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ELEMENTARY SPLINE FUNCTIONS

GHEORGHE COMAN∗ and TEODORA CĂTINAŞ∗

Abstract. The aim of this paper is to define the elementary spline functions
in analogy with the definition of the polynomial spline functions, given by I. J.
Schonberg. Also, it is described a method for constructing the elementary spline
functions. Finally, some examples are given.
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First, we present the I. J. Schoenberg’s definition of polynomial spline func-
tion given in [7].

Definition 1. [7] Let xn−1
+ denote the truncated power function defined as

xn−1 if x ≥ 0 and 0 if x < 0 (n = 1, 2, ...). Let ξν (ν = 1, ..., k) be a given

finite sequence of increasing abscissae. By a spline function of degree n − 1
we mean a function of the form

Sn−1,k(x) = Pn−1(x) +
k

∑

ν=1

Cν(x− ξν)
n−1
+ ,

where Pn−1 is a polynomial of degree ≤ n− 1. Equivalently, this function may

be defined by separate polynomials of degree ≤ n − 1 in each of the k + 1
intervals (−∞, ξ1), (ξ2, ξ3), ..., (ξk,∞), such that the composite function has

n− 2 continuous derivatives for all real x.

Remark 2. As it is mentioned by I. J. Schoenberg, in [9], the polyno-
mial spline functions were already used for approximation of functions by T.
Popoviciu in [4]. In particular, he showed that a continuous non-concave func-
tion of order n in a finite interval [a, b] is the uniform limit of elementary
functions of order n that are also non-concave of order n in [a, b] [4]. �

The elementary spline functions will be introduced here as an approximate
solution of a Cauchy problem regarding linear differential equations, using the
method described in [3].
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One considers the Cauchy problem

(1) y(n) + a1y
(n−1) + ...+ any = 0

and

(2)















y(x0) = y0
y′(x0) = y′0
...

y(n−1)(x0) = y
(n−1)
0 ,

with a1, ..., an ∈ C[a, b].
We set xk ∈ [a, b], k = 0, ...,m as points of a partition of the interval [a, b],

namely a = x0 < x1 < ... < xm = b.
A method for approximating the solution y of the Cauchy problem (1)–

(2), on the interval [a, b], is that of attaching, on each subinterval [xk−1, xk],
k = 1, ...,m, a Cauchy problem regarding a linear differential equation with
constant coefficients and to approximate the solution y, on the corresponding
subinterval, with the solution of the attached problem.

More precisely, on each subinterval [xk−1, xk], k = 1, ...,m, one considers
the Cauchy problem:

(3) y
(n)
k + αk1y

(n−1)
k + ...+ αknyk = 0, αki ∈ R, i = 1, ..., n;

(4)















yk(xk−1) = yk−1(xk−1)
y′k(xk−1) = y′k−1(xk−1)
...

y
(n−1)
k (xk−1) = y

(n−1)
k−1 (xk−1), for k = 1, ...,m,

with














y0(x0) = y0
y′0(x0) = y′0
...

y
(n−1)
0 (x0) = y

(n−1)
0 .

The constants αki ∈ R, i = 1, ..., n; k = 1, ...,m may be chosen in several
ways. For example, they may be chosen as

αki = ai(βk), βk ∈ [xk−1, xk], (e.g., βk =
xk−1+xk

2 );

αki = min
x∈[xk−1,xk]

|ai(x)|;

αki = max
x∈[xk−1,xk]

|ai(x)|.

In this way, the solving of the Cauchy problem (1)–(2) is reduced to solv-
ing m Cauchy problems (3)–(4) regarding linear differential equations with
constant coefficients.

Let us consider the characteristic equation of (3):

(5) rnk + αk1r
(n−1)
k + ...+ αkn = 0.
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The solution yk of the problem (3)–(4) depends on the nature of the solution
of the characteristic equation (5).

As a consequence of this statement is that a fundamental system of solu-
tions yk1, ..., ykn of the equation (3) depends on the nature of the roots of the
equation (5). Thus, if the characteristic equation (5) has:

• n real and distinct roots rk1, ..., rkn, then

yk1(x) = erk1x, ..., ykn(x) = erknx.

