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Abstract. The research elaborated in this paper has its origin in the study of
the convergence of the sequences generated through the use of certain methods
derived from the well-known Newton-Kantorovich method for the simultaneous
approximation of the solution of an equation in a linear normed space, and of the
inverse of the Fréchet differential at this solution. An important place is given
in the paper to the notion of convergence order of an approximant sequence
of the solution of an equation. Considering given an approximant sequence
which verifies certain conditions expressed through the inequalities (25), we will
build another approximant sequence through the relations (22), with ameliorated
convergence order. We will analyse certain special cases and, in the same time,
we will determine optimal methods from the point of view of the convergence
order.
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1. INTRODUCTION

Let us consider the normed spaces (X, ‖·‖X) and (Y, ‖·‖Y ) having θX and
θY as zero elements.

We will note by (X,Y )∗ the set of the linear and continous mappings defined
on X with values in Y ; we know that this set is a linear normed space with
the norm:

‖·‖ : (X,Y )∗ → R; ‖U‖ = sup {‖U (x)‖Y |x ∈ X, ‖x‖X = 1} ,

the supremum of the definition being of course finite.
It is also known that if (Y, ‖·‖Y ) is a Banach space, then ((X,Y )∗ , ‖·‖) is a

Banach space as well.
We will consider now a set D ⊆ X, a nonlinear function f : D → Y and,

using this function, the nonlinear equation:

(1) f (x) = θY .
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Our aim is to study the existence of a solution of this equation, namely an
element x from D so that for x = x the equality (1) is verified and also to
approximate this solution by a sequence (xn)n≥0 ⊆ D, with elements obtained
by a recurrence formula.

If we suppose that the function f : D → Y admits the Fréchet differential
f ′ (x) ∈ (X,Y )∗ at every point x ∈ D, the sequence (xn)n≥0 can be gener-
ated from the well-known iterative method known as the Newton-Kantorovich
iterative method. In this case, for any n ≥ 0 the equality

(2) f ′ (xn) (xn+1 − xn) + f (xn) = θY

is verified.
If the function f : D → Y and the initial element x0 ∈ D verify cer-

tain conditions, we can prove that for any n ≥ 0 there exists the mapping
[f ′ (xn)]−1 ∈ (Y,X)∗ and in this way the recurrence relation (2) will be writ-
ten for any n ≥ 0 as

(3) xn+1 = xn −
[
f ′ (xn)

]−1
f (xn)

(see [9] and [10]).

The mapping [f ′ (xn)]−1 ∈ (Y,X)∗ will be found by solving the linear equa-
tion (2) and this operation must be accomplished for every n ≥ 0, that is,
for every iteration step needed in order to obtain an element xn ∈ D corre-
sponding to the criterion of error imposed to the approximant of the solution
of equation (1).

We can surpass this difficulty using an additional sequence. Thus, besides
the solution x ∈ D that is approximated by the sequence (xn)n≥0 ⊆ D, the

linear mapping [f ′ (x)]−1 ∈ (Y,X)∗ will be approximated at the same time by
an additional sequence (An)n≥0 ⊆ (Y,X)∗ .

The manner of obtaining the additional sequence is that of the approxi-
mation of a certain linear mapping’s inverse. So if we consider a mapping
U ∈ (X,Y )∗ and another mapping A0 ∈ (Y,X)∗ so that ‖IY − UA0‖ < 1
(IY represents the identical mapping from Y ) then there exists the inverse to
the right of the mapping U, denoted by U−1

d ∈ (Y,X)∗ and this mapping will
be obtained as the limit of the sequence (An)n≥0 ⊆ (Y,X)∗ generated by the
recurrence sequence:

(4) An+1 = An

r∑
k=0

(IY − UAn)k

starting from the mapping A0, where r ∈ N is given.
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One can verify the fact that for any n ≥ 0 the relations

(5)


IY − UAn+1 = (IY − UAn)r+1 ,

IY − UAn = (IY − UA0)(r+1)n ,

‖An+1 −An‖ ≤ ‖A0‖ d(r+1)n

1−d(r+1)n exp
r∑

k=1

dk

1−dkr ,

are true. In the above d = ‖IY − UA0‖ and for any u ∈ R we have exp (u) =
= eu. Again, for any n ≥ 0 and p ∈ N the following inequality is true

(6) ‖An+p −An‖ ≤ ‖A0‖ d(r+1)n

[1−d(r+1)n ]
2 exp

r∑
k=1

dk

1−dkr .

If (X, ‖·‖X) is a Banach space, we deduce the convergence of the sequence

(An)n≥0 to the mapping U−1
d ∈ (Y,X)∗ for which we have the estimates

(7)


∥∥U−1

d

∥∥ ≤ ‖A0‖
1−d(r+1)n exp

r∑
k=1

dk

1−dkr ,∥∥U−1
d −An

∥∥ ≤ ‖A0‖ d(r+1)n

[1−d(r+1)n ]
2 exp

r∑
k=1

dk

1−dkr .

On account of the aforementioned results the following definition is justified

Definition 1. For a given mapping U ∈ (X,Y )∗ and a number r ∈ N, the
mapping:

(8) S
(r+1)
U : (Y,X)∗ → (Y,X)∗ , S

(r+1)
U (A) = A

r∑
k=0

(IY − UA)k

is called a mapping of approximation with the order r + 1 of the inverse to
right of U.

