START ITERATION FOR EZQUERRO-HERNÁNDEZ METHOD

CRISTIAN MIHAI CIRA* and OCTAVIAN CIRA*

Abstract

We present a numerical method for solving nonlinear equation systems, namely Ezquerro-Hernández method with a rate of convergence equal to 4 . The main result of this article is an algorithm that determines a start iteration for the method within its quadruple convergence sphere.

MSC 2000. 65H10.
Keywords. Ezquerro-Hernández method, start iteration from sphere of cvadruplu convergence.

1. EZQUERRO-HERNANDEZ METHOD

X and Y are two real or complex Banach spaces. $F: D \subset X \rightarrow Y$ is a nonlinear operator, 3 times Fréchet differentiable over the convex and open set $D_{0} \subset D$. Lets assume that there is a linear operator $F^{\prime}\left(x^{(0)}\right)^{-1} \in \mathfrak{L}_{\mathfrak{M}}(Y, X)$ for $x^{(0)} \in D_{0}$. Let $F(x)=0$, then $\Gamma(x)=F^{\prime}(x)^{-1}$ is the nonlinear operator, $\mathcal{N}(x)=\Gamma(x) F(x)$ is the Newton operator and the sequences $\left\{x^{(k)}\right\}$ and $\left\{y^{(k)}\right\}$ are defined by:

$$
\begin{cases}y & =x-\mathcal{N}(x), \tag{1}\\ \mathcal{H}(x, y) & =\Gamma(x)\left[F^{\prime}\left(\frac{1}{3} x+\frac{2}{3} y\right)-F^{\prime}(x)\right] \\ \widehat{x} & =y-\frac{3}{4} \mathcal{H}(x, y)\left[I-\frac{3}{2} \mathcal{H}(x, y)\right](y-x),\end{cases}
$$

where x and y denote the current iteration and \widehat{x} denotes the next iteration. The method given by (1]) was proposed by Ezquerro and Hernández in [3]. This method has an R-order of convergence equal to 4 .

2. PRELIMINARY LEMMAS AND THEOREMS

Let consider the following conditions to be fulfilled:
$\left(c_{1}\right)\left\|\Gamma_{0}\right\|=\left\|\Gamma\left(x^{(0)}\right)\right\| \leq \beta$,
$\left(c_{2}\right)\left\|\mathcal{N}\left(x^{(0)}\right)\right\| \leq \eta$,
($\left.c_{3}\right)\left\|F^{\prime \prime}(x)\right\| \leq M_{2}$, for $\forall x \in D_{0}$,

[^0]$\left(c_{4}\right)\left\|F^{\prime \prime \prime}(x)\right\| \leq M_{3}$, for $\forall x \in D_{0}$,
$\left(c_{5}\right)\left\|F^{\prime \prime \prime}(x)-F^{\prime \prime \prime}(y)\right\| \leq L\|x-y\|$, for $\forall x, y \in D_{0}$, with $L \geq 0$.
Let denote $A=\beta \eta M_{2}, B=\beta \eta^{2} M_{3}$ and $E=\beta \eta^{3} L .\left\{a_{k}\right\},\left\{b_{k}\right\},\left\{c_{k}\right\}$ and $\left\{d_{k}\right\}$, are defined as sequences with the initial values
$$
a_{0}=c_{0}=1, \quad b_{0}=2 A / 3, \quad d_{0}=A(1+A) / 2
$$
given by:
\[

\left\{$$
\begin{align*}
a_{k+1} & =\frac{a_{k}}{1-A a_{k}\left(c_{k}+d_{k}\right)} \tag{2}\\
c_{k+1} & =\frac{32}{2187} \cdot \frac{27\left(4+\beta_{k}^{2}\right) A^{3} a_{k}^{2}+18 A B a_{k}+17 E}{\beta_{k}^{4} b_{k}^{4}} a_{k+1} d_{k}^{4} \\
b_{k+1} & =\frac{2 A}{3} a_{k+1} c_{k+1} \\
d_{k+1} & =\frac{3}{4} \beta_{k+1} b_{k+1} c_{k+1}
\end{align*}
$$\right.
\]

for any $k \in \mathbb{N}^{*}$. In the formulas above we denoted $1+3 b_{k} / 2$ by β_{k}, for any $k \in \mathbb{N}^{*}$.

