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EXTENDING BROYDEN’S METHOD TO INTERACTION PROBLEMS

ROBBY HAELTERMAN∗, JORIS DEGROOTE†, JAN VIERENDEELS †
and DIRK VAN HEULE∗

Abstract. The solution of problems involving the interaction of different sys-
tems is a domain of ongoing research, although often a good solver already exists
for each system separately. In this paper we draw our ideas from one of the best
known all-round quasi-Newton methods: Broyden’s rank-one update, which we
extend to algorithms using 2 approximate Jacobians. A comparison is made
with the iterative substructuring method and Aitken’s acceleration method. It
is shown that a Broyden method using only a single approximate Jacobian per-
forms best.
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1. INTRODUCTION

Simulations of coupled systems are becoming ever more important. While
powerful solvers often exist for problems in a single physical domain (e.g.
structural problems, flow problems, ...), development of similar tools for multi-
physics problems is still ongoing, and these can be broadly put in one of the
following categories:

• Monolithic or simultaneous solution: the whole problem is treated as
a monolithic entity and solved with a specialized solver.
• Partitioned solution: the physical components are treated as isolated

entities that are solved separately.
The relative merits of these methods are very problem dependent: the ad-

vantage of the monolithic approach is the enhanced stability. This comes at
a cost, however, as specialized software has to be written for each type of
interaction problem, which can result in very large systems. The partitioned
approach allows for the use of available specialized solvers for each physical
component (structure, fluid,...), on condition that the coupling effects can be
treated efficiently. The latter is often no problem for loosely coupled problems,
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which can be solved by sequentially calling the solvers for each component.
Strongly coupled problems, on the other hand, still pose a real challenge; the
simplest solution method is the iterative substructuring method, but this often
displays very poor stability [4].

In this paper we write the coupled problem as a root-finding problem which
we solve with Broyden’s quasi-Newton method and an extension of this method
in which two approximate Jacobians are used, one for each physical problem.
This results in a partitioned approach in which each of the physical problems
is solved with a specialized code that we consider to be a black box and of
which the Jacobian is unknown. We assume the dominant cost lies in the use
of these black boxes.

This paper is organized as follows: in section 2 we describe the type of
problems we are interested in; in section 3, resp. 4, we describe two well-
known methods for the solution of these problems: the iterative substructuring
method, resp. Aitken’s ∆2 method; in section 5 we briefly describe Broyden’s
quasi-Newton method together with two proposed variations; in section 6 we
test the various algorithms on two coupled problems.

2. THE GENERAL MODEL

We consider coupled problems that can be stated in the following form:

F (g) = p,(1a)
S(p) = g,(1b)

where F : DF ⊂ RM×1 → RN×1 : g 7→ F (g) and S : DS ⊂ RN×1 →
RM×1 : p 7→ S(p). Each equation describes a physical problem that is spatially
decomposed. We limit p and g to values on the interface between the two
physical problems. In this way the physically decoupled nature of the problem
is exploited, and the method can be regarded as a special case of heterogeneous
domain decomposition methods [2].

We want to solve (1) with a partitioned method that keeps the available
solvers for each individual equation (1a), resp. (1b), of which we lack knowl-
edge of the Jacobian. (1) can also be written as the root-finding problem

F (S(p))− p = H(p)− p = K(p) = 0.(2)

Depending on the algorithm we will either use the formulation of (1) or (2).
We assume that F , S, H and K satisfy the following properties:
(1) F , resp S,H, is twice continuously differentiable in an open set DF ,

resp DS , DH .
(2) There is a po such that the set C(po) = {p; ‖K(p)‖ ≤ ‖K(po)‖} is

compact.
(3) K(p) = 0 has a single solution p∗ in C(po)
(4) (K ′(p))−1 exists and is continuous in an open set containing C(po).
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Remark. The choice, in equation (2), between F (S(p)) = 0 or S(F (g)) = 0,
will depend on the relative dimensions of p and g; we will choose the formula-
tion such that the (square) Jacobian of K is of the lowest dimension. �

3. ITERATIVE SUBSTRUCTURING METHOD

The simplest strongly coupled method to solve (1) is the iterative substruc-
turing method; it proceeds as follows:

Algorithm 3.1 (Iterative substructuring method (ISM)).
1. Startup. Take an initial value po.

Set s = 0.
2. Loop until sufficiently converged

a. gs = S(ps)
b. ps+1 = F (gs)
c. s = s+ 1

Depending on the strength of the coupling between the two equations in (1)
this method is not always stable [4].