• p multiple roots rk1, ..., rkp, with multiplicity orders, respectively,
µk1, ..., µkp, (with µk1 + ...+ µkp = n) then

yk1(x) = erk1x; yk2(x) = xerk1x; ...; yk,µk1
(x) = xµk1−1erk1x;

yk,µk1+1(x) = erk2x; yk,µk1+2(x) = xerk2x; ...; yk,µk1+µk2
(x) = xµk2−1erk2x;

...

yk,n−µkp
(x) = erkpx; yk,n−µkp+1(x) = xerkpx; ...; yk,n(x) = xµkp−1erkpx.

• complex roots, for example, r = u ± iv, then the functions eux cos vx
and eux sin vx are solutions of the equation (5).

• multiple complex roots, for example, r = u+iv with multiplicity order
µ, then the functions

eux cos vx, eux sin vx

xeux cos vx, xeux sin vx

...

xµ−1eux cos vx, xµ−1eux sin vx

are solutions of the equation (5).

If yk1, ..., ykn is a fundamental system of solutions, generated by the roots
of the characteristic equation (5), then

yk = c1yk1 + ...+ cnykn, ci ∈ R, i = 1, ..., n,

is the solution of the Cauchy problem (3)–(4), with the constants c1, ..., cn
obtained by the conditions (4).

Remark 3. The function ȳ ∈ Cn−1[a, b] defined by ȳ|[xk−1,xk]
= yk, for all

k = 1, ...,m, is considered as an approximation of the solution y of the given
problem (1)–(2), i.e., y ≈ ȳ on [a, b], where ȳ|[xk−1,xk]

is the restriction of the

function ȳ to the interval [xk−1, xk]. �

Remark 4. As yk, k = 1, ...,m are elementary functions (polynomials,
exponential or trigonometric functions), ȳ is a piecewise elementary function.

�

Similarly to the definition of the polynomial spline function, as a piecewise
polynomial function, given by I. J. Schonberg, we have the following definition.
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Definition 5. The function ȳ, defined above, is called an elementary spline
function.

Because ȳ was constructed as an approximation of the solution of the n-th
order differential equation (1), Definition 5 can be completed by the following
definition.

Definition 6. The function ȳ is an elementary spline function of order n.

In the case of an uniform partition of the interval, for the approximation
error we have the following estimation.

Proposition 7. If xk = a + kh, k = 0, ...,m, with h = (b − a)/m, is an

uniform partition of the interval [a, b] then the following estimation holds:

‖y − ȳ‖ ≤ εheLh 1−e(b−a)L

1−ehL
,

where

L = max{1 + ‖a1‖ , ‖a2‖ , ..., ‖an‖}
ε = max

1≤k≤m
{‖a1 − αk1‖ , ..., ‖an − αkn‖} · ‖y‖

Example 8. Suppose that xk = a + kh, k = 0, ...,m; h = (b − a)/m is a
uniform partition of the interval [a, b] and βk = (xk−1 + xk)/2, k = 1, ...,m.

We consider the following Cauchy problem:

(6)







y′′ + (2x− 1)y = 0, x ∈ [0, 1]
y(0) = 1
y′(0) = 0.

�

Case 1. Consider xk = kh, k = 0, ..., 4, with h = 1/4. On the interval [0, 14 ]
we have







y′′1 − 3
4y1 = 0,

y1(0) = 1
y′1(0) = 0.

As the characteristic equation in this case has two real and distinct roots,

r1,2 = ±
√
3
2 , it follows that

y1(x) = c1e
−
√
3
2 x + c2e

√
3
2 x,

and after some computation we get the constants

c1 = c2 =
1
2 .