Lemma 1. The following inequalities are true for any $k \in \mathbb{N}^{*}$.
$\left(I_{k}\right)\left\|\Gamma_{k}\right\|=\left\|\Gamma\left(x^{(k)}\right)\right\| \leq \beta a_{k}$,
$\left(I I_{k}\right)\left\|y^{(k)}-x^{(k)}\right\|=\left\|\mathcal{N}\left(x^{(k)}\right)\right\| \leq \eta c_{k}$,
$\left(I I I_{k}\right)\left\|\mathcal{H}\left(x^{(k)}, y^{(k)}\right)\right\| \leq b_{k}$,
$\begin{aligned}\left(I V_{k}\right)\left\|x^{(k+1)}-y^{(k)}\right\| & \leq \eta d_{k}, \\ \left(V_{k}\right)\left\|x^{(k+1)}-x^{(k)}\right\| & \leq \eta\left(c_{k}+d_{k}\right) .\end{aligned}$
Proof. The proofs can be followed in [1].
According to lemma 1, if the following conditions are fulfilled:

- $x^{(k)}, y^{(k)} \in D_{0}$,
- $A a_{k}\left(c_{k}+d_{k}\right)<1$,
- the sequence $\left\{c_{k}+d_{k}\right\}$ is a Cauchy sequence,
then the sequence defined by $\sqrt{1}$ is convergent.
The polynomial

$$
P(s)=1-\frac{3 s}{2}\left(1+\frac{3 s}{4}\left(1+\frac{3 s}{2}\right)\right)=\frac{-27 s^{3}-18 s^{2}-24+16}{16}
$$

has a single real and positive root that we denote by σ,

$$
\sigma=\frac{2}{9}\left[\frac{7-3 \sqrt{6}}{5} \sqrt[3]{[5(7+3 \sqrt{6})]^{2}}+\sqrt[3]{5(7+3 \sqrt{6})}-1\right]
$$

The approximative value of this root is $\sigma \approx 0.433752794292925 \ldots$
The real functions $f:[0, \sigma) \rightarrow \mathbb{R}$ and $h:(1, \infty) \rightarrow \mathbb{R}$ are defined as:

$$
\begin{equation*}
f(s)=\frac{27}{16} \cdot \frac{s^{4}}{P(s)^{2}}, \quad h(t)=\frac{18 A B t+17 E}{108 A^{3} t^{2}} \tag{3}
\end{equation*}
$$

where $A, B, E>0$, and $g:[0, \sigma) \times(1, \infty) \rightarrow \mathbb{R}$ is defined as

$$
\begin{equation*}
g(s, t)=f(s)\left(1+\frac{1}{4}\left(1+\frac{3 s}{2}\right)^{2}+h(t)\right) . \tag{4}
\end{equation*}
$$

Lemma 2. For the functions f and g defined by (3) and (4) the following proprieties stand:
(i) f is increasing for $s \in[0, \sigma)$ and $f(0)=0$,
(ii) f^{\prime} is increasing for $s \in[0, \sigma)$ and $f^{\prime}(0)=0$,
(iii) $g(s, t)<g(s, 1)$ for $t>1$,
(iv) $g_{1}(s)=g(s, 1)$ is increasing for $s \in[0, \sigma)$, and $g_{1}(0)=0$,
(v) $g_{1}^{\prime}(s)$ is increasing for $s \in[0, \sigma)$ and $g_{1}^{\prime}(0)=0$.

