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THERMAL STABILITY PROBLEMS IN A THIN POROUS PLATE

REMUS ENE∗† and IOANA DRAGOMIRESCU∗

Abstract. Some numerical and analytical aspects of the stability of the formal
solution for the dynamical problem associated with the governing equations in
a thin porous plate under a constant thermal source are discussed.

MSC 2000. 74A10, 74A15, 35J20.
Keywords. Porous plates, micropolar theory, stability analysis.

1. THE PHYSICAL PROBLEM

Porous materials have become more and more important in the latest engi-
neering technologies. Thus, silicon porous plates are used in nanotechnology
researches [4], porous aluminia and zirconia plates [5] find use in the man-
ufacture of fuel cell electrolyte substrates. Most of the times, the governing
field equations and the constitutive relations are represented by nonlinear par-
tial differential equations which are not amenable for a rigorous mathematical
analysis. That is why, numerical methods that can lead us to an approxi-
mative solution or to some evaluations or some results on the stability of the
solution of the associated dynamical problem play an important role.

Let us consider a porous medium, a rectangular plate that fulfills the domain
Ω ⊂ R3. Following Lord and Shulman [8], Green and Lindsay [7] and Iesan
[9], the governing equations in a generalized thermoelastic solid with voids,
without body forces, heat sources and extrinsic equilibrated body forces are
[2]

(1)



(λ+ µ) ∂
∂xi

(divu) + µ∆ui + b ∂ϕ∂xi
− β ∂θ∂xi = ρ0üi, i = 1, 3

α∆φ− b(divu)− ξϕ+mθ + ρ0l
∗ = ρ0χφ̈

T0[β(divu̇) +mϕ̇+ aθ̇] = k∆θ,
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on Ω× (0, t0), where u = (u1, u2, u3) is the displacement field, θ stands for the
variation of the absolute temperature, ϕ is the change in volume fraction field,
ρ0 is the density of the medium, λ, µ are the Lame’s constants, k is the thermal
conduction coefficient and a, b, m, α, β, ξ are the constitutive coefficients. The
equations of the system (1) are the movement, the equilibrated forces equation
and the energy equation, respectively.

According to the micropolar theory of thermoelasticity for elastic media
with voids introduced by Eringen [6], we assume that

(2)

u(1) = (x3v1, x3v2, w),

u(2) = grad (x3Φ),

ϕ = x3ψ, θ = x3T

where the functions v1, v2, w, Φ, ψ, T depends on x1, x2, t. In this manner, the
system is reduced to the 2-dimensional case (in the median plane Σ (x1, x2) ∈
Σ, t ∈ (0, t0)).

As a consequence of (2), the equilibrium equations can be reduced to [2]

(3)



∂2v1
∂t2
− µ
ρ0 ∆v1 = 0

∂2v2
∂t2
− µ
ρ0 ∆v2 = 0

∂2w
∂t2
− µ
ρ0 ∆w = 0

and

(4)


Φ̈ = λ+ 2µ

ρ0 ∆Φ + b
ρ0ψ −

β
ρ0T

ψ̈ = α
ρ0χ∆ψ − b

ρ0 ∆Φ− ξ
ρ0ψ + m

ρ0T

Ṫ = k
ρ0cl

∆T − βT0
ρ0cl

∆Φ̇− mT0
ρ0cl

ψ̇

Let us consider the boundary of Ω, ∂Ω = Σ+⋃Σ−
4⋃
i=1

Σi. Then the bound-
ary conditions have the form:

(5)



3∑
j=1

nj · tij = 0, on ∂Ω

u = 0, on ∂Ω
ϕ = 0, on ∂Ω
k · ∂θ∂n̄ + εσ(θ4 − S∗4) = 0, on Σ+

k · ∂θ∂n̄ + ct(θ − S∗) = 0, on
4⋃
i=1

Σi

θ = S∗, on Σ−
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with ct the transfer coefficient, ε ∈ (0, 1] material constant (ε = 1 for a black
body), S∗ the source temperature (assumed constant), σ = 5, 6704 · 10−8

kg · s−3 ·K−4 Stefan-Boltzmann constant and tij given by
tij = λ · (∇ · u) · δij + 2µ · eij + bϕ · δij − βT · δij , i, j ∈ {1, 2, 3}.

