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START ITERATION FOR EZQUERRO-HERNÁNDEZ METHOD
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Abstract. We present a numerical method for solving nonlinear equation sys-
tems, namely Ezquerro-Hernández method with a rate of convergence equal to 4.
The main result of this article is an algorithm that determines a start iteration
for the method within its quadruple convergence sphere.

MSC 2000. 65H10.
Keywords. Ezquerro-Hernández method, start iteration from sphere of cvadru-
plu convergence.

1. EZQUERRO–HERNANDEZ METHOD

X and Y are two real or complex Banach spaces. F : D ⊂ X → Y is a
nonlinear operator, 3 times Fréchet differentiable over the convex and open set
D0 ⊂ D. Lets assume that there is a linear operator F ′(x(0))−1 ∈ LM(Y,X)
for x(0) ∈ D0. Let F (x) = 0, then Γ(x) = F ′(x)−1 is the nonlinear operator,
N (x) = Γ(x)F (x) is the Newton operator and the sequences

{
x(k)

}
and

{
y(k)

}
are defined by:

(1)



y = x−N (x) ,

H(x, y) = Γ(x)
[
F ′
(

1
3x+ 2

3y
)
− F ′(x)

]
,

x̂ = y − 3
4H(x, y)

[
I − 3

2H(x, y)
]

(y − x),

where x and y denote the current iteration and x̂ denotes the next iteration.
The method given by (1) was proposed by Ezquerro and Hernández in [3].
This method has an R-order of convergence equal to 4.

2. PRELIMINARY LEMMAS AND THEOREMS

Let consider the following conditions to be fulfilled:
(c1) ‖Γ0‖ =

∥∥∥Γ (x(0)
)∥∥∥ ≤ β,

(c2)
∥∥∥N (x(0)

)∥∥∥ ≤ η,
(c3) ‖F ′′ (x)‖ ≤M2, for ∀ x ∈ D0,
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(c4) ‖F ′′′ (x)‖ ≤M3, for ∀ x ∈ D0,
(c5) ‖F ′′′ (x)− F ′′′ (y)‖ ≤ L ‖x− y‖, for ∀ x, y ∈ D0, with L ≥ 0.

Let denote A = βηM2, B = βη2M3 and E = βη3L. {ak}, {bk}, {ck} and
{dk}, are defined as sequences with the initial values

a0 = c0 = 1, b0 = 2A/3, d0 = A(1 +A)/2,
given by:

(2)



ak+1 = ak
1−Aak(ck+dk) ,

ck+1 = 32
2187 ·

27(4+β2
k)A3a2

k+18ABak+17E
β4

k
b4

k
ak+1d

4
k,

bk+1 = 2A
3 ak+1ck+1,

dk+1 = 3
4βk+1bk+1ck+1,

for any k ∈ N∗. In the formulas above we denoted 1 + 3bk/2 by βk, for any
k ∈ N∗.

Lemma 1. The following inequalities are true for any k ∈ N∗.
(Ik) ‖Γk‖ =

∥∥∥Γ (x(k)
)∥∥∥ ≤ βak,

(IIk)
∥∥∥y(k) − x(k)

∥∥∥ =
∥∥∥N (x(k)

)∥∥∥ ≤ ηck,

(IIIk)
∥∥∥H (x(k), y(k)

)∥∥∥ ≤ bk,

(IVk)
∥∥∥x(k+1) − y(k)

∥∥∥ ≤ ηdk,

(Vk)
∥∥∥x(k+1) − x(k)

∥∥∥ ≤ η(ck + dk).

Proof. The proofs can be followed in [1]. �

According to lemma 1, if the following conditions are fulfilled:
• x(k), y(k) ∈ D0,
• Aak(ck + dk) < 1,
• the sequence {ck + dk} is a Cauchy sequence,

then the sequence defined by (1) is convergent.
The polynomial

P (s) = 1− 3s
2

(
1 + 3s

4

(
1 + 3s

2

))
= −27s3−18s2−24+16

16

has a single real and positive root that we denote by σ,

σ = 2
9

[
7−3
√

6
5

3

√[
5
(
7 + 3

√
6
)]2

+ 3

√
5
(
7 + 3

√
6
)
− 1

]
.