Proof. The proofs can be followed in [1].
Lets consider the polynomial

$$
\begin{equation*}
R(\tau)=27(\tau-1)(2 \tau-1)\left(\tau^{2}+\tau+2\right)\left(\tau^{2}+2 \tau+4\right) \tag{5}
\end{equation*}
$$

Using the sequences $\left\{a_{k}\right\},\left\{b_{k}\right\},\left\{c_{k}\right\}$ and $\left\{d_{k}\right\}$ we can state that

$$
\begin{equation*}
b_{k+1}=g\left(b_{k}, a_{k}\right) \text { for } \forall k \in \mathbb{N}^{*} \tag{6}
\end{equation*}
$$

The following theorem proves the four proprieties of the sequences $\left\{a_{k}\right\},\left\{b_{k}\right\}$, $\left\{c_{k}\right\}$ and $\left\{d_{k}\right\}$.

Theorem 3. Let consider the following constants

$$
\begin{equation*}
A \in\left(0, \frac{1}{2}\right), \quad B \in\left(0, \frac{R(A)-17 E}{18 A}\right), \quad E \in\left(0, \frac{R(A)}{17}\right) \tag{7}
\end{equation*}
$$

where R is the polynomial defined by (5). Then the following inequalities are true:
$\left(i_{k}\right) b_{k+1}<b_{k}$ for any $k \in \mathbb{N}^{*}$,
(i_{k}) $A a_{k}\left(c_{k}+d_{k}\right)<1$ for any $k \in \mathbb{N}^{*}$,
(iii $_{k}$) $a_{k} \geq 1$ for any $k \in \mathbb{N}^{*}$,
(iv ${ }_{k}$) $a_{k}<a_{k+1}$ for any $k \in \mathbb{N}^{*}$.
Proof. The proofs can be followed in [1].
Theorem 4. In the conditions (7) there exists $r \in[0, \infty)$ so that

$$
\begin{equation*}
r=\sum_{k=0}^{\infty}\left(c_{k}+d_{k}\right) \tag{8}
\end{equation*}
$$

Proof. The proofs can be followed in [1].

3. THE CONVERGENCE OF EZQUERRO-HERNÁNDEZ METHOD

TheOrem 5. We consider the nonlinear operator $F: D \subset X \rightarrow Y$, that is 3 times Fréchet differentiable over the convex and open set $D_{0} \subset D$, where X and Y are Banach spaces. We assume that the following conditions are fulfilled.
(a) Local conditions:
$\left(a_{1}\right)$ There is $\Gamma_{0}=\Gamma\left(x^{(0)}\right)=F^{\prime}\left(x^{(0)}\right)^{-1}, x^{(0)} \in D_{0}$,
$\left(a_{2}\right)\left\|\Gamma_{0}\right\| \leq \beta$,
$\left(a_{3}\right)\left\|\Gamma_{0} F\left(x^{(0)}\right)\right\| \leq \eta$,
$\left(a_{4}\right) S\left(x^{(0)}, r\right) \subset D_{0}$, where r is given by (8),
(b) Global conditions:
$\left(b_{1}\right)\left\|F^{\prime \prime}(x)\right\| \leq M_{2}, \forall x \in D_{0}$,
$\left(b_{2}\right)\left\|F^{\prime \prime \prime}(x)\right\| \leq M_{3}, \forall x \in D_{0}$,
$\left(b_{3}\right)\left\|F^{\prime \prime \prime}(x)-F^{\prime \prime \prime}(y)\right\| \leq L\|x-y\|, \forall x, y \in D_{0}$,
(c) Restrictions:
$\left(c_{1}\right) A \in\left(0, \frac{1}{2}\right)$,
$\left(c_{2}\right) B \in\left(0, \frac{R(A)-17 E}{18 A}\right)$,
$\left(c_{3}\right) E \in\left(0, \frac{R(A)}{17}\right)$,
where $A=M_{2} \beta \eta, B=M_{3} \beta \eta^{2}, E=L \beta \eta^{3}$ and R is the polynomial defined by the formula (5).
Then the sequence $\left\{x^{(k)}\right\}$, given by the recurrent formula 1 , is well defined, and $\left\{x^{(k)}\right\},\left\{y^{(k)}\right\} \subset S\left(x^{(0)}, r \eta\right)$ for any $k \in \mathbb{N}^{*}$. The sequence $\left\{x^{(k)}\right\}$ converges to x^{\star}, the solution for the equation $F(x)=0$ and $x^{\star} \in \overline{S\left(x^{(0)}, r \eta\right)}$. This solution, namely x^{\star} is unique in $S\left(x^{(0)}, 2 /\left(M_{2} \beta-r \eta\right)\right) \cap D_{0}$. The estimated error is given by the formula