On the interval [14 ,
1
2 ] we obtain







y′′2 − 1
4y2 = 0,

y2(
1
4) = y1(

1
4)

y′2(
1
4) = y′1(

1
4).
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and it follows

y2(x) = c′1e
−1
2x + c′2e

1
2x,

with

c′1 =
1+

√
3

4 e
(1−

√
3)

8 + 1−
√
3

4 e
(1+

√
3)

8

c′2 =
1−

√
3

4 e−
(1+

√
3)

8 + 1+
√
3

4 e
(
√
3−1)
8 .

In the same way we get

y3(x) = c′′1 cos
x
2 + c′′2 sin

x
2 , x ∈ [12 ,

3
4 ],

with

c′′2 = (−c′1e
−1
4 + c′2e

1
4 ) cos 1

4 + (c′1e
−1
4 + c′2e

1
4 ) sin 1

4

c′′1 = (−c′1e
−1
4 + c′2e

1
4 − c′′2 sin

1
4)

/

cos 1
4

and
y4(x) = c′′′1 cos

√
3
2 x+ c′′′2 sin

√
3
2 x, x ∈ [34 , 1]

with

c′′′2 = 1√
3

(

c′′1(
√
3 sin 3

√
3

8 cos 3
8−sin 3

8 cos
3
√
3

8 )+c′′2(
√
3 sin 3

√
3

8 sin 3
8+cos

3
8 cos

3
√
3

8 )
)

c′′′1 = (c′′1 cos
3
8 + c′′2 sin

3
8 − c′′′2 sin 3

√
3

8 )
/

cos 3
√
3

8 .

Remark 9. The solution of the problem (6), ȳ, has the following properties:
ȳ ∈ C1[0, 1] and ȳ|

[0,
1
2 ]

is an exponential function, respectively, ȳ|
[
1
2 ,1]

is a

trigonometric function.
For the error we have

‖y − ȳ‖ ≤ 7
16e

1
4 1−e

1−e
1
4

‖y‖ .

�

In Figure 1 we plot the graph of the solution ȳ, for Case 1.
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Figure 1: Graph of ȳ.
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Case 2. Consider xk = kh, k = 0, ..., 3, with h = 1/3. On interval [0, 13 ] we
have







y′′1 − y1 = 0, x ∈ [0, 13 ]
y1(0) = 1
y′1(0) = 0.

Hence, we get

y1(x) = c1e
−
√
3
2 x + c2e

√
3
2 x,

with the constants
c1 = c2 =

1
2 .

If x ∈ [13 ,
2
3 ] we obtain







y′′2 = 0, x ∈ [13 ,
2
3 ]

y2(
1
3) = y1(

1
3)

y′2(
1
3) = y′1(

1
3).

It follows that
y2(x) = c′1 + c′2x,

and after some computation we get the constants

c′1 = (12 +
√
3

12 )e
−
√
3
6 + (12 −

√
3

12 )e

√
3
6

c′2 =
√
3
4 (e

√
3
6 − e−

√
3
6 ).

For x ∈ [23 , 1] we have






y′′3 + 2
3y3 = 0, x ∈ [23 , 1]

y3(
2
3 ) = y2(

2
3 )

y′3(
2
3 ) = y′2(

2
3 ).

Hence, we get

y3(x) = c′′1 cos
√

2
3x+ c′′2 sin

√

2
3x,

with

c′′2 = c′1 sin
2
3

√

2
3 + c′2

(

2
3 sin

2
3

√

2
3 +

√

3
2 cos

2
3

√

2
3

)

c′′1 = (c′1 +
2
3c

′
2 − c′′2 sin

2
3

√

2
3)

/

cos 2
3

√

2
3 .

Remark 10. In this case, the solution of the problem (6), ȳ, has the fol-
lowing properties: ȳ ∈ C1[0, 1] and ȳ|

[0,
1
3 ]

is an exponential function, ȳ|
[
1
3 ,

2
3 ]

is a polynomial function and ȳ|
[
2
3 ,1]

is a trigonometric function.

For the error we have

‖y − ȳ‖ ≤ 5
9e

1
3 1−e

1−e
1
3

‖y‖ .
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�

In Figure 2 we plot the graph of the solution ȳ, for Case 2.
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Figure 2: Graph of ȳ.
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