The approximative value of this root is σ ≈ 0.433752794292925 . . ..
The real functions f : [0, σ)→ R and h : (1,∞)→ R are defined as:

(3) f(s) = 27
16 ·

s4

P (s)2 , h(t) = 18ABt+17E
108A3t2 ,
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where A,B,E > 0, and g : [0, σ)× (1,∞)→ R is defined as

(4) g(s, t) = f(s)
(

1 + 1
4

(
1 + 3s

2

)2
+ h(t)

)
.

Lemma 2. For the functions f and g defined by (3) and (4) the following
proprieties stand:

(i) f is increasing for s ∈ [0, σ) and f(0) = 0,
(ii) f ′ is increasing for s ∈ [0, σ) and f ′(0) = 0,

(iii) g(s, t) < g(s, 1) for t > 1,
(iv) g1(s) = g(s, 1) is increasing for s ∈ [0, σ), and g1(0) = 0,
(v) g′1(s) is increasing for s ∈ [0, σ) and g′1(0) = 0.

Proof. The proofs can be followed in [1]. �

Lets consider the polynomial
(5) R(τ) = 27(τ − 1)(2τ − 1)(τ2 + τ + 2)(τ2 + 2τ + 4).
Using the sequences {ak}, {bk}, {ck} and {dk} we can state that
(6) bk+1 = g(bk, ak) for ∀ k ∈ N∗.
The following theorem proves the four proprieties of the sequences {ak}, {bk},
{ck} and {dk}.

Theorem 3. Let consider the following constants

(7) A ∈
(
0, 1

2

)
, B ∈

(
0, R(A)−17E

18A

)
, E ∈

(
0, R(A)

17

)
,

where R is the polynomial defined by (5). Then the following inequalities are
true:

(ik) bk+1 < bk for any k ∈ N∗,
(iik) Aak(ck + dk) < 1 for any k ∈ N∗,

(iiik) ak ≥ 1 for any k ∈ N∗,
(ivk) ak < ak+1 for any k ∈ N∗.

Proof. The proofs can be followed in [1]. �

Theorem 4. In the conditions (7) there exists r ∈ [0,∞) so that

(8) r =
∞∑
k=0

(ck + dk).

Proof. The proofs can be followed in [1]. �

3. THE CONVERGENCE OF EZQUERRO-HERNÁNDEZ METHOD

Theorem 5. We consider the nonlinear operator F : D ⊂ X → Y , that
is 3 times Fréchet differentiable over the convex and open set D0 ⊂ D, where
X and Y are Banach spaces. We assume that the following conditions are
fulfilled.
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(a) Local conditions:
(a1) There is Γ0 = Γ

(
x(0)

)
= F ′

(
x(0)

)−1
, x(0) ∈ D0,

(a2) ‖Γ0‖ ≤ β,
(a3)

∥∥∥Γ0F
(
x(0)

)∥∥∥ ≤ η,

(a4) S
(
x(0), r

)
⊂ D0, where r is given by (8),

(b) Global conditions:
(b1) ‖F ′′ (x)‖ ≤M2, ∀x ∈ D0,
(b2) ‖F ′′′ (x)‖ ≤M3, ∀x ∈ D0,
(b3) ‖F ′′′ (x)− F ′′′ (y)‖ ≤ L‖x− y‖, ∀x, y ∈ D0,

(c) Restrictions:
(c1) A ∈

(
0, 1

2
)
,

(c2) B ∈
(
0, R(A)−17E

18A
)
,

(c3) E ∈
(
0, R(A)

17
)
,

where A = M2βη, B = M3βη
2, E = Lβη3 and R is the polynomial

defined by the formula (5).
Then the sequence

{
x(k)

}
, given by the recurrent formula (1), is well defined,

and
{
x(k)

}
,
{
y(k)

}
⊂ S

(
x(0), rη

)
for any k ∈ N∗. The sequence

{
x(k)

}
con-

verges to x?, the solution for the equation F (x) = 0 and x? ∈ S
(
x(0), rη

)
. This

solution, namely x? is unique in S
(
x(0), 2/(M2β − rη)

)
∩D0. The estimated

error is given by the formula

(9)
∥∥∥x? − x(k)

∥∥∥ ≤ η ∞∑
j=k

(ck + dk) ≤ 3(2+A+A2)
4A · b1

3√γ

∞∑
j=k

(
3
√
γ
)4j−1

,

where γ = b2/b1.

