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FINDING GOOD STARTING POINTS FOR SOLVING EQUATIONS BY

NEWTON’S METHOD
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Abstract. We study the problem of finding good starting points for the semilo-
cal convergence of Newton’s method to a locally unique solution of an operator
equation in a Banach space setting. Using a weakened version of the Newton–
Kantorovich theorem we show that the procedure suggested by Kung [6] is im-
proved in the sense that the number of Newton-steps required to compute a good
starting point can be significantly reduced (under the same computational cost
required in the Newton–Kantorovich theorem [3], [5]).
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally
unique solution x∗ of equation

(1.1) F (x) = 0,

where F is a Fréchet-differentiable operator defined on an open convex subset
D of a Banach space X with values in a Banach space Y .

A large number of problems in applied mathematics and also in engineering
are solved by finding the solutions of certain equations. For example, dynamic
systems are mathematically modeled by difference or differential equations,
and their solutions usually represent the states of the systems. For the sake
of simplicity, assume that a time-invariant system is driven by the equation
ẋ = Q(x) (for some suitable operator Q), where x is the state. Then the equi-
librium states are determined by solving equation (1.1). Similar equations are
used in the case of discrete systems. The unknowns of engineering equations
can be functions (difference, differential, and integral equations), vectors (sys-
tems of linear or nonlinear algebraic equations), or real or complex numbers
(single algebraic equations with single unknowns). Except in special cases,
the most commonly used solution methods are iterative - when starting from
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one or several initial approximations a sequence is constructed that converges
to a solution of the equation. Iteration methods are also applied for solving
optimization problems. In such cases, the iteration sequences converge to an
optimal solution of the problem at hand. Since all of these methods have the
same recursive structure, they can be introduced and discussed in a general
framework.

The most popular method for generating a sequence approximation x∗ is
undoubtedly Newton’s method:

(1.2) xn+1 = xn − F ′(xn)−1F (xn) (n ≥ 0) (x0 ∈ D).

Here F ′(x) is the Fréchet derivative of F which is a bounded linear opera-
tor from X into Y . A survey of local and semilocal convergence results for
Newton’s method (1.2) can be found in [1], [3], [5] and the references there.

In particular the famous Newton–Kantorovich theorem guarantees the qua-
dratic convergence of method (1.2) if the initial guess x0 is “close enough” to
the solution x∗ [5] (see (2.11)).

However we recently showed that the Newton–Kantorovich hypothesis
(2.11) can always be replaced by the weaker (2.5) (under the same compu-
tational cost) [1, p. 387, Case 3, for δ = δ0]. In particular using the algorithm
proposed by H.T. Kung [6] (see also [7]) we show that the number of steps
required to compute a good starting point x0 (to be precised later) can be
significantly reduced.

This observation is very important in computational mathematics [3], [5],
[7].

2. FINDING GOOD STARTING POINTS FOR NEWTON’S METHOD (1.2)

We recently showed the following semilocal convergence theorem for New-
ton’s method (1.2) which essentially states the following [1]:

If:

(2.1) F ′(x0)−1 exists, ‖F ′(x0)−1‖ ≤ β0,

(2.2) ‖F ′(x0)−1F (x0)‖ ≤ ξ0,

(2.3) ‖F ′(x)− F ′(x0)‖ ≤ K0 ‖x− x0‖,

(2.4) ‖F ′(x)− F ′(y)‖ ≤ K ‖x− y‖,
for all x, y ∈ U(x0, r) = {x ∈ X | ‖x− x0‖ ≤ r},
(2.5) h0 = β0Lξ0 <

1
2 ,

where,

(2.6) L = 1
8 (K + 4 K0 +

√
K2 + 8 K0 K),

(2.7) a ξ0 ≤ r, a = 2
2−b , b = 1

2

[
− K

K0
+
√(

K
K0

)2
+ 8 K

K0

]
,
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and

(2.8) U(x0, r) ⊆ D,

then sequence {xn} (n ≥ 0) generated by Newton’s method (1.2) is well de-
fined, remains in U(x0, r) for all n ≥ 0 and converges quadratically to a unique
solution x∗ ∈ U(x0, r) of equation F (x) = 0. Moreover we have

(2.9) ‖x0 − x∗‖ ≤ a ξ0.

Remark 1. In general

(2.10) K0 ≤ K

holds. If equality holds in (2.10) then the result stated above reduces to the
famous Newton–Kantorovich theorem and (2.5) to the Newton–Kantorovich
hypothesis (2.11) [5]. If strict inequality holds in (2.10) then (2.5) is weaker
than the Newton–Kantorovich hypothesis

(2.11) h0 = β0 K ξ0 <
1
2 .