$$
\begin{equation*}
\left\|x^{\star}-x^{(k)}\right\| \leq \eta \sum_{j=k}^{\infty}\left(c_{k}+d_{k}\right) \leq \frac{3\left(2+A+A^{2}\right)}{4 A} \cdot \frac{b_{1}}{\sqrt[3]{\gamma}} \sum_{j=k}^{\infty}(\sqrt[3]{\gamma})^{4^{j-1}} \tag{9}
\end{equation*}
$$

where $\gamma=b_{2} / b_{1}$.
Proof. The proofs can be followed in [1].
Remark 1. The R-order of convergence of Ezquerro-Hernández method can be computed by the inequality (9) and is equal to 4 .

Remark 2. The advantage of Ezquerro-Hernández method is that the R order of convergence 4 is obtained without the the use of the $2^{n d}$ and $3^{r d}$ derivative. The calculus of the $2^{n d}$ and $3^{r d}$ derivative is needed to check the convergence conditions of theorem 5, for the initial iteration $x^{(0)}$.

4. IMPLEMENTATION OF EZQUERRO-HERNÁNDEZ METHOD

In order the present the programs for Ezquerro-Hernández method lets consider a nonlinear equation in \mathbb{R}^{2}

$$
\left\{\begin{array}{l}
x_{1}^{2}-2 \cos \left(3 x_{1}\right)-x_{2}-k_{1}=0 \tag{10}\\
x_{1}-x_{2}^{3}+3 \cos \left(2.5 x_{2}\right)+k_{2}=0
\end{array}\right.
$$

where $k_{1}=8.822260523769353$ and $k_{2}=4.149013443610321$.

Example 6. Mathcad dedicated variable ORIGIN has the value 1.

$$
\text { ORIGIN }:=1
$$

Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a nonlinear function

$$
F(x):=\binom{x_{1}^{2}-2 \cos \left(3 x_{1}\right)-x_{2}-k_{1}}{x_{1}-x_{2}^{3}+3 \cos \left(\frac{5}{2} x_{2}\right)+k_{2}}
$$

for the nonlinear equation $F(x)=0$. The 1 st order derivative of F is

$$
F^{\prime}(x):=\left(\begin{array}{cc}
2 x_{1}+6 \sin \left(3 x_{1}\right) & -1 \\
1 & -3 x_{2}^{2}-\frac{15}{2} \sin \left(\frac{5}{2} x_{2}\right)
\end{array}\right)
$$

The variable \mathbf{d} that represents the space dimension, the identity matrix and the operators Γ and \mathcal{N} ar considered as

$$
d:=2 \quad I:=\operatorname{indentity}(d) \quad \Gamma(x):=F^{\prime}(x)^{-1} \quad \mathcal{N}(x):=\Gamma(x) \cdot F(x)
$$

where the Mathcad function indentity(d) was was used to generate the identity matrix of order \mathbf{d}. The function H and Q form (1) are defined in Mathcad:

$$
H(x, y):=\Gamma(x) \cdot\left[F^{\prime}\left(x+\frac{2}{3}(y-x)\right)-F^{\prime}(x)\right]
$$

and

$$
Q(x, y):=\frac{3}{4} \cdot H(x, y) \cdot\left[I-\frac{3}{2} H(x, y)\right]
$$

Now the Ezquerro-Hernández method operator can be defined:

$$
\begin{equation*}
E H(x):=[I-Q(x, x-\mathcal{N}(x))] \cdot \mathcal{N}(x) \tag{11}
\end{equation*}
$$

With this preparation done the program that applies the Ezquerro-Hernández method can be easily written.