The initial conditions have the form [2]:

(6) u(x, 0) = 0, ϕ(x, 0) = 0, θ(x, 0) = 0.

In [1] numerical evaluations on the thermal stresses in a thin porous plate
due to the radiations of a thermal source are given. They are concerned
with the evaluation of the absolute temperature, porosity and the vertical
displacement [1]. All the deformations, the stresses and the change in volume
fraction field depend on the temperature. It is showed that as the absolute
temperature inside the plate is growing, the deformation of the plate take place
until the reach of the equilibrium state [1]. The solution of the dynamical
problem proved to be stationary.

In [2], using the theory of semigroups from Pazy [11], an existence and
uniqueness theorem based on the representation theory is given. The idea of
the theorem was to write the system (4) as an evolution system of order 1
given by a strongly elliptic differential operator on a Hilbert space. Bârsan
[10] also gave an existence and uniqueness result for the problem with initial
data and boundary conditions modelling the mechanical behavior of a thin
porous plate, using the logarithmic convexity method.

A numerical modelling concerning the convexity of the median surface of the
elastic thin porous plate is obtained in [3] using FreeFem++, i.e. the slopes
and the curvatures in the directions of the coordinate axes are graphically
represented. It is numerically showed that when the plate reaches its thermal
equilibrium, the curvature touches its maximum value.

2. THE STABILITY ANALYSIS

Our main interest in this paper is in an analytical stability study of the
dynamical problem. For this purpose the same method as in [11] was used.
The following dimensionless variables, functions

(7)


x′ = ω∗1

c2
· x1, y′ = ω∗1

c2
· x2, z′ = ω∗1

c2
· x3, τ = ω∗1 · t

v1 = ω∗1
c2
· u1, v2 = ω∗1

c2
· u2, v3 = ω∗1

c2
· u3, θ′ = T

T0

ψ = ω∗1
2·χ
c2

2
· ϕ, c2 =

√
µ
ρ0
, ω∗1 = ρ0·ce·c2

2
k ,

and coefficients

(8)


a1 = λ+µ

µ , a2 = b·c2
2

χ·µ·ω∗1
2 , a3 = β·T0

µ , a4 = b·χ
α

a5 = ξ·c2
2

α·ω∗1
2 , a6 = m·χ·T0

α , a7 = ρ0·χ·c2
2

α

a8 = m·c4
2

k·χ·ω∗1
3 , ε1 = β·c2

2
k·ω∗1

,
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are introduced. Then the dimensionless form of the dynamical problem (1) is

(9)



a1 · ∂∂x(∇ · v) +4v1 + a2 · ∂ψ∂x − a3 · ∂θ∂x = ∂2v1
∂τ2

a1 · ∂∂y (∇ · v) +4v2 + a2 · ∂ψ∂y − a3 · ∂θ∂y = ∂2v2
∂τ2

a1 · ∂∂z (∇ · v) +4v3 + a2 · ∂ψ∂z − a3 · ∂θ∂z = ∂2v3
∂τ2

4ψ − a4 · (∇ · v)− a5 · ψ + a6 · θ = a7 · ∂
2ψ
∂τ2

ε1 · ∂∂τ (∇ · v) + a8 · ∂ψ∂τ + ∂θ
∂τ = 4θ

for (x, y, z) ∈ Ω. Here v = (v1, v2, v3), vi, ψ ∈ C2(Ω × T )
⋂
C1(Ω × T ) and

θ ∈ C2,1(Ω× T )
⋂
C1(Ω× T ). In (9) in order not to complicate the symbolic

writing, we kept the same notations for the cartesian coordinates (x, y, z)
(instead of (x′, y′, z′)), for θ and for the entire Ω domain.