4. AITKEN’S ∆2 METHOD

Another method that is often used for the solution of (2) is Aitken’s ∆2

method [3].

Algorithm 4.1 (Aitken’s ∆2 method (A∆2)).
1. Startup:

Take a starting value po and θo;
compute K(po) = H(po)− po;
compute p1 = po + θoK(po);
set s = 1.

2. Loop until sufficiently converged:
a. Compute K(ps) = H(ps)− ps.
b. θs = −θs−1

K(ps−1)T δKs−1
〈δKs−1,δKs−1〉

c. ps+1 = ps + θsK(ps)
d. s = s+ 1

(δKs−1 = K(ps)−K(ps−1) and 〈·, ·〉 is the classical scalar product.)

5. BROYDEN’S METHOD AND VARIATIONS

A well-known solution method for the nonlinear problem in (2) is Newton’s
method. However, as we suppose we don’t have access to the Jacobians of
either F , S, H or K, we will resort to quasi-Newton methods, which we apply
either to the single equation (2) or the system (1).
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5.1. Basic Broyden method. Broyden’s method [1] was developed for a sin-
gle equation as in (2). The resulting algorithm can be written as follows.

Algorithm 5.1 (Broyden’s algorithm (Br)).
1. Startup:

Take a starting value po and K̂ ′o;
compute K(po) = H(po)− po;
compute p1 = (1− ω)po + ωH(po) (ω being a relaxation parameter);
set s = 1.

2. Loop until sufficiently converged:
a. Compute K(ps) = H(ps)− ps.
b. Compute the Broyden update K̂ ′s = K̂ ′s−1 + (δKs−1−K̂′s−1δps−1)δpT

s−1
〈δps−1,δps−1〉

c. ps+1 = ps − (K̂ ′s)−1K(ps)
d. s = s+ 1

(δps−1 = ps − ps−1.)
A good initial guess for K̂ ′o is needed. As we do not have any idea what

the Jacobian of F or S is, we will set them equal to zero, such that we have
K̂ ′o = −I as a consequence.

5.2. Extension of Broyden’s method. We recall that K(p) = F (S(p))− p
and that as such

K ′(ps) = F ′(S(ps))S′(ps)− I.

We therefore propose to build approximate Jacobians F̂ ′s and Ŝ′s along the
lines of the Broyden update:

F̂ ′s = F̂ ′s−1 + (δFs−1−F̂ ′s−1δgs−1)δgT
s−1

〈δgs−1,δgs−1〉 ,(3a)

Ŝ′s = Ŝ′s−1 + (δSs−1−Ŝ′s−1δps−1)δpT
s−1

〈δps−1,δps−1〉 ,(3b)

where δgs−1 = gs − gs−1, δFs−1 = F (gs) − F (gs−1), and δSs−1 = S(ps) −
S(ps−1); we set K̂ ′s = F̂ ′sŜ

′
s − I.

To keep in line with K̂ ′o in §5.1 we set F̂ ′o = Ŝ′o = 0.
It is easy to see that this construction respects the following secant equa-

tions:1

F̂ ′sδgs−1 = δFs−1,(4a)
Ŝ′sδps−1 = δSs−1,(4b)
K̂ ′sδps−1 = δKs−1.(4c)

1Broyden’s original update also respects the secant equation.
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This now allows us to write the following algorithm:

Algorithm 5.2 (Broyden’s method–2 Jacobians–Variant 1 (BrVar1)).

1. Startup:
Take a starting value po, F̂ ′o and Ŝ′o;
compute go = S(po) and p1 = (1− ω)po + ωF (go)(ω being a relaxa-
tion parameter);
set s = 1.

2. Loop until sufficiently converged
a. Compute gs = S(ps).
b. Make approximate Jacobian Ŝ′s according to (3b).
c. Compute H(ps) = F (gs).
d. Make approximate Jacobian F̂ ′s according to (3a).
e. Quasi-Newton step: ps+1 = ps − (F̂ ′sŜ′s − I)−1(H(ps)− ps)
f. s = s+ 1

Remark. While Broyden’s original update also respects (4c), it can be
shown that the approximate Jacobians differ between algorithms 5.1 and 5.2.

�

In [5] another approach was proposed to couple (1) with two approximate
Jacobians, which we now apply to Broyden’s method. In this approach we
look at each equation in (1) separately and write a Taylor expansion in which
we insert the approximate Jacobians:

F (gs+1)− F (gs) = F̂ ′s(gs+1 − gs),
S(ps+1)− S(ps) = Ŝ′s(ps+1 − ps).

