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Abstract. In this paper, Voronovskaja-type results with quantitative upper es-
timates and the exact orders in simultaneous approximation by some complex
Kantorovich-type polynomials and their iterates in compact disks in C are ob-
tained.
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1. INTRODUCTION AND AUXILIARY RESULTS

The complex Bernstein polynomials, the complex Bernstein-Stancu polyno-
mials depending on two parameters 0 ≤ α ≤ β and the complex Bernstein-
Stancu polynomials depending on one parameter 0 ≤ γ, are defined by the
same formulas as in the case of real variable, by

Bn(f)(z) =
n∑
k=0

pn,k(z)f(k/n), see e.g. [9],

S(α,β)
n (f)(z) =

n∑
k=0

pn,k(z)f [(k + α)/(n+ β)], see [14],

S<γ>n (f)(z) =
n∑
k=0

p<γ>n,k (z)f(k/n), see [13],

respectively, where z ∈ C, pn,k(z) =
(n
k

)
zk(1− z)n−k and

p<γ>n,k (z) =(
n

k

)
z(z + γ)...(z + (k − 1)γ)(1− z)(1− z + γ)...(1− z + (n− k − 1)γ)

(1 + γ)(1 + 2γ)...(1 + (n− 1)γ) .
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In the very recent book [2] and the papers [3], [4], [5], results on simultane-
ous approximation and of Voronovskaja-type, with quantitative estimates in
compact disks, for the above defined complex Bernstein-type polynomials and
their iterates were obtained.

The main aim of this paper is to extend these kind of results to the following
Kantorovich variants of these polynomials, defined by

Kn(f)(z) = (n+ 1)
n∑
k=0

pn,k(z)
∫ (k+1)/(n+1)

k/(n+1)
f(t)dt, see [8],

and

K(α,β)
n (f)(z) = (n+ 1 + β)

n∑
k=0

pn,k(z)
∫ (k+1+α)/(n+1+β)

(k+α)/(n+1+β)
f(t)dt, see [1].

For our purpose, we need the following known results.

Theorem 1.1. Let f : DR → C be analytic in DR = {z ∈ C; |z| < R} with
R > 1, i.e. f(z) =

∞∑
k=0

ckz
k, for all z ∈ DR. Suppose 1 ≤ r < r1 < R. Then

for all |z| ≤ r and n, p ∈ N, we have:
(i) (a) (see [2, pp. 264, Theorem 3.4.1 (v)] or [4 , Theorem 2.1, the case

α = β = 0])

|B(p)
n (f)(z)− f (p)(z)| ≤ M2,r1 (f)p!r1

n(r1−r)p+1 ,

where 0 < M2,r1(f) = 2
∞∑
j=2

j(j − 1)|cj |rj1 <∞;

(b) (see [3, Theorem 2.1 (ii)])∣∣∣Bn(f)(z)− f(z)− z(1−z)
2n f ′′(z)

∣∣∣ ≤ 5(1+r)2

2n · Mr(f)
n ,

where Mr(f) =
∞∑
k=3
|ck|k(k − 1)(k − 2)2rk−2 <∞;

(ii) (a) (see [4, Theorem 2.1])

|[S(α,β)
n (f)](p)(z)− f (p)(z)| ≤

M
(β)
2,r1

(f)p!r1

(n+β)(r1−r)p+1 ,

where 0 < M
(β)
2,r1(f) = 2

∞∑
j=2

j(j − 1)|cj |rj1 + 2βr
∞∑
j=1

j|cj |rj−1 <∞;

(b) (see [4, proof of the Theorem 2.2])∣∣∣S(α,β)
n (f)(z)− f(z) + βz−α

n+β f
′(z)− nz(1−z)

2(n+β)2 f
′′(z)

∣∣∣ = O
[

1
(n+β)2

]
,

where the positive constant in O(1/(n+ β)2) depends on f, r, α and β,
but is independent of n and z;
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(c) (see [4, Theorem 3.2]) Denoting the mth iterate by mS
(α,β)
n (f)(z), we

have

|mS(α,β)
n (f)(z)− f(z)| ≤ 2m

n+β

∞∑
k=1
|ck| · |βk + k(k − 1)|rk;

(iii) (see [5, Theorem 2.1])

|[S<γ>n (f)](p)(z)− f (p)(z)| ≤
M<γ>

2,r1,n
(f)p!r1

(r1−r)p+1 ,

where

0 < M<γ>
2,r1,n(f) = 2

n

∞∑
j=2

j(j − 1)|cj |rj1 + γ(r1+1)
6r1

∞∑
j=2

j(j − 1)(2j − 1)|cj |rj1 <∞.