Moreover the error bounds on the distances ‖xn+1 − xn‖, ‖xn − x∗‖ (n ≥ 0)
are finer and the information on the location of the solution more precise [1].
In [1] examples were also given to show that (2.11) is violated but (2.5) holds.
Furthermore as the following example demonstrates K

K0
can be arbitrarily

large: �

Example 1. Let X = Y = R, x0 = 0 and define function F on R by

(2.12) F (x) = c0x+ c1 + c2 sin ec3x

where ci, i = 0, 1, 2, 3 are given parameters. Using (2.3), (2.4) and (2.12) we
can easily see that for c3 large and c2 sufficiently small K

K0
can be arbitrarily

large.
That is (2.5) may hold but not (2.11).
Note also that the computational cost of obtaining (K0,K) is the same as

the one for K since in practice evaluating K requires finding K0.
Hence all results using (2.11) instead of (2.5) can now be challenged to

obtain more information. That is exactly what we are doing here. In particular
motivated by the elegant work of H.T. Kung [6] on good starting points for
Newton’s method we show how to improve on these results if we use our
theorem stated above instead of the Newton–Kantorovich theorem. �

Definition 1. We say x0 is a good starting point for approximating x∗ by
Newton’s method or a good starting point for short if conditions (2.1)–(2.8)
hold.

Note that the existence of a good starting point implies the existence of a
solution x∗ of equation F (x) = 0 in U(x0, a ξ0).

We provide the following theorem/Algorithm which improves the corre-
sponding ones given in [6, Theorem 4.1] to obtain good starting points.
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Theorem 1. Let F : D ⊆ X → Y be a Fréchet-differentiable operator. If
F ′ satisfies center-Lipschitz, Lipschitz conditions (2.3), (2.4) respectively on
U(x0, 2 r)

(2.13)

‖F (x0)‖ ≤ η0,

‖F ′(x)−1‖ ≤ β for all x ∈ U(x0, 2 r),

U(x0, 2r) ⊆ D,

and

(2.14) β η0 <
r
2 ,

then there exists a solution x∗ of equation F (x) = 0 in U(x0, 2 r).

Proof. Simply use L instead of K in the proof of Theorem 4.1 in [6, p.
11] including the algorithm there which is essentially repeated here with some
modifications:

Algorithm A: The goal of this algorithm is to produce a good starting
point (under the conditions of Theorem 1) for approximating x∗.

(1) Set h0 ← β2 L η0 and i← 0. Choose any number δ in
(
0, 1

2

)
.

(2) If hi <
1
2 , xi is a good starting point for approximating x∗ and Algo-

rithm A terminates.
(3) Set λi ←

(
1
2 − δ

)
/hi, and

Fi(x)← [F (x)− F (xi)] + λi F (xi).

(4) (It is shown in the proof that xi is a good starting point for approx-
imating a zero, denoted by xi+1, of Fi.) Apply Newton’s method to
Fi, starting from xi, to find xi+1.

(5) (Assume that the exact xi+1 is found.) Set ηi+1 ← ‖F (xi+1)‖ and

hi+1 ← β2K ηi+1.

(6) Set i← i+ 1, and return back to Step 2.

That completes the proof of Theorem 1. �

Remark 2. As already noted in [6] Theorem 1 is trivial for the scalar
case (f : R → R), since the mean value theorem can be used. Some of the
assumptions of Theorem 1 can be weakened. Avila for example in [4, Theorem
4.3] instead of (2.14) used a more complicated condition involving β, K, and
η0. However the idea of his algorithm is basically different from Algorithm
A. Note also that if K0 = K then our Theorem 1 reduces to Theorem 4.1 in
[6]. We now modify Algorithm A to make it work in Banach spaces without
necessarily assuming that the exact zero of xi+1 of Fi can be found using
Newton’s method (1.2). �
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Theorem 2. Under the hypotheses of Theorem 1 a good starting point for
approximating solution x∗ of equation F (x) = 0 can be obtained in N(δ,K0,K)
Newton steps, δ is any number in

(
0, 1

2

)
,

(2.15) N(δ,K0,K) =

{
0, if h0 = β2 L η0 ≤ 1

2 − δ,
I(δ,K0,K) · J(δ,K0,K), otherwise

where, I(δ,K0,K) is the smallest integer i such that:

(2.16)

[
1−

1
2 − δ
h0

]i
≤

[
1
2 − δ

]
h0

,

and J(δ,K0,K) is the smallest integer j such that:

(2.17) 2
1
j−1 (1− 2 δ)2j−1 (a+ β η0) ≤ r − 2β η0,

(2.18) 1
2j

(1− 2 δ)2j−1 (a+ β η0) ≤ a,
where,

(2.19) a = min
(
r
2 − β η0,

δ
2 β L

)
.

Proof. Simply use L instead of K in the proof of Theorem 4.2 in [6, p. 16],
and the following algorithm.

Algorithm B.

(1) Set h0 ← β2 L η0, x0 ← x0 and i← 0. Choose any number δ in
(
0, 1

2

)
.

(2) If hi ≤ 1
2 − δ, xi is a good starting point for approximating x∗ and

Algorithm B terminates.

(3) Set λi ←
(

1
2 − δ

)
hi

,

Fi(x)← F (x)−ηi F (x0)
η0

+ λi ηi F (x0)
η0

,

and
ηi+1 ← (1− λi) ηi.