Proof. The proofs can be followed in [1]. �

Remark 1. The R-order of convergence of Ezquerro-Hernández method
can be computed by the inequality (9) and is equal to 4.

Remark 2. The advantage of Ezquerro-Hernández method is that the R-
order of convergence 4 is obtained without the the use of the 2nd and 3rd
derivative. The calculus of the 2nd and 3rd derivative is needed to check the
convergence conditions of theorem 5, for the initial iteration x(0).

4. IMPLEMENTATION OF EZQUERRO-HERNÁNDEZ METHOD

In order the present the programs for Ezquerro-Hernández method lets con-
sider a nonlinear equation in R2

(10)
{
x2

1 − 2 cos(3x1)− x2 − k1 = 0
x1 − x3

2 + 3 cos(2.5x2) + k2 = 0,
where k1 = 8.822260523769353 and k2 = 4.149013443610321.
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Example 6. Mathcad dedicated variable ORIGIN has the value 1.

ORIGIN := 1.

Let F : R2 → R2 be a nonlinear function

F (x) :=
(

x2
1 − 2 cos(3x1)− x2 − k1

x1 − x3
2 + 3 cos

(
5
2x2

)
+ k2

)

for the nonlinear equation F (x) = 0. The 1st order derivative of F is

F ′(x) :=
(

2x1 + 6 sin(3x1) −1
1 −3x2

2 − 15
2 sin

(
5
2x2

) ) .
The variable d that represents the space dimension, the identity matrix and
the operators Γ and N ar considered as

d := 2 I := indentity(d) Γ(x) := F ′(x)−1 N (x) := Γ(x) · F (x),

where the Mathcad function indentity(d) was was used to generate the iden-
tity matrix of order d. The function H and Q form (1) are defined in Mathcad:

H(x, y) := Γ(x) ·
[
F ′
(
x+ 2

3(y − x)
)
− F ′(x)

]
and

Q(x, y) := 3
4 ·H(x, y) ·

[
I − 3

2H(x, y)
]
.

Now the Ezquerro-Hernández method operator can be defined:

(11) EH(x) :=
[
I −Q

(
x, x−N (x)

)]
· N (x)

With this preparation done the program that applies the Ezquerro-Hernández
method can be easily written.

Program 7. The Ezquerro-Hernández method program.
EzHe(x, ε) := z ← xT

while |EH(x)| ≥ ε
x← x− EH(x)
z ← stack(z, xT)

return z

Let the initial vector be

x :=
(

2.3 6
)T
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and ε := 10−15, the program EzHe outputs the 8 iterations for Ezquerro-
Hernández method.

EzHe(x, 10−15) =



2.3 6
3.39029632223816170 3.1088000642353517
0.44114493152486567 2.2109495464523180
7.80798684999809320 2.5526294911507867
3.12767020347179870 2.1135931271578080
2.99759733296023570 2.0015643192458255
2.99999999991826140 2.0000000000800786
2.99999999999999960 1.9999999999999996


.

5. THE CHOICE OF THE INITIAL ITERATION

One can see that the random choice of the initial iteration, in general, can
not ensure a convergence with and order equal to 4 for the Ezquerro-Hernández
method starting with the first step. In order to determine a start iteration that
ensures a convergence of order 4, form the first step, we use the local conditions
(a1)–(a3), the global conditions (b1)–(b3) and the restriction (c1)–(c3) from the
convergence theorem 5.