In the boundary conditions
3∑
j=1

nj · tij = 0, i ∈ {1, 2, 3} from (5), tij is

replaced by its nondimensional expression t′ij , where

(10) t′ij = a1−1
a3
· (∇ · v) · δij + 2

a3
· eij + a2

a3
ψ · δij − θ · δij . i, j ∈ {1, 2, 3}.

It is convenient to transform the boundary conditions (5), written in the

nondimensional form, in periodically conditions with respect to
4⋃
i=1

Σi, by im-
posing that Σ1 : y = 0, Σ2 : x = L, Σ3 : y = l, Σ4 : x = 0. This allows
us to split the problem (9) in two problems: one is the stationary problem
associated to the dynamical one with the boundary conditions

(11)



∑3
j=1 nj · t′ij = 0, (i ∈ 1, 3) on ∂Ω′

ψ = 0, on ∂Ω′

k · ∂θ∂n + ε · σ · (θ4 − S∗4) = 0, on Σ+ : z = h0
2

k · ∂θ∂n + ct · (θ − S∗) = 0, on
4⋃
i=1

Σi

θ = S∗, on Σ− : z = −h0
2

and the other problem is the initial one but with homogeneous initial and
boundary conditions. When applied to Σ+ and Σ−, the micropolar theory,
led us the decomposition of the stationary problem in two problems, for each
of them the solution is easy to obtain. On the median plane Σ the equations
have the same form on Σ±, i.e. relatively to the Σ+ and Σ−, we decompose
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the

(12)


4V1 = 0,
4V2 = 0,
4W = 0,
4Φ = 0,

with the boundary conditions

(13)



∂V1
∂x (L, y) = ∂V1

∂x (0, y), V1(L, y) = V1(0, y), y ∈ [0, l],

∂V2
∂y (x, l) = ∂V2

∂y (x, 0), V2(x, l) = V2(x, 0), x ∈ [0, L],

∂W
∂x (L, y) = ∂W

∂x (0, y), ∂Φ
∂x (L, y) = ∂Φ

∂x (0, y), y ∈ [0, l],

∂W
∂y (x, l) = ∂W

∂y (x, 0), ∂Φ
∂x (x, 0) = ∂Φ

∂y (x, l), x ∈ [0, L].

On Ω the decomposition leads to

(14)
{ 4θ = 0,(

h0
2 ± z

)
· 4ψ1 − a5 ·

(
h0
2 ± z

)
· ψ1 + a6 · θ = 0,

for Σ± with boundary conditions

(15)



ψ1 = 0, on ∂Σ
k · ∂θ∂n + ε · σ · (θ4 − S∗4) = 0, on Σ+ : z = h0

2

k · ∂θ∂n + ct · (θ − S∗) = 0, on
4⋃
i=1

Σi

θ = 0, on Σ− : z = −h0
2

for Σ+ and

(16)



ψ1 = 0, on ∂Σ
θ = 0, on Σ+ : z = h0

2

k · ∂θ∂n + ct · (θ − S∗) = 0, on
4⋃
i=1

Σi

θ = S∗, on Σ− : z = −h0
2

for Σ−. Here

(17)



v = v(1) + v(2), ∇′ · v(1) = 0, ∇′ × v(2) = 0,

v(1) = ((h0
2 + z) · V1, (h0

2 + z) · V2,W ), ∂V1
∂x + ∂V2

∂y = 0

v(2) = ((h0
2 + z) · ∂Φ

∂x , (
h0
2 + z) · ∂Φ

∂y ,Φ),

ψ = (h0
2 + z) · ψ1,

θ = A · (h0
2 + z) · θ1
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with A,B two real constants and the functions V1, V2, W , Φ, ψ1, θ1 depending
on (x, y, τ).