Program 7. The Ezquerro-Hernández method program.

$$
\operatorname{EzHe}(x, \varepsilon):=\left\lvert\, \begin{aligned}
& z \leftarrow x^{\mathrm{T}} \\
& \text { while }|E H(x)| \geq \varepsilon \\
& \left\lvert\, \begin{array}{l}
x \leftarrow x-E H(x) \\
z \leftarrow \operatorname{stack}\left(z, x^{\mathrm{T}}\right)
\end{array}\right. \\
& \text { return } z
\end{aligned}\right.
$$

Let the initial vector be

$$
x:=\left(\begin{array}{ll}
2.3 & 6
\end{array}\right)^{\mathrm{T}}
$$

and $\varepsilon:=10^{-15}$, the program EzHe outputs the 8 iterations for EzquerroHernández method.

$$
\text { EzHe }\left(x, 10^{-15}\right)=\left(\begin{array}{ll}
2.3 & 6 \\
3.39029632223816170 & 3.1088000642353517 \\
0.44114493152486567 & 2.2109495464523180 \\
7.80798684999809320 & 2.5526294911507867 \\
3.12767020347179870 & 2.1135931271578080 \\
2.99759733296023570 & 2.0015643192458255 \\
2.99999999991826140 & 2.0000000000800786 \\
2.99999999999999960 & 1.9999999999999996
\end{array}\right) .
$$

5. THE CHOICE OF THE INITIAL ITERATION

One can see that the random choice of the initial iteration, in general, can not ensure a convergence with and order equal to 4 for the Ezquerro-Hernández method starting with the first step. In order to determine a start iteration that ensures a convergence of order 4 , form the first step, we use the local conditions $\left(a_{1}\right)-\left(a_{3}\right)$, the global conditions $\left(b_{1}\right)-\left(b_{3}\right)$ and the restriction $\left(c_{1}\right)-\left(c_{3}\right)$ from the convergence theorem 5.

We choose a convex domain $D_{0} \subset D=\mathbb{R}^{2}$ that contains a solution x^{\star} for the equation $F(x)=0$. For the equation presented in the example 10 we choose a disk centered in $x^{(0)}=\left(c_{1} c_{2}\right)^{\mathrm{T}}$ with a radius r,

$$
D_{0}=\left\{x| | x-x^{(0)} \mid \leq r, x \in \mathbb{R}^{2}\right\}
$$

where $c_{1}=2.91, c_{2}=1.88$ and $r=0.4$. We compute the topological degree of function F relative to the regular polygon, [5], [6], with m wedged subscribed within the circle. The Mathcad programs that compute the topological degree are:

Program 8. Program \mathbf{P} generates \mathbf{m} angles of the regular polygon subscribed within $c=\left(c_{1} c_{2}\right)^{\mathrm{T}}$ with a radius of r (the last angle $m+1$ is the same as the first one).

$$
P(c, r, m):=\left\lvert\, \begin{aligned}
& \text { for } k \in 1 . . m+1 \\
& \left\lvert\, \begin{array}{l}
t_{k} \leftarrow \frac{2(k-1) \pi}{m} \\
P_{1, k} \leftarrow c_{1}+r \cdot \cos \left(t_{k}\right) \\
P_{2, k} \leftarrow c_{2}+r \cdot \sin \left(t_{k}\right)
\end{array}\right. \\
& \text { return } P
\end{aligned}\right.
$$

Program 9. Subprogram q calculates the matrix determinant.

$$
q(F, x, y)):=\left|\left(\begin{array}{cc}
\operatorname{sign}\left(F(x)_{1}\right) & \operatorname{sign}\left(F(y)_{1}\right) \\
\operatorname{sign}\left(F(x)_{2}\right) & \operatorname{sign}\left(F(y)_{2}\right)
\end{array}\right)\right|
$$

Program 10. Subprogram Q.

$$
Q(F, c, r, m):=\left\lvert\, \begin{aligned}
& N \leftarrow P(c, r, m) \\
& Q \leftarrow\left(\begin{array}{l}
q\left(F, c, N^{\langle 1\rangle}\right) \\
q\left(F, c, N^{\langle 2\rangle}\right) \\
q\left(F, N^{\langle 1\rangle}, N^{\langle 2\rangle}\right)
\end{array}\right) \\
& \text { for } k \in 2 . . m \\
& \quad Q \leftarrow \text { augment }\left[Q,\left(\begin{array}{l}
q\left(F, c, N^{\langle k\rangle}\right) \\
q\left(F, c, N^{\langle k+1\rangle}\right) \\
q\left(F, N^{\langle k\rangle}, N^{\langle k+1\rangle}\right)
\end{array}\right)\right]
\end{aligned}\right.
$$