We require the solution of the coupled problem to satisfy (1) at iteration
s+ 1; it follows that

p− F̂ ′sg = F (gs)− F̂ ′sgs,(5a)
g − Ŝ′sp = S(ps)− Ŝ′sps.(5b)

Solving (5) for g and p gives

p = (I − F̂ ′sŜ′s)−1
(
F (gs) + F̂ ′s(S(ps)− Ŝ′sps − gs)

)
,(6a)

g = (I − Ŝ′sF̂ ′s)−1
(
S(ps) + Ŝ′s(F (gs)− F̂ ′sgs − ps)

)
.(6b)

We assign the value of p in equation (6a) to ps+1, and use it as an input for
S,

ps+1 = (I − F̂ ′sŜ′s)−1
(
F (gs) + F̂ ′s(S(ps)− Ŝ′sps − gs)

)
.
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We can then update the Jacobian (Ŝ′) in equation (6b) and assign the value
of g to gs+1:

gs+1 = (I − Ŝ′s+1F̂
′
s)−1

(
S(ps+1) + Ŝ′s+1(F (gs)− F̂ ′sgs − ps+1)

)
.

Combining this with Broyden’s method results in the following algorithm:

Algorithm 5.3 (Broyden’s method-2 Jacobians-Variant 2 (BrVar2)).

1. Startup:
Take a starting value po, F̂ ′o and Ŝ′o;
compute go = S(po) and p1 = (1− ω)po + ωF (go) (ω being a relaxa-
tion parameter);
compute g1 = S(p1)

2. Make approximate Jacobian Ŝ′1 according to (3b);
set s = 1.

3. Loop until sufficiently converged
a. Compute F (gs).
b. Make approximate Jacobian F̂ ′s according to (3a).
c. ps+1 = (I − F̂ ′sŜ′s)−1

(
F (gs) + F̂ ′s(S(ps)− Ŝ′sps − gs)

)
d. Compute S(ps+1).
e. Make approximate Jacobian Ŝ′s+1 according to (3b).
f. gs+1 = (I − Ŝ′s+1F̂

′
s)−1

(
S(ps+1) + Ŝ′s+1(F (gs)− F̂ ′sgs − ps+1)

)
g. s = s+ 1

Remark. It is obvious from the way we construct F̂ ′s and Ŝ′s and equations
(5a) and (5b) that they respect the secant equations (4a) and (4b). For reasons
of comparison with the other algorithms, we start from F̂ ′o = Ŝ′o = 0. �

6. TEST-CASES

We propose two test-cases: the heat equation and a fluid-structure interac-
tion problem. The convergence requirement will be defined based on a relative
reduction of the residual, which is defined by ‖K(ps)‖

‖K(po)‖ ≤ 10−5 for algorithms
4.1, 5.1 and 5.2, and on ‖F (gs)−ps‖

‖F (go)−po‖ ≤ 10−5 for algorithms 3.1 and 5.3, as K(ps)
is not explicitly computed in these. The performance parameter is the number
of times the function F (or S) is called, as we have assumed this is the domi-
nant cost of the algorithm; we call this value FC. We break off the algorithm
if FC > 100 if it has not converged at that point.
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6.1. Heat equation.

6.1.1. The model. The heat equation in one dimension without heat source is
given by:

ρC ∂T
∂t −

∂
∂x

(
k ∂T∂x

)
= 0,(7)

where T is temperature, ρ is density, C is heat capacity, k is thermal conduc-
tivity. We assume we only have a linear solver to solve (7) with an imposed
value of ρ, C and k that may vary in space.

If we want to take dependency of ρ, C and k on T into account, we need
to do this outside the solver for (7). They can be obtained by the following
interpolation polynomials (based on values between 0 and 300◦C in [6]):

k = 7.0277 · 10−5T + 2.4388 · 10−2,(8a)
C = 4.3004 · 10−7T 2 + 1.1850 · 10−5T + 1.0048,(8b)
ρ = 5.3641 · 10−6T 2 − 3.7809 · 10−3T + 1.2781.(8c)

We use a finite differencing scheme on N equidistant nodes for the solver of
(7), with spacing ∆x, and an implicit time discretization with time step ∆t.
This gives the N linear equations (i = 1, . . . , N):

ρiCi(Tn+1
i − Tni )− ∆t

2∆x2

(
(ki+1 + ki)Tn+1

i+1 −(9)

−(ki+1 + 2ki + ki−1)Tn+1
i + (ki + ki−1)Tn+1

i−1

)
= 0.

