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NEWTON’S METHOD IN RIEMANNIAN MANIFOLDS

IOANNIS K. ARGYROS∗

Abstract. Using more precise majorizing sequences than before [1], [8], and
under the same computational cost, we provide a finer semilocal convergence
analysis of Newton’s method in Riemannian manifolds with the following advan-
tages: larger convergence domain, finer error bounds on the distances involved,
and a more precise information on the location of the singularity of the vector
field.
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1. INTRODUCTION

We refer the reader to [1], [5], [7] for some of the concepts introduced but
not detailed here.

Let X be a C1 vector field defined on a connected, complete and finite-di-
mensional Riemannian manifold (M, g). In this study we are concerned with
the following problem:
(1.1) find p∗ ∈M such that X(p∗) = o ∈ Tp∗M.

A point p∗ satisfying (1.1) is called a singularity of X.
The most popular method for generating a sequence {pn} (n ≥ 0) approxi-

mating p∗ is undoubtedly Newton’s method, described here as follows:
Assume there exists an initial guess p0 ∈M such that the covariant X ′(p0)

of X at p0 given by
(1.2) X ′(p)v := ∇vX(p) = (∇yX)(p), v ∈ TpM,

is invertible, at p = p0, for each pair of continuously differentiable vector fields
X, Y where the vector field ∇yX stands for the covariant derivative of X with
respect to Y .

Define the Riemannian-Newton method by
(1.3) pn+1 = exppn

[−X ′(pn)−1X(pn)],
where expp : TpM →M is the exponential map at p.
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A survey of local as well as semilocal convergence results for method (1.3)
can be found in [1]–[10] and the references there.

Here we are motivated by optimization considerations and the recent excel-
lent study [1] of the Riemannian analogue of the property used by Zabreijko
and Nguen [10].

In particular we show:
Under weaker hypotheses and the same computational cost finer error

bounds on the distances d(pn+1, pn), d(pn, p∗) (n ≥ 0) and a more precise
information on the location of the solution p∗ are obtained.

All the above advantages are achieved because we use more precise error
estimates on the distances involved than in [1] along the lines of our relevant
works for Newton’s method for solving nonlinear equations on Banach spaces
[2]–[6].

In Section 2 we cover the local whereas in Section 3 we study the semilocal
convergence of method (1.3).

2. LOCAL CONVERGENCE ANALYSIS OF METHOD (1.3)

We need the definition [1], [5]:

Definition 2.1. Let G2(p0, r) denote the class of all the piecewise geodesic
curves c : [0, T ]→M which satisfy:

(a) c(0) = p0 and the length of c is no greater than r;
(b) there exists τ ∈ (0, T ) such that c

∣∣
[0,τ ] is a minimizing geodesic and

c
∣∣
[τ,T ] is a geodesic.

We can now introduce a Lipschitz as well as a center-Lipschitz-type conti-
nuity of X ′:

Let R > 0. We suppose there exist continuous and nondecreasing functions
`0, ` : [0, R]→ [0,+∞) such that: for every r ∈ [0, R] and c ∈ G2(p0, r),∥∥X ′(p0)−1[Pc,b,0X ′(c(b))− Pc,0,0X ′(c(0))

]∥∥
p0
≤ `0(r)

∫ b

0
|ċ|, 0 ≤ b,(2.1)

∥∥X ′(p0)−1[Pc,b,0X ′(c(b))− Pc,a,0X ′(c(a))
]∥∥
p0
≤ `(r)

∫ b

a
|ċ|,

0 ≤ a ≤ b,(2.2)

where

(2.3) Pc,t,0T (c(t)) = T (c(0)) +
∫ t

0

[
Pc,s,0T

′(c(s))ċ(s)
]
ds.

Without loss of generality we assume `0(r) > 0, `(r) > 0 on (0, R].