Program 11. Program gradt that calculates the topological degree for function \mathbf{F} relative to the regular polygon with the angles on the circle $c=$ $\left(c_{1} c_{2}\right)^{\mathrm{T}}$ with a radius \mathbf{r}.

$$
\operatorname{gradt}(F, c, r, m):=\left\lvert\, \begin{aligned}
& N \leftarrow P(c, r, m) \\
& \text { for } k \in 1 . . m \\
& s_{k} \leftarrow \operatorname{sign}\left[\left|\left(\begin{array}{ccc}
c_{1} & c_{2} & 1 \\
N_{1, k} & N_{2, k} & 1 \\
N_{1, k+1} & N_{2, k+1} & 1
\end{array}\right)\right|\right] \\
& Q \leftarrow Q(F, c, r, m) \\
& \\
& \operatorname{return} \frac{\left|\sum_{k=1}^{m} s_{k} \sum_{j=1}^{d+1}(-1)^{j} Q_{j, k}\right|}{2^{d} d!}
\end{aligned}\right.
$$

Since the topological degree of function \boldsymbol{F} relative to the regular polygon \boldsymbol{P} is

$$
\operatorname{gradt}(F, 2.91,1.88,0.4,31)=1
$$

namely different from 0 , it implies that the function \boldsymbol{F} has at least one root within the polygon $\boldsymbol{P},[2],[4]$. Therefore the disk centered in \mathbf{c} with a radius \mathbf{r} also contains at least one root of function \boldsymbol{F}.

We verify if there is Γ_{0}. That means that we have to compute $\Gamma_{0}=\Gamma\left(x^{(0)}\right)$,

$$
\Gamma_{0}=\left(\begin{array}{ll}
0.10707668676926453 & -0.03449884967970596 \\
0.03449884967970596 & -0.33330336776140457
\end{array}\right)
$$

The equation of a circle of radius r centered on $\left(c_{1} c_{2}\right)^{\mathrm{T}}$ is

$$
C(x):=\left(x_{1}-c_{1}\right)^{2}+\left(x_{2}-c_{2}\right)^{2}-r^{2} .
$$

Form the following nonlinear programming problems we can determine the constants M_{2}, M_{3} and the Lipschitz constant L :
(1) let $F_{1}^{\prime \prime}(x)$ and $F_{2}^{\prime \prime}(x)$ be the matrices that constitute the $2 n d$ order tensor the represents the $2 n d$ derivative of function F. These matrices are extracted from the matrix $F^{\prime}(x)$, namely the 1 st order derivative of the nonlinear function F.

$$
\begin{gathered}
F_{1}^{\prime \prime}(x):=\left(\begin{array}{cc}
2+18 \cos \left(3 x_{1}\right) & 0 \\
0 & 0
\end{array}\right), \\
F_{2}^{\prime \prime}(x) \\
:=\left(\begin{array}{cc}
0 & 0 \\
0 & -6 x_{2}-\frac{75}{4} \cos \left(\frac{5}{2} x_{2}\right)
\end{array}\right) .
\end{gathered}
$$

The objective function

$$
n F^{\prime \prime}(x):=\max \left[\operatorname{norme}\left(F_{1}^{\prime \prime}(x)\right), \operatorname{norme}\left(F_{2}^{\prime \prime}(x)\right)\right] .
$$

We solve the nonlinear programming problem, where the initial value is: $x:=x^{(0)}$,