We will use g to denote the ensemble of discretized constants ρi, Ci and ki,
which will be defined by a node-to-node relation with Ti according to (8).

We only consider one time-step and solve (9) for the temperature at the
next time-step. We write this as F (gs) = Ts+1. The parameters are computed
for a given temperature, which is written as S(Ts) = gs.

As an initial condition we take the values at time-level n, which is a uniform
temperature of T o = 150K, the right boundary condition is a temperature of
150K, while the left boundary condition is a function of time, defined as
TL = T o + T o

2 sin
(
πt
10
)
.

We use an initial relaxation factor ω = 0.1.

6.1.2. Results and discussion. Various combinations of the ratio ∆t
∆x2 were tried

for N = 100 and N = 1000 (tables 1 and 2). For small values of ∆t
∆x2 the three

Broyden algorithms and the ISM performed equally well; Aitken’s method
trailed behind. As the ratio ∆t

∆x2 grows, the problem becomes harder to solve
and the number of iterations becomes larger. The performance of the ISM
initially degrades faster than the Broyden methods, which perform equally
well. For N = 1000 and ∆t

∆x2 = 109 the ISM method catches up with the basic
Broyden method, while the other three methods lag behind. For even higher
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values of ∆t
∆x2 convergence could not be obtained. It is thus seen that for this

mildly non-linear problem there is not much difference between the methods,
but the basic Broyden method is always the best. This is perhaps surprising as
it only uses one Jacobian and thus less information than the Broyden variants.

Table 1. FC required for convergence for the heat equation. N = 100.
∆t

∆x2 Br BrVar1 BrVar2 ISM A∆2

10−10 3 3 3 3 4
10−9 3 3 3 3 4
10−8 3 3 3 3 4
10−7 3 3 3 3 5
10−6 3 3 3 4 5
10−5 3 3 3 4 5
10−4 3 3 3 4 5
10−3 3 3 3 4 5
10−2 4 4 4 5 6
10−1 4 4 4 5 6

1 5 5 5 6 7
10 6 6 6 8 8
102 6 6 6 8 8
103 6 6 6 8 9
104 6 6 6 8 9
105 6 6 6 7 9
106 6 6 6 7 9
107 6 6 6 7 9
108 6 6 6 7 9
109 6 6 6 7 9
1010 7 7 7 7 9

6.2. Fluid-structure interaction problem. In this problem both physical
problems are vector-based and non-linear.

Fig. 1. One-dimensional flow in a flexible tube.

6.2.1. The model. We consider one-dimensional unsteady flow in an elastic tube
(figure 1). (For a two-dimensional simulation, see [5]). The fluid is incom-
pressible and inviscid and gravity is neglected. The governing equations are
the conservation of mass and momentum which can be written in conservative
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Table 2. FC required for convergence for the heat equation. N = 1000.
“div” = divergence or non-convergence: FC > 100.

∆t
∆x2 Br BrVar1 BrVar2 ISM A∆2

10−10 3 3 3 3 4
10−9 3 3 3 3 4
10−8 3 3 3 3 4
10−7 3 3 3 3 5
10−6 3 3 3 4 5
10−5 3 3 3 4 5
10−4 3 3 3 4 5
10−3 3 3 3 4 5
10−2 4 4 4 5 6
10−1 4 4 4 5 6

1 5 5 5 6 7
10 6 6 6 8 8
102 6 6 6 8 8
103 6 6 6 8 9
104 6 6 6 8 9
105 6 6 6 8 9
106 6 6 6 8 9
107 6 6 6 7 9
108 6 6 6 7 9
109 8 9 9 8 9
1010 div div div div div

form as
∂g

∂t
+ ∂(gu)

∂x
= 0,(10a)

∂(gu)
∂t

+ ∂(gu2)
∂x

+ 1
ρ

(
∂(gp′)
∂x

− p′ ∂g
∂x

)
= 0(10b)

to which suitable boundary conditions need to be added (velocity at the inlet
and pressure at the outlet). g represents the cross-sectional area of the tube,
u the velocity along the axis of the tube, ρ is the density of the fluid and p′

the static pressure.
We introduce the kinematic pressure p = p′/ρ. If the elastic wall of the tube

has a constitutive law of the form g = g(p(x, t)), with its inertia neglected,
then (10) can be rewritten in the following form:

∂p

∂t
+ u

∂p

∂x
+ c2∂u

∂x
= 0,(11a)

∂gu

∂t
+ ∂gu2

∂x
+ ∂gp

∂x
− p∂g

∂x
= 0.(11b)

The wave speed c is defined by

c2 = g
∂g
∂p

.
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For the constitutive law of the structure we take the non-linear relation
defined by:

g = go

(
p−2c2mk

po−2c2
o,mk

)2
,

where cmk is the Moens-Korteweg wave speed
(
cmk =

√
Eh

2ρro

)
, E Young’s mod-

ulus, h the thickness of the tube wall and ro a transversal reference length of
the tube. The length of the tube is L.