(iv) (see [6, Theorem 3.1]) If f is not a polynomial of degree ≤ max{1, p−
1}, then we have

‖B(p)
n (f)− f (p)‖r ∼ 1

n ,

where ||f ||r = sup{|f(z)|; |z| ≤ r} and the constants in the equivalence
depend only on f , r and p.

(v) (see [7, Theorem 3.1]) Let 0 ≤ α ≤ β with α + β > 0. If f is not a
polynomial of degree ≤ p− 1 then we have

‖[S(α,β)
n (f)](p) − f (p)‖r ∼ 1

n+β ,

where the constants in the equivalence depend only on f , α, β, r and
p.

Remark 1.2. The Voronovskaja-type result in [4, Theorem 2.2] holds for
|z| ≤ 1. The proof of the above point (ii) (b), is immediate by replacing in the
proof of Theorem 2.2 in [4] the condition |z| ≤ 1 by |z| ≤ r. �

2. COMPLEX BERNSTEIN-KANTOROVICH POLYNOMIALS

For our purpose also will be useful the next classical result.

Theorem 2.1. (see e.g. [9, pp. 30]) Denoting F (z) =
∫ z

0 f(t)dt, we have
the relationship

Kn(f)(z) = B′n+1(F )(z), z ∈ C.

Now, as a consequence of Theorem 2.1 and Theorem 1.1, (iv), we immedi-
ately get the following.

Corollary 2.2. Let f : DR → C be analytic in DR with R > 1 and
1 ≤ r < R.

(i) If f is not a polynomial of degree ≤ 0 then for all n ∈ N we have
‖Kn(f)− f‖r ∼ 1

n ,

where the constants in the equivalence depend only on f and r.
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(ii) If f is not a polynomial of degree ≤ max{1, p−1} then for all p, n ∈ N
we have

‖K(p)
n (f)− f (p)‖r ∼ 1

n ,

with the constants in the equivalence depending only on f , r and p.
Proof. We combine Theorem 2.1, (i) with Theorem 1.1, (iv).

(i) We get
‖Kn(f)− f‖r = ‖B′n+1(F )− F ′‖r ∼ 1

n+1 ,

if F is not a polynomial of degree ≤ max{1, 1} = 1, which ends the
proof.

(ii) We obtain

‖K(p)
n (f)− f (p)‖r = ‖B(p+1)

n+1 (F )− F (p+1)‖r ∼ 1
n+1 ,

if F is not a polynomial of degree ≤ max{1, p} = p, which ends the
proof.

�

Upper estimates with explicit constants in Voronovskaja’s theorem and in
approximation by Kn(f) can be derived as follows.

Theorem 2.3. Let f : DR → C be analytic in DR = {z ∈ C; |z| < R} with
R > 1, i.e. f(z) =

∞∑
k=0

ckz
k, for all z ∈ DR. Suppose 1 ≤ r < r1 < R. Then

for all |z| ≤ r and n, p ∈ N, we have:
(i)

|K(p)
n (f)(z)− f (p)(z)| ≤ C2,r1 (f)(p+1)!r1

(n+1)(r1−r)p+2 ,

where 0 < C2,r1(f) = 2
∞∑
j=2

(j − 1)|cj−1|rj1 <∞ ;

(ii)∣∣∣Kn(f)(z)− f(z)− 1−2z
2(n+1) · f

′(z)− z(1−z)
2(n+1) · f

′′(z)
∣∣∣ ≤ r1Cr1,n+1(f)

(r1−r)2 ,

where

Cr1,n(f) = 5(1+r1)2

2n ·

∞∑
k=3
|ck−1|(k−1)(k−2)2rk−2

1

n .