Given $C(x) \leq 0 \quad \operatorname{gradt}(F, c, r, m) \neq 0 \quad \xi:=\operatorname{maximize}\left(n F^{\prime \prime}, x\right)$,
then, using the optimum value ξ, we obtain the constant

$$
M_{2}:=F^{\prime \prime}(\xi), \text { namely } M_{2}=29.33101477081403
$$

(2) The $3 r d$ order derivative of function F is a $3 r d$ order tensor that is composed by 4 matrices:

$$
F_{1}^{\prime \prime \prime}(x):=\left(\begin{array}{cc}
-54 \sin \left(3 x_{1}\right) & 0 \\
0 & 0
\end{array}\right), \quad F_{4}^{\prime \prime \prime}(x):=\left(\begin{array}{cc}
0 & 0 \\
0 & \frac{375}{8} \sin \left(\frac{5}{2} x_{2}\right)-6
\end{array}\right)
$$

and

$$
F_{2}^{\prime \prime \prime}(x)=F_{3}^{\prime \prime \prime}(x)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

The process that provided the matrices $F_{1}^{\prime \prime}(x)$ and $F_{2}^{\prime \prime}(x)$ from $F^{\prime}(x)$, is similarly used to obtain $F_{1}^{\prime \prime \prime}(x)$ and $F_{2}^{\prime \prime \prime}(x)$ from $F_{1}^{\prime \prime}(x)$ and to obtain from $F_{2}^{\prime \prime}(x)$ the matrices $F_{3}^{\prime \prime \prime}(x)$ and $F_{4}^{\prime \prime \prime}(x)$. The objective function

$$
\begin{aligned}
& n F^{\prime \prime \prime}(x):=\max \left[\operatorname{norme}\left(F_{1}^{\prime \prime \prime}(x)\right), \operatorname{norme}\left(F_{2}^{\prime \prime \prime}(x)\right),\right. \\
& \\
& \left.n o r m e\left(F_{3}^{\prime \prime \prime}(x)\right), \operatorname{norme}\left(F_{4}^{\prime \prime \prime}(x)\right)\right] .
\end{aligned}
$$

We solve the nonlinear programming problem with the initial value $x:=x^{(0)}$,

Given $C(x) \leq 0 \quad \operatorname{gradt}(F, c, r, m) \neq 0 \quad \xi:=\operatorname{maximize}\left(n F^{\prime \prime \prime}, x\right)$,
then using the optimum value ξ, we determine the constant

$$
M_{3}:=n F^{\prime \prime \prime}(\xi), \text { namely } M_{3}=54
$$

(3) Let

$$
\begin{aligned}
& n_{1}(u, v):=\operatorname{norme}\left(F_{1}^{\prime \prime \prime}(u)-F_{1}^{\prime \prime \prime}(v)\right), \\
& n_{2}(u, v):=\operatorname{norme}\left(F_{2}^{\prime \prime \prime}(u)-F_{2}^{\prime \prime \prime}(v)\right), \\
& n_{3}(u, v):=\operatorname{norme}\left(F_{3}^{\prime \prime \prime}(u)-F_{3}^{\prime \prime \prime}(v)\right), \\
& n_{4}(u, v):=\operatorname{norme}\left(F_{4}^{\prime \prime \prime}(u)-F_{4}^{\prime \prime \prime}(v)\right),
\end{aligned}
$$

and the objective function

$$
L(u, v):=\frac{\max \left[n_{1}(u, v), n_{2}(u, v), n_{3}(u, v), n_{4}(u, v)\right]}{|u-v|}
$$

We solve the nonlinear programming problem, where the initial values are $u=\left(P_{1,1} P_{2,1}\right)^{\mathrm{T}}$ and $v:=\left(P_{1,\lfloor m / 2\rfloor} P_{2,\lfloor m / 2\rfloor}\right)^{\mathrm{T}}$.

$$
\begin{gathered}
\text { Given } C(u) \leq 0 \quad C(v) \leq 0 \quad \operatorname{gradt}(F, c, r, m) \neq 0 \\
\binom{\mu}{\omega}:=\operatorname{maximize}(L, u, v),
\end{gathered}
$$

using the optimal values μ and ω we will obtain the Lipschitz constant

$$
L:=L(\mu, \omega), \text { namely } L=161.98364830993293 .
$$

Let

$$
\begin{aligned}
& \beta(x):=\operatorname{norme}(\Gamma(x)), \\
& \eta(x):=|\mathcal{N}(x)|, \\
& A(x):=M_{2} \cdot \beta(x) \cdot \eta(x), \\
& B(x):=M_{3} \cdot \beta(x) \cdot \eta(x)^{2}, \\
& E(x):=L \cdot \beta(x) \cdot \eta(x)^{3} .
\end{aligned}
$$