The velocity is imposed at the inlet as

u = uo + uo
10 sin2

(
πt

T

)
,

where uo is the initial velocity and T the period (= 1). At the outlet, a
non-reflecting boundary condition is imposed:

∂u

∂t

∣∣∣
x=L

= 1
c

∂p

∂t

∣∣∣
x=L

.

We use a one-dimensional mesh with N nodes of length ∆x. Fluid velocity,
pressure and diameter of the tube are stored at the cell centers. Central
discretization is used for all terms in (11), except for the convective term in
(11b) where a first-order upwind scheme is used; pressure stabilization is added
[5]. Pressure and velocity at the inlet, resp. outlet are linearly interpolated
from nearby mesh-points. For the time-discretization we use backward Euler
with time-step ∆t.

As in §6.1, we only consider one time-step and use those values as initial
values for the iteration. We solve the discretized fluid problem for the pressure
at the next time-step and a fixed geometry, which we write as F (gs) = ps+1.
For the structural problem we compute g for a given pressure, which we write
as S(ps) = gs.

The initial relaxation parameter is ω = 10−2, except for (κ, τ) = (10, 10−2)
and (10, 10−3), where it is 10−4, resp. 10−5.

6.2.2. Results and discussion. Various combinations of parameters were tried
for N = 100 and N = 1000. When the governing equations are non-dimensio-
nalized it is seen that they are characterized by two non-dimensional param-
eters κ = co

uo
, being a dimensionless structural stiffness, and τ = uo∆t

L , being
a dimensionless time-step; co, uo, are the linearizing, i.e. reference, values of
the wave speed, resp. fluid velocity. Various combinations of these were tested
(tables 3 and 4). It is seen that a more flexible tube (lower value of κ) and
a smaller time-step (lower value of τ) represent a more difficult problem to
solve. The three Broyden methods steadily outperform the ISM and Aitken’s
method but share similar performance for the ”easier” test-cases. When the
problem becomes harder, the basic Broyden method appears the best, followed
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by the second variant of Broyden’s method. Again this is somewhat surpris-
ing as all the information of the two systems S and F is lumped into a single
approximate Jacobian K̂ ′s.

Table 3. FC required for convergence for the FSI problem. N = 100.
“div” = divergence or non-convergence: FC > 100.
κ τ Br BrVar1 BrVar2 ISM A∆2

1000 10−1 3 3 3 5 4
1000 10−2 3 3 3 7 5
1000 10−3 5 5 5 14 8
100 10−1 4 4 4 7 5
100 10−2 6 6 6 17 10
100 10−3 9 9 9 div 16
10 10−1 6 6 6 28 11
10 10−2 9 9 9 div 18
10 10−3 37 38 37 div div

Table 4. FC required for convergence for the FSI problem. N = 1000.
“div” = divergence or non-convergence: FC > 100.
κ τ Br BrVar1 BrVar2 ISM A∆2

1000 10−1 3 3 3 5 4
1000 10−2 3 3 3 7 5
1000 10−3 6 6 6 17 10
100 10−1 4 4 4 7 5
100 10−2 6 6 6 28 14
100 10−3 9 9 9 div 11
10 10−1 6 6 6 34 11
10 10−2 13 14 13 div 27
10 10−3 36 46 40 div div

7. CONCLUSION

The basic Broyden method was tested on interaction problems and com-
pared with two proposed variants as well as the iterative
substructuring method and the Aitken ∆2 method. For weakly non-linear
problems and/or problems requiring few iterations to converge there was little
to chose from between the three Broyden methods, although they were better
than the remaining two. For more difficult problems not only did the three
Broyden-based methods outperform the other two, but it appeared that the
basic Broyden method came out best. This is surprising as, compared with
the two variants, it only uses a single Jacobian to capture all the information
that is available of the two constituent systems, while the other two use two
approximate Jacobians, one for each system.
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