Proof. (i) Combining Theorem 2.1 with Theorem 1.1, (i) (a), we obtain

|K(p)
n (f)(z)− f (p)(z)| = |B(p+1)

n+1 (F )(z)− F (p+1)(z)| ≤ M2,r1 (F )(p+1)!r1
(n+1)(r1−r)p+2 ,

where 0 < M2,r1(F ) = 2
∞∑
j=2

j(j − 1)|Cj |rj1 <∞ and F (z) =
∞∑
k=0

Ckz
k, z ∈ DR.

But we also get

F (z) =
∫ z

0

[ ∞∑
k=0

ckt
k

]
dt =

∞∑
k=0

ck
k+1z

k+1 =
∞∑
k=1

ck−1
k zk,
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which implies Ck = ck−1
k and C2,r1(f) = 2

∞∑
j=2

(j − 1)|cj−1|rj1.

(ii) Replacing in Theorem 1.1, (i) (b), n by n+ 1, r by r1 and f by F , for
all |z| ≤ r1 and n ∈ N, we obtain∣∣∣Bn+1(F )(z)− F (z)− z(1−z)

2(n+1)F
′′(z)

∣∣∣ ≤ 5(1+r1)2

2(n+1) ·
Mr1 (F )
n+1 ,

where

Mr1(F ) =
∞∑
k=3
|Ck|k(k − 1)(k − 2)2rk−2

1 =

=
∞∑
k=3
|ck−1|(k − 1)(k − 2)2rk−2

1 := Ar1(f).

Here again we wrote F (z) =
∞∑
k=0

Ckz
k, for all z ∈ DR.

Now, denoting Cr1,n(f) = 5(1+r1)2

2n · Ar1 (f)
n , by Γ the circle of radius r1 > r

and center 0, and En(F )(z) = Bn+1(F )(z)−F (z)− z(1−z)
2(n+1)F

′′(z), since for any
|z| ≤ r and v ∈ Γ, we have |v− z| ≥ r1− r, by the Cauchy’s formula it follows
that for all |z| ≤ r and n ∈ N, we obtain

|E′n(F )(z)| = 1
2π

∣∣∣∣∫
Γ

En(f)(z)
(v−z)2 dv

∣∣∣∣ ≤ Cr1,n+1(f) 1
2π

2πr1
(r1−1)2 = Cr1,n+1(f) · r1

(r1−r)2 .

But by Theorem 2.1 we obtain

E′n(F )(z) = Kn(f)(z)− f(z)− 1−2z
2(n+1) · f

′(z)− z(1−z)
2(n+1) · f

′′(z),

which proves the theorem. �

3. COMPLEX STANCU-KANTOROVICH POLYNOMIALS DEPENDING ON TWO

PARAMETERS

For our purpose will be useful the next result.

Theorem 3.1. Denoting F (z) =
∫ z

0 f(t)dt, we have the relationship

K(α,β)
n (f)(z) = n+1+β

n+1 [S(α,β)
n+1 (F )]′(z), z ∈ C.

Proof. The theorem is immediate by the following formula

[S(α,β)
n+1 (F )]′(z) = (n+ 1 + β)

n∑
k=0

pn,k(z)
[
F
(
k+α+1
n+β+1

)
− F

(
k+α
n+1+β

)]
− β

n∑
k=0

pn,k(z)
[
F
(
k+α+1
n+β+1

)
− F

(
k+α
n+1+β

)]
= K(α,β)

n (f)(z)− β
n+1+βK

(α,β)
n (f)(z).

�
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As a consequence of Theorem 3.1 and Theorem 1.1, (v), we also get the
following.

Corollary 3.2. Let f : DR → C be analytic in DR with R > 1, 1 ≤ r < R
and 0 ≤ α ≤ β, α+ β > 0.

(i) If f is not identical 0, then for all n ∈ N we have

‖K(α,β)
n (f)− f‖r ∼ 1

n+β ,

where the constants in the equivalence depend only on f , r, α and β.
(ii) If f is not a polynomial of degree ≤ p−1 then for all p, n ∈ N we have

‖[K(α,β)
n (f)](p) − f (p)‖r ∼ 1

n+β ,

with the constants in the equivalence depending only on f , r, α, β and
p.