Let R be a polynomial

$$
R(\tau):=27(\tau-1)(2 \tau-1)\left(\tau^{2}+\tau+2\right)\left(\tau^{2}+2 \tau+4\right)
$$

and the objective function

$$
\rho(x):=|E H(x)| .
$$

where the function $E H$ is defined by the formula (11). The initial value $x:=x^{(0)}$ is used for the nonlinear programming problem

$$
\begin{aligned}
& \text { Given } \\
& \qquad \begin{array}{l}
0<A(x)<\frac{1}{2} \\
0<B(x)<\frac{Q(A(x))-17 E(x)}{18 \cdot A(x)} \\
0<D(x)<\frac{Q(A(x))}{17} \\
\operatorname{gradt}(F, c, r, m) \neq 0 \\
s:=\text { Maximize }(\rho, x) .
\end{array}
\end{aligned}
$$

The solution for the nonlinear programming problem is

$$
s=\binom{2.993115896952277}{2.1055148260544714},
$$

The value for the objective function, in the optimum solution s, is the radius of the quadruple convergence disk $D_{c}=\left\{x| | x-s \mid \leq \rho(s) x \in \mathbb{R}^{2}\right\}$, a Ezquerro-Hernández method,

$$
\rho(s)=0.10419021465653865 .
$$

Let us verify the condition $\left(a_{4}\right)$ from the convergence theorem 5. Since

$$
\left|x^{(0)}-s\right|=0.2403438975646355<r-\rho(s)=0.29580978534346136,
$$

it implies that $D_{c} \subset D_{0} \subset D$. The disk D_{c} contains the solution x^{\star} for the equation $F(x)=0$. The sequence $\left\{x^{(k)}\right\}$, with $x^{(0)}=s$, converges with a R-order of convergence equal to 4 starting with x^{\star}, and all the terms of the sequence are contained in D_{c}. This solution, namely s is the initial iteration that ensures an R-order of convergence equal to 4 starting with the first step.

$$
\operatorname{EzHe}\left(s, 10^{-15}\right)=\left(\begin{array}{cc}
2.9900922931613527 & 2.1055148260544714 \\
3.0001882531510615 & 2.0015649217352602 \\
3.0000000000184297 & 2.0000000001656666 \\
3 & 2
\end{array}\right) .
$$

Acknowledgement. Dedicated to professor Ştefan Măruşter on the occasion of his 70th birthday.

REFERENCES

[1] Cira O. and Măruşter, Şt., Metode numerice pentru ecuaţii neliniare, Ed. Matrix Rom, Bucureşti, 2008.
[2] Cira, O., Algorithm for determination of initial iteration of numerical methods for the solution of nonlinear equation, An. Universităţii de Vest din Timişoara, Ser. Şti. Mat. XXVI, 3, pp. 17-23, 1988.
[3] Ezquerro, J. A., A study convergence for a fourth-order two-point iteration in Banach spaces, Kodai Math. J., 22, pp. 373-383, 1999.
[4] Sburlan, S. F., Gradul topologic. Lecţii asupra ecuaţiilor neliniare, Ed. Academiei Romane, Bucureşti, 1983.
[5] Stenger, F., An algorithm for the topological degree of a mapping in n-spaces, Bull. A.M.S., 81, pp. 179-182, 1975.
[6] Vrahatis, M. N., Solving systems of nonlinear equations using the nonzero value of the topological degree, ACM Trans. Math. Softw., 14, no. 4, pp. 312-329, 1988.

Received by the editors: May 8, 2008.

[^0]: *"Aurel Vlaicu" University of Arad, e-mail: \{cristi,octavian\}@uav.ro.