Remark 2.2. In general

(2.4) `0(r) ≤ `(r), r ∈ [0, R]
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holds and `(r)
`0(r) can be arbitrarily large [3]–[6]. It is convenient to define pa-

rameter
(2.5) η = |X ′(p0)−1X(p0)|p0 ,

functions v, w : [0, R]→ [−∞,+∞) by

w(r) = η − r +
∫ r

0
(r − s)`(s)ds,(2.6)

v(r) = −1 + `0(r)(2.7)
and iterations {tn}, {rn} (n ≥ 0) by

t0 = 0, t1 = η, tn+1 = tn − w(tn)
v(tn) ,(2.8)

r0 = 0, rn+1 = rn − w(rn)
w′(rn)(2.9)

for all n ≥ 0. �

Let us consider the assumption: the function w given by (2.6) has a unique
zero r∗ in [0, R] with
(2.10) w(R) ≤ 0.

We showed in [2] (see also [6], [7]):

Proposition 2.3. Under hypothesis (2.10) iterations {tn}, {sn} (n ≥ 0) are
well defined, monotonically increasing and convergent to t∗, r∗, respectively,
with
(2.11) t∗ ≤ r∗.
Moreover, the following estimates hold for all n ≥ 0

tn ≤ rn,(2.12)
tn+1 − tn ≤ rn+1 − rn,(2.13)

and
(2.14) t∗ − tn ≤ r∗ − rn.
Furthermore if (2.4) holds as a strict inequality so do (2.12) and (2.13) for
n ≥ 1. Since we shall show both {tn}, {rn} are majorizing sequences for {pn},
it follows by Proposition 2.3 that the claims made in the introduction for the
local convergence of method (1.3) hold true.

We can now state the main local convergence result for method (1.3) which
improves the corresponding Theorem 3.1 in [1, p. 8]:

Theorem 2.4. Under hypotheses (2.1), (2.2) and (2.10) the following hold
true:

(a) the vector field X admits a unique singularity p∗ in U(p0, R) = {p ∈
X | ‖p − p0‖ ≤ R} which belongs to U(p0, t

∗). If `0(t∗) < 0 then
X ′(p∗) ∈ GL(Tp∗M).
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(b) Sequence {pn} (n ≥ 0) generated by method (3) is well defined, pn ∈
U(p0, tn) for all n ≥ 0, and lim

n→∞
pn = p∗.

(c) The following estimates hold true for all n ≥ 0:

(2.15) d(pn+1, pn) ≤ |X ′(pn)−1X(pn)|pn ≤ tn+1 − tn ≤ rn+1 − rn,
and

(2.16) d(pn, p∗) ≤ t∗ − tn ≤ r∗ − rn.

Proof. Uses the more accurate (i.e. the one really needed) condition (2.1) in-
stead of condition (2.2) used in [1] for the computation of the inverses X ′(pn)−1

(n ≥ 0). The rest of the proof is identical to [1] and is omitted. �

Remark 2.5.
(a) If `0(r) = `(r) our Theorem 2.4 reduces to Theorem 3.1 in [1]. Oth-

erwise (see (2.4)) it is an improvement over it as already shown in
Proposition 2.3. Note also that the rest of the bounds obtained in
Theorem 3.1 in [1] (see parts (iv)-(v) of Theorem 3.1) hold true with
{tn} replacing sequence {rn} there but we decided not to include those
bounds here to avoid repetitions.

(b) Theorem 2.4 remains valid for a C1 vector field X : D ⊂ M → TM
which is defined only on an open subset D of M provided U(p0, R) ⊆ D
[1], [5], [7].

(c) It follows from the proof of the theorem that the sharper (than {tn})
scalar {tn} (n ≥ 0) given by

(2.17)

t0 = 0, t1 =η, tn+2 = tn+1+ 1
1−̀ 0(tn+1)

∫ 1

0
`(tn+t(tn+1−tn))(tn+1−tn)dt (n ≥ 0),

is also a majorizing sequence for {pn} (n ≥ 0).
Sufficient convergence conditions for sequence (1.27) which are weaker than
(2.10) have already been given in [3]–[7]. Note that

tn ≤ tn,(2.18)
tn+1 − tn ≤ tn+1 − tn,(2.19)
t
∗ − tn ≤ t∗ − tn,(2.20)

and
(2.21) t

∗ ≤ t∗.
See also Remark 3.3. �

3. SEMILOCAL CONVERGENCE ANALYSIS OF METHOD (1.3)

An extension of the Newton-Kantorovich theorem to finite-dimensional and
complete Riemannian manifolds has been given by Ferreira and Svaiter in [7]
and has been improved by us in [4]. Moreover the results in [7] were shown
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to be special cases of Theorem 3.1 in [1]. Here we weaken these results using
L-Lipschitz and L0-center Lipschitz conditions for tensors.