Proof. We combine Theorem 3.1 with Theorem 1.1, (v).
(i) We get

‖K(α,β)
n (f)− f‖r = ‖[S(α,β)

n+1 (F )]′ − F ′‖r ∼ 1
n+β ,

if F is not a polynomial of degree ≤ 0, which ends the proof.
(ii) We obtain

‖[K(α,β)
n (f)](p) − f (p)‖r = ‖[S(α,β)

n+1 (F )](p+1) − F (p+1)‖r ∼ 1
n+β ,

if F is not a polynomial of degree ≤ p, which ends the proof. �

Upper estimates with explicit constants in Voronovskaja’s theorem and in
approximation by K(α,β)

n (f)(z) polynomials can be derived as follows.

Theorem 3.3. Let f : DR → C be analytic in DR = {z ∈ C; |z| < R} with
R > 1, i.e. f(z) =

∞∑
k=0

ckz
k, for all z ∈ DR. Suppose 1 ≤ r < r1 < R. Then

for all |z| ≤ r and n, p ∈ N, we have:
(i)

|[K(α,β)
n (f)](p)(z)− f (p)(z)| ≤

C
(β)
2,r1

(f)(p+1)!r1

(n+1)(r1−r)p+2 + β
n+1 ||f ||r,

where 0 < C
(β)
2,r1(f) = 2

∞∑
j=2

(j − 1)|cj−1|rj1 + 2β
∞∑
j=1
|cj−1|rj1 <∞ ;

(ii)∣∣∣K(α,β)
n (f)(z)− f(z) +

(
βz−α
n+1 −

1−2z
2(n+β+1)

)
f ′(z)− z(1−z)

2(n+β+1)f
′′(z)

∣∣∣ ≤
≤ C(f,r1,α,β)

(n+1)(n+β+1) ·
r1

(r1−r)2 ,

where C(f, r1, α, β) is a positive constant depending only on f , r1, α
and β.



7 Complex Kantorovich-type polynomials 165

Proof. (i) Combining Theorem 3.1 with Theorem 1.1, (ii) (a), for all |z| ≤ r
we obtain

|[K(α,β)
n (f)](p)(z)− f (p)(z)| =

=
∣∣∣n+1+β
n+1 [S(α,β)

n+1 (F )](p+1)(z)− F (p+1)(z)
∣∣∣

≤ n+1+β
n+1

∣∣∣[S(α,β)
n+1 (F )](p+1)(z)− F (p+1)(z)

∣∣∣+ β
n+1 |F

(p+1)(z)|

≤ n+1+β
n+1 ·

M
(β)
2,r1

(F )(p+1)!r1

(n+β+1)(r1−r)p+2 + β
n+1 · |f

(p)(z)|

≤
M

(β)
2,r1

(F )(p+1)!r1

(n+1)(r1−r)p+2 + β
n+1 · ||f

(p)||r,

and reasoning exactly as in the proof of Theorem 2.3, (i), we get

M
(β)
2,r1(F ) = 2

∞∑
j=2

j(j − 1)|Cj |rj1 + 2β
∞∑
j=1

j|Cj |rj1

= 2
∞∑
j=2

(j − 1)|cj−1|rj1 + 2β
∞∑
j=1
|cj−1|rj1 := C

(β)
2,r1(f).

(ii) Replacing in Theorem 1.1, (ii) (b), n by n+ 1, r by r1 and f by F , for
all |z| ≤ r1 and n ∈ N, we obtain∣∣∣S(α,β)

n+1 (F )(z)− F (z) + βz−α
n+β+1F

′(z)− (n+1)z(1−z)
2(n+β+1)2 F

′′(z)
∣∣∣ ≤ C(f,r1,α,β)

(n+β+1)2 ,

where the positive constant C(f, r1, α, β) depends only on f, r, α and β. Let
us denote

En(F )(z) = S
(α,β)
n+1 (F )(z)− F (z) + βz−α

n+β+1F
′(z)− (n+1)z(1−z)

2(n+β+1)2 F
′′(z).