(4) Apply Newton’s method to Fi, starting from xi, to find an approxima-
tion xi+1 to a zero xi+1 of Fi such that

‖xi+1 − xi+1‖ ≤ r − 2 β η0,

and

‖F ′i (xi+1)−1Fi(xi+1)‖ ≤ min
(
r
2 − β ηi+1,

δ
2 β L

)
.

(5) Set hi+1 ← β2 Lηi+1.
(6) Set i← i+ 1 and return to Step 2.

That completes the proof of Theorem 2. �

Remark 3. As noted in [6] δ should not be chosen to minimize the com-
plexity of Algorithm B. Instead, δ should be chosen to minimize the complexity
of algorithm:
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(1) Search Phase: Perform Algorithm B.
(2) Iteration Phase: Perform Newton’s method starting from the point

obtained by Algorithm B.

An upper bound on the complexity of the iteration phase is the time needed
to carry out T (δ,K0,K, ε) Newton steps, where T (δ,K0,K, ε) is the smallest
integer k such that

(2.20) 1
2k−1 (1− 2 δ)2k−1(a+ β η0) ≤ ε.

Note also that if K0 = K our Theorem 2 reduces to Theorem 4.2 in [6, p.
15]. �

Hence we showed the following result:

Theorem 3. Under the hypotheses of Theorem 2 the time needed to find a
solution x∗ of equation F (x) = 0 inside a ball of radius ε is bounded above by
the time needed to carry out R(δ,K0,K, ε) Newton steps, where

(2.21) R(ε,K0,K) = min
0<δ<

1
2

[N(δ,K0,K, ε) + T (δ,K0,K, ε)],

where N(δ,K0,K, ε) and T (δ,K0,K, ε) are given by (2.15) and (2.20) respec-
tively.

Remark 4. If K0 = K Theorem 3 reduces to Theorem 4.3 in [6, p. 20].
In order for us to compare our results with the corresponding ones in [6] we
computed the values of R(ε,K0,K) for F satisfying the conditions of Theorem
4.3 in [6] and Theorem 3 above with

(2.22) β η0 ≤ .4r,

and

(2.23) 1 ≤ h0 = β2 L η0 ≤ 10,

and for ε equal to 10−ir, 1 ≤ i ≤ 10.
The following table gives the results for ε = 10−6r. Note that by I we mean

I(δ0,K,K), IαK we mean I(δ0,K0,K) with K0 = αK, α ∈ [0, 1]. Similarly
for J , N and T . Note also that the columns J.9K , J.5K J0K as identical to J
have been omitted. The columns I, J , N , T , R were given in [6], where they
did not use K0 but K in (2.3).

The table was produced using (2.15)–(2.23):
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h0 δ0 I J N T R I.9K N.9K R.9K I.5K N.5K R.5K I0K N0K R0K

1 .165 3 2 6 5 11 3 6 11 2 4 9 1 2 8

2 .103 8 3 24 6 30 7 21 27 5 15 21 2 6 12

3 .118 16 3 48 6 54 14 42 48 10 30 36 5 15 21

4 .129 25 3 75 6 81 23 69 75 16 48 54 9 27 33

5 .137 35 3 105 6 111 33 99 105 30 90 96 13 39 45

6 .144 47 3 141 5 146 44 132 137 31 93 98 17 51 56

7 .149 59 3 177 5 182 55 165 170 40 120 125 22 66 71

8 .154 72 3 216 5 221 67 201 206 41 123 128 28 84 89

9 .159 85 3 255 5 260 80 240 245 58 174 179 33 99 104

10 .163 99 3 295 5 302 93 279 284 68 204 209 39 117 122

�

Remark 5. It follows from the table that our results (see columns I.qK and
after) significantly improve the corresponding ones in [6] and under the same
computational cost. Suppose for example that h0 = 9, δ = .159. Kung found
that the search phase can be done in 255 Newton steps and the iteration phase
in 5 Newton steps. That is a root can be located inside a ball of radius 10−6r
using 260 Newton steps. However for K0 = .9K, K0 = .5K and K0 = 0 the
corresponding Newton steps are 245,179 and 104 respectively which constitute
a significant improvement. At the end of his paper Kung asked whether the
number of Newton steps used by this procedure is close to the minimum. It
is now clear from our approach that the answer is no (in general).

Finally Kung proposed the open question: Suppose that the conditions
of the Newton–Kantorovich theorem hold: Is Newton’s method optimal or
close to optimal, in terms of the numbers of function and derivative equations
required to approximate the solution x∗ of equation F (x) = 0 to within a
given tolerance ε?

Clearly according to our approach the answer is no (see also Remark 1). �

Remark 6. The results obtained here further improve the corresponding
ones given by us in [2]. There, we used

L = K0+K
2 ,

instead of L in (2.6).
However, we have

L ≤ L for all K0 ≥ 0 and K ≥ 0.

If L = L, then the results obtained here coincide with the corresponding ones
in [1] (which in turn improved the ones in [4], [6], [7]). Otherwise (i.e. if
L < L), then the results in this study improve our results in [2]. �
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