscillatory component at multi-decadal time scale. We experimented with
high order polynomials, up to n = 30.

Figure 5 shows the detrended n-order polynomial least square fit of the nor-
malized ACE, dn. Orders 5 to 9 show an aspect close to cyclostationary time
series. This aspect is further explored in Figure 6, using the power spectrum
density (PSD) representation of the time series. PSD can reveal the most
relevant quasi-periods in a time series. One source of uncertainty in deter-
mination of quasi-period is caused by the short time series. Another source
of miss-interpretation is the presence of significant trend in the data. Such
feature appears as a very large “period” in the PSD (see Figure 6, PSD for the
original y series). We note also that PSD(y) shows spikes at high frequency,
corresponding to shorter quasi-periodicities in the ACE index, due to short
term oscillations in the ocean-atmosphere system, as well as due to noise. In
contrast, PSD(y7), and PSD(d7) show spikes only at low frequency (corre-
sponding to a multi-decadal oscillation with average quasi-period of about 65
years). There is large uncertainty in the value of quasi-period, due in part
that our time series has only 157 terms, but the value found here is consistent
with other evaluations reported in literature [8, 10, 14, 18]. Results show that
our method of polynomial LSF, followed by detrend, produces a PSD that is
free of the effects of trend, and free of the effects of high frequency signals in
the analyzed time series.

4. CONCLUSIONS

Time series of annual data from 1851-2007 for the normalized Accumulated
Cyclone Energy (ACE) index (y), shows distinct features of a non-stationary
time series. Firstly, the series has a significant linear trend, due to possible in-
tensification of Atlantic tropical storm activity in the last few decades, and in
part due to possible non-homogeneities in the data, caused by changes in ob-
servation systems. Secondly, the time series has also very strong inter-annual
variability, as well as intense variability at times scales less than a decade.
Thirdly, the time series has indication of multi-decadal oscillation, of intensity
that seems largely masked by the high frequency oscillations. To detect the
multi-decadal oscillatory component, we perform a series of transformations
intended to filter the short term variations, and the trend. Thus, we find
n-order polynomial least squares fit (LSF) of y, are more representative for
multi-decadal oscillations, for n between 7 and 10. We detrend the obtained
time series, and we find that the remaining time series has a distinct quasi-
period of about 65 years, as shown by power spectrum analysis. The method
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has potential applications in time series analysis that manifest low-frequency
signals, masked by more intense high frequency signals.
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