We choose a convex domain D0 ⊂ D = R2 that contains a solution x? for
the equation F (x) = 0. For the equation presented in the example (10) we
choose a disk centered in x(0) = (c1 c2)T with a radius r,

D0 =
{
x
∣∣ ∣∣∣x− x(0)

∣∣∣ ≤ r, x ∈ R2
}
,

where c1 = 2.91, c2 = 1.88 and r = 0.4. We compute the topological degree of
function F relative to the regular polygon, [5], [6], with m wedged subscribed
within the circle. The Mathcad programs that compute the topological degree
are:

Program 8. Program P generates m angles of the regular polygon sub-
scribed within c = (c1 c2)T with a radius of r (the last angle m+1 is the same
as the first one).
P (c, r,m) := for k ∈ 1..m+ 1

tk ←
2(k − 1)π

m
P1,k ← c1 + r · cos(tk)
P2,k ← c2 + r · sin(tk)

return P

Program 9. Subprogram q calculates the matrix determinant.

q(F, x, y)) :=
∣∣∣∣( sign (F (x)1) sign (F (y)1)

sign (F (x)2) sign (F (y)2)

)∣∣∣∣
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Program 10. Subprogram Q.
Q(F, c, r,m) := N ← P (c, r,m)

Q←


q
(
F, c,N 〈1〉

)
q
(
F, c,N 〈2〉

)
q
(
F,N 〈1〉, N 〈2〉

)


for k ∈ 2..m

Q← augment

Q,

q
(
F, c,N 〈k〉

)
q
(
F, c,N 〈k+1〉

)
q
(
F,N 〈k〉, N 〈k+1〉

)



return Q

Program 11. Program gradt that calculates the topological degree for
function F relative to the regular polygon with the angles on the circle c =
(c1 c2)T with a radius r.
gradt(F, c, r,m) := N ← P (c, r,m)

for k ∈ 1..m

sk ← sign

∣∣∣∣∣∣
 c1 c2 1

N1,k N2,k 1
N1,k+1 N2,k+1 1

∣∣∣∣∣∣


Q← Q(F, c, r,m)

return

∣∣∣∣∣∣
m∑
k=1

sk

d+1∑
j=1

(−1)jQj,k

∣∣∣∣∣∣
2dd!

Since the topological degree of function F relative to the regular polygon
P is

gradt(F, 2.91, 1.88, 0.4, 31) = 1,
namely different from 0, it implies that the function F has at least one root
within the polygon P, [2], [4]. Therefore the disk centered in c with a radius
r also contains at least one root of function F.

We verify if there is Γ0. That means that we have to compute Γ0 = Γ
(
x(0)

)
,

Γ0 =
(

0.10707668676926453 −0.03449884967970596
0.03449884967970596 −0.33330336776140457

)
.

The equation of a circle of radius r centered on (c1 c2)T is

C(x) := (x1 − c1)2 + (x2 − c2)2 − r2.

Form the following nonlinear programming problems we can determine the
constants M2, M3 and the Lipschitz constant L:
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(1) let F ′′1 (x) and F ′′2 (x) be the matrices that constitute the 2nd order
tensor the represents the 2nd derivative of function F . These matrices
are extracted from the matrix F ′(x), namely the 1st order derivative
of the nonlinear function F .

F ′′1 (x) :=
(

2 + 18 cos(3x1) 0
0 0

)
,

F ′′2 (x) :=
(

0 0
0 −6x2 − 75

4 cos
(

5
2x2

) ) .
The objective function

nF ′′ (x) := max
[
norme

(
F ′′1 (x)

)
, norme

(
F ′′2 (x)

)
].

We solve the nonlinear programming problem, where the initial value
is: x := x(0),

Given C(x) ≤ 0 gradt(F, c, r,m) 6= 0 ξ := maximize(nF ′′, x),

then, using the optimum value ξ, we obtain the constant

M2 := F ′′ (ξ) , namely M2 = 29.33101477081403.

(2) The 3rd order derivative of function F is a 3rd order tensor that is
composed by 4 matrices:

F ′′′1 (x) :=
(
−54 sin(3x1) 0

0 0

)
, F ′′′4 (x) :=

(
0 0
0 375

8 sin
(

5
2x2

)
− 6

)

and

F ′′′2 (x) = F ′′′3 (x) =
(

0 0
0 0

)
.