Definition 3.1. A (1, k)-tensor T on M is said to be: L0-center Lipschitz
continuous on a subset S of M , if for all geodesic curve γ : [0, 1] → M with
endpoints in S and p0 ∈M

(3.1) ‖Pγ,1,0T (γ(1))− T (p0)‖p0 ≤ L0

∫ 1

0
|γ̇(t)|dt,

and L-Lipschitz continuous on S, if

(3.2) ‖Pγ,1,0T (γ(1))− T (γ(0))‖γ(0) ≤ L
∫ 1

0
|γ̇(t)|dt.

We can show the following improvement of Theorem 5.1 in [1] for the semilo-
cal convergence of method (1.3) (see [3, page 387, Case 3, for δ = δ0]):

Theorem 3.2. Under hypotheses (3.1) and (3.2) on S = U(x0, R) further
suppose there exists p0 ∈M such that X ′(p0) ∈ GL(Tp0M). Set:

a = ‖X ′(p0)−1‖p0

and
L = 1

8 (L+ 4 L0 +
√
L2 + 8 L0 L).

Assume:
(3.3) h0 = aηL ≤ 1

2 ,

(3.4) U(p0, s
∗) ⊆ U(p0, R),

where

(3.5) s∗ = lim
n→∞

sn ≤ b η, b = 2
2−b0

, b0 = 1
2

[
− L

L0
+

√√√√( L
L0

)2
+ 8 L

L0

]
,

(3.6) s0 = 0, s1 = η, sn+2 = sn+1 + a L(sn+1−sn)2

2 (1−L0sn+1) (n ≥ 0).

Then
(a) scalar sequence {sn} generated by (3.6) is monotonically increasing,

bounded above by b η and converges to s∗ ∈ [η, b η].
(b) Sequence {pn} (n ≥ 0) generated by method (1.3) is well defined, re-

mains in U(p0, s
∗) for all n ≥ 0 and converges to a unique singularity

of X in U(p0, s
∗).

(c) The following error bounds hold true for all n ≥ 0:
(3.7) d(pn+1, pn) ≤ sn+1 − sn,

and
(3.8) d(pn, p∗) ≤ s∗ − pn.
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(d) If there exists R1 ∈ [s∗, R] such that

(3.9) aL0(s∗ +R1) ≤ 2,

then p∗ is unique in U(p0, R1).

Proof. As the proof in Theorem 5.1 in [1, p. 18] but we use condition (3.1)
for the computation of the upper bounds of X ′(pn)−1 (n ≥ 0) which is really
needed instead of (3.2) used in [1]. �

Remark 3.3. (a) As in Remark 2.2

(3.10) L0 ≤ L

holds in general and L
L0

can be arbitrarily large [3]–[7]. If L0 = L holds then
our theorem reduces to Theorem 5.1 in [1]. Otherwise it is an improvement.
Indeed, the condition corresponding to (3.3) in [1] is given by

(3.11) h = aηL ≤ 1
2 .

Note that

(3.12) h ≤ 1
2 ⇒ h0 ≤ 1

2

but not vice versa.
Moreover the corresponding majorizing sequence is given by

(3.13) z0 = 0, zn+1 = zn − w1(zn)
w′1(zn) ,

where

(3.14) w1(r) = η − r + aLr2

2 ,

and again

sn ≤ zn,(3.15)
sn+1 − sn ≤ zn+1 − zn,(3.16)
s∗ − sn ≤ z∗ − zn,(3.17)

and

(3.18) s∗ ≤ z∗ = lim
n→∞

zn = 1−
√

1−2h
aL

with (3.15), (3.16) holding as strict inequalities for n ≥ 1 if L0 < L. Finally
note that in [3] we provided sufficient convergence conditions for iteration (3.6)
that are even weaker than (3.3). �

All the above justify the advantages of our approach already stated in the
introduction of the paper. These ideas can be used to improve the rest of the
results stated in [1]. However we leave the details for the motivated reader.
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