If Γ is the circle of radius r1 > r and center 0, and since for any |z| ≤ r and
v ∈ Γ, we have |v− z| ≥ r1− r, by the Cauchy’s formula it follows that for all
|z| ≤ r and n ∈ N, we obtain as in the proof of Theorem 2.3, (ii)

|E′n(F )(z)| ≤ C(f, r1, α, β) · r1
(r1−r)2 · 1

(n+β+1)2 .

But by Theorem 3.1 we obtain

E′n(F )(z) = n+1
n+1+βK

(α,β)
n (f)(z)− f(z) + 1

n+β+1 [(βz − α)f(z)]′

− n+1
2(n+β+1)2 [(z − z2)f ′(z)]′

= n+1
n+β+1 ·A,

where

A = K(α,β)
n (f)(z)− f(z) + f ′(z)

(
βz−α
n+1 −

1−2z
2(n+β+1)

)
− z(1−z)

2(n+β+1)f
′′(z),

which immediately proves the theorem. �

Concerning the mth iterates mK
(α,β)
n (f)(z), we obtain the following result.
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Theorem 3.4. Let f : DR → C be analytic in DR = {z ∈ C; |z| < R} with
R > 1, i.e. f(z) =

∞∑
k=0

ckz
k, for all z ∈ DR. Suppose 1 ≤ r < r1 < R. Then

for all |z| ≤ r and n, p ∈ N, we have

|[mK(α,β)
n (f)](p)(z)− f (p)(z)| ≤ 2m

n+1+β

∞∑
k=1
|ck−1| · |β + (k − 1)|rk · (p+1)!r1

(r1−r)p+1 .

Proof. First we easily observe that
mK(α,β)

n (f)(z) = d
dz [mS(α,β)

n+1 (F )](z),

where F (z) =
∫ z

0 f(t)dt =
∞∑
k=0

Ckz
k. Taking into account Theorem 1.1, (ii)

(c), the Cauchy’s theorem and reasoning exactly as in the proofs of Theorem
2.3, (i) and 3.3, (i), it follows

|[mK(α,β)
n (f)](p)(z)− f (p)(z)| = |[mS(α,β)

n+1 (F )](p+1)(z)− F (p+1)(z)|

≤ 2m
n+1+β

∞∑
k=1
|Ck| · |βk + k(k − 1)|rk · (p+1)!r1

(r1−r)p+1

= 2m
n+1+β

∞∑
k=1
|ck−1| · |β + (k − 1)|rk · (p+1)!r1

(r1−r)p+1 ,

which proves the theorem. �

Remark 3.5. For β = 0 in Theorem 3.4 we get corresponding results for
the iterates of classical complex Kantorovich polynomials. Note that in the
real case, some asymptotic results for the iterates of Kantorovich polynomials
were obtained in [10]. �

Remark 3.6. If mnn → 0 when n→∞, then by Theorem 3.4 it is immediate
that

[mnK(α,β)
n (f)](p)(z)→ f (p)(z),

uniformly with respect to |z| ≤ 1, for any 1 ≤ r < R. �

Remark 3.7. The Stancu-Kantorovich polynomials depending on the pa-
rameter 0 ≤ γ were introduced in [12] by

K<γ>
n (f)(z) = (n+ 1)

n∑
k=0

p<γ>n,k (z)
∫ (k+1)/(n+1)

k/(n+1)
f(t)dt,

where

p<γ>n,k (z) =
(
n

k

)
z(z+γ)...(z+(k−1)γ)(1−z)(1−z+γ)...(1−z+(n−k−1)γ)

(1+γ)(1+2γ)...(1+(n−1)γ) .

To prove analogous results for these polynomials too, we would need a similar
connection between [S<γ>n+1 (F )]′(z) and K<γ>

n (f)(z), with those in Theorems
2.1 and 3.1. But this study is left as an open question. �
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Remark 3.8. The complex Kantorovich polynomials of second order can
be defined as in the case of real variable ([11]) by

Qn(f)(z) = [Bn+2(H)(z)]′′ , z ∈ C,
where H(z) =

∫ z
0 F (u)du, F (u) =

∫ u
0 f(t)dt and Bn+2 is the (n+ 2)-th Bern-

stein polynomial.
It is easy to see that similar approximation results with those for Kn(f)(z)

in Section 2 can be obtained for Qn(f)(z) too. �

REFERENCES
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