The process that provided the matrices F ′′1 (x) and F ′′2 (x) from F ′(x),
is similarly used to obtain F ′′′1 (x) and F ′′′2 (x) from F ′′1 (x) and to obtain
from F ′′2 (x) the matrices F ′′′3 (x) and F ′′′4 (x). The objective function

nF ′′′(x) := max
[
norme

(
F ′′′1 (x)

)
, norme

(
F ′′′2 (x)

)
,

norme
(
F ′′′3 (x)

)
, norme

(
F ′′′4 (x)

)]
.

We solve the nonlinear programming problem with the initial value
x := x(0),

Given C(x) ≤ 0 gradt(F, c, r,m) 6= 0 ξ := maximize(nF ′′′, x),

then using the optimum value ξ, we determine the constant

M3 := nF ′′′(ξ), namely M3 = 54.
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(3) Let
n1(u, v) := norme

(
F ′′′1 (u)− F ′′′1 (v)

)
,

n2(u, v) := norme
(
F ′′′2 (u)− F ′′′2 (v)

)
,

n3(u, v) := norme
(
F ′′′3 (u)− F ′′′3 (v)

)
,

n4(u, v) := norme
(
F ′′′4 (u)− F ′′′4 (v)

)
,

and the objective function

L(u, v) :=
max

[
n1(u, v), n2(u, v), n3(u, v), n4(u, v)

]
|u− v|

.

We solve the nonlinear programming problem, where the initial values
are u = (P1,1 P2,1)T and v :=

(
P1,bm/2c P2,bm/2c

)T
.

Given C(u) ≤ 0 C(v) ≤ 0 gradt(F, c, r,m) 6= 0(
µ
ω

)
:= maximize(L, u, v),

using the optimal values µ and ω we will obtain the Lipschitz constant
L := L(µ, ω), namely L = 161.98364830993293.

Let
β(x) := norme

(
Γ(x)

)
,

η(x) := |N (x)| ,
A(x) := M2 · β(x) · η(x),
B(x) := M3 · β(x) · η(x)2,
E(x) := L · β(x) · η(x)3.

Let R be a polynomial
R(τ) := 27(τ − 1)(2τ − 1)(τ2 + τ + 2)(τ2 + 2τ + 4)

and the objective function
ρ(x) := |EH(x)|.

where the function EH is defined by the formula (11). The initial value
x := x(0) is used for the nonlinear programming problem

Given

0 < A(x) < 1
2

0 < B(x) < Q(A(x))− 17E(x)
18 ·A(x)

0 < D(x) < Q(A(x))
17

gradt(F, c, r,m) 6= 0
s := Maximize(ρ, x).

The solution for the nonlinear programming problem is

s =
(

2.993115896952277
2.1055148260544714

)
,
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The value for the objective function, in the optimum solution s, is the radius
of the quadruple convergence disk Dc = {x

∣∣ |x− s| ≤ ρ(s) x ∈ R2}, a
Ezquerro-Hernández method,

ρ(s) = 0.10419021465653865.
Let us verify the condition (a4) from the convergence theorem 5. Since∣∣∣x(0) − s

∣∣∣ = 0.2403438975646355 < r − ρ(s) = 0.29580978534346136,

it implies that Dc ⊂ D0 ⊂ D. The disk Dc contains the solution x? for the
equation F (x) = 0. The sequence

{
x(k)

}
, with x(0) = s, converges with a

R-order of convergence equal to 4 starting with x?, and all the terms of the
sequence are contained in Dc. This solution, namely s is the initial iteration
that ensures an R-order of convergence equal to 4 starting with the first step.

EzHe(s, 10−15) =


2.9900922931613527 2.1055148260544714
3.0001882531510615 2.0015649217352602
3.0000000000184297 2.0000000001656666

3 2

 .
Acknowledgement. Dedicated to professor Ştefan Măruşter on the oc-

casion of his 70th birthday.
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