For each case, i.e. (12-13-14-15), (12-13-14-16), the solution is easy to obtain
and the general form of the solution of the stationary problem is the sum of
the two solution groups (relatively to Σ+ and Σ−). In our case, this solution
has the form

(18)



v1(x, y, z) = a3f(L, S∗, h0, ct) ·
cosh 2πy

L −cosh 2π(l−y)
L

sinh 2πl
L

sin 2πx
L

v2(x, y, z) = −a3f(L, S∗, h0, ct) ·
sinh 2πy

L +sinh 2π(l−y)
L

sinh 2πl
L

cos 2πx
L

v3(x, y, z) = a3L2S∗

4π2h0
· (Act

+ 3
2) cosh 2π·y

L −cosh 2π(l−y)
L

sinh 2πl
L

cos 2πx
L

ψ(x, y, z) = 8a6πf(L,S∗,h0,ct)√
L3·l

·
∞∑

k,j=1

sin kπxL sin jπyl
a5+(kπL )2+( jπl )2

θ(x, y, z) = 4πf(L,S∗,h0,ct)
L ,

with f(L, S∗, h0, ct) = L·S∗
2π·h0

· [1
2 · (

h0
2 − z) + A

ct
· (h0

2 + z)] for all x ∈ [0, L],
y ∈ [0, l], z ∈ [−h0

2 ,
h0
2 ]. Then we impose

v1(x, y, z, τ) = 0, v2(x, y, z, τ) = 0, v3(x, y, z, τ) = 0,
ψ(x, y, z, τ) = 0, θ(x, y, z, τ) = 0, on Ω× (0, t0).

The analytical study led us to the following general stability result.

Proposition 1. The solution of the dynamical problem (9) with the bound-
ary conditions (5) and the initial conditions (6) is stable in time.

Proof. Using the micropolar theory [6], we obtain the expressions of the
functions v1, v2, v3, ψ, θ. This allows us to perform an evaluation of the
solution (18) of the dynamical problem with respect to the L2(Ω) norm, i.e.

||u||L2(Ω) =
( ∫

Ω u
2dω

)1
2
. We get

||v1||2L2(Ω) = a2
3·S
∗2·L3·h0
96π2 · (1 + 2A

ct
+ 4A2

c2
t

) · sinh2 πl
L

sinh2 2πl
L

· (Lπ · sinh 2πl
L − 2l);

||v2||2L2(Ω) = a2
3·S
∗2·L3·h0
96π2 · (1 + 2A

ct
+ 4A2

c2
t

) · sinh2 πl
L

sinh2 2πl
L

· (Lπ · sinh 2πl
L + 2l);

||v3||2L2(Ω) = a2
3·S
∗2·L5

32π4·h2
0
· (Act

+ 3
2)2 · sinh2 πl

L

sinh2 2πl
L

· (Lπ · sinh 2πl
L − 2l);

||ψ||2L2(Ω) = a2
6·S
∗2·h0
3 · (1 + 2A

ct
+ 4A2

c2
t

) ·
∞∑

k,j=1

1
[a5+(kπL )2+( jπl )2]2

;

||θ||2L2(Ω) = h3
0

3 · (1 + 2A
ct

+ 4A2

c2
t

).
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All the expressions of the L2(Ω) norms of v1, v2, v3, ψ, θ, depend on the
thermal source S∗ by a constant A which is a solution of the algebraic equation

k · 2S∗
h0·ct

·A+ ε · σ · ( 2S∗
h0·ct

)4 ·A4 − ε · σ · S∗4 = 0.
It is easy to see that all the above norms are bounded, which imply that

the solution is stable in time. �

3. CONCLUSIONS

In this paper the stability of the solution of the associated dynamical prob-
lem for a thin porous plate under a constant thermal source is investigated
using methods from micropolar plates theory. The main idea of the method
is to split the dynamical problem in two problems obtained by taking into
account the decomposition of ∂Ω, the boundary of the domain Ω. Then, for
each of these problems, the solution is easy to reach.

This analytical stability result sustain some previous works of the first au-
thor, mostly numerical studies.
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