Remark 2. If A0 ∈ (Y,X)∗ is given, using a certain approximation mapping
we can build a sequence (An)n≥0 that will be in fact the sequence of the

successive approximations generated through the mapping (8), namely for

any n ≥ 0 we have the equality An+1 = S
(r+1)
U (An) , a relation of recurrence

that goes back to the relation (4) and if ‖IY − UA0‖ < 1 there exists U−1
d =

lim
n→∞

An ∈ (Y,X)∗ . �

We return to the iterative method of Newton-Kantorovich for the equation
(1).

Definition 3. If the function f : D → Y admits the Fréchet differential at
every point x ∈ D and this differential is invertible, then the function:

(9) Q : D → X; Q (x) = x−
[
f ′ (x)

]−1
f (x)

is called the iterative operator of Newton attached to the function f : D → Y.
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It is clear that for the existence of a certain iterative operator of Newton, in
addition to the differentiability at every point x ∈ D of the mapping f : D →
Y, it is necessary to suppose the invertibility of the mapping f ′ (x) ∈ (X,Y )∗

at every point x ∈ D as well.
So the iterative method of Newton-Kantorovich is in fact the method of

successive approximations generated by the mappingQ, the recurrence relation
(3) will be written in the form xn+1 = Q (xn) .

In order to avoid this last difficulty we will use the operator

(10) R : D × (Y,X)∗ → X, R (x,A) = x− S
(r+1)
f ′(x) (A) f (x)

with r ∈ N∪{0} .
In order to approximate the solution of the equation (1) we will use a

sequence (xn)n≥0 ⊆ D where for every n ≥ 0 we have

(11)

{
xn+1 = R (xn, An) ,

An+1 = S
(q+1)
f ′(xn+1) (An) ,

namely

(12)

 xn+1 = xn − S
(r+1)
f ′(xn) (An) f (xn) ,

An+1 = S
(q+1)
f ′(xn+1) (An) ,

or, even in more detail,

(13)


xn+1 = xn −An

[
r∑

k=0

(IY − f ′ (xn)An)k
]
f (xn) ,

An+1 = An
q∑

k=0

(IY − f ′ (xn+1)An)k ,

with x0 ∈ D and A0 ∈ (Y,X)∗ , which are the initial elements of the proceeding
and are arbitrarily chosen. Also, in relations (11)–(13), we use the numbers
r ∈ N∪{0} and q ∈ N, in order to generate a certain unconstant sequence
(An)n≥0 , the use of a certain number q ≥ 1 is necessary.

It has been shown [1], [2] that the order of the convergence speed of the
approximant sequence (xn)n≥0 ⊆ D to a solution of the equation f (x) = θY is
2, that is, there exists K,L > 0 so that for any n ≥ 0 we have the inequalities

(14)

{
‖f (xn+1)‖Y ≤ K ‖f (xn)‖2Y ,
‖xn+1 − xn‖X ≤ L ‖f (xn)‖Y .

This order is not dependent on the natural numbers r ∈ N∪{0} and q ∈ N.
For this reason special interest is given to the case of r = 0, q = 1, for the

simplicity of the calculations needed. In this case the relations (13) will be
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written under the form

(15)

{
xn+1 = xn −Anf (xn) ,

An+1 = An (2IY − f ′ (xn+1)An) ,

a method proposed by S. Ul’m [13], and also to the case of r = 0, q = 2
in which the choice of the initial elements x0 ∈ D and A0 ∈ (Y,X)∗ is most
favorable in order to ensure the convergence [1].

For the detailed study of these methods one can refer to the papers [3], [5],
[6], [7] and [8].

Method (13) can be extended. In order to this it is necessary to use an
operator Q : D → X with Q (D) ⊆ D. With the aid of this operator we build
a sequence (xn)n≥0 ⊆ D starting from an arbitrary element x0 ∈ D and for a
certain n ≥ 0, xn ∈ D being known, we will determine the element xn+1 ∈ D
that verifies the equality

(16) f ′ (xn) (xn+1 − xn) + f (Q (xn)) = 0.

If for any n ≥ 0 there exists the mapping [f ′ (xn)]−1 ∈ (Y,X)∗ , we can
say that the sequence (xn)n≥0 is generated starting from x0 ∈ D through the
recurrence relation

(17) xn+1 = Q (xn)−
[
f ′ (xn)

]−1
f (Q (xn)) .

Such a method is known under the name of the iterative method of the
Traub type.

Obviously, if Q = IX the iterative method generated from (17) goes back
to the method of Newton-Kantorovich (2)-(3).

We apply to the methods of the Traub type the same modification that
was used in the cases of the methods of the Newton-Kantorovich type. Thus
we will obtain the pair of sequences (xn)n≥0 ⊆ D and (An)n≥0 ⊆ (Y,X)∗

generated from the recurrence relations

(18)


xn+1 = Q (xn)−An

[
r∑

k=0

(IY − f ′ (xn)An)k
]
f (Q (xn)) ,

An+1 = An

[
q∑

k=0

(IY − f ′ (xn+1)An)k
]
.

It is known that if the operator Q : D → X has the order p in connection
with the function f : D → Y, namely there exist the numbers K,L > 0 so
that for any x ∈ D the following relations are true

(19)

{
‖f (Q (xn))‖Y ≤ K ‖f (xn)‖pY ,
‖Q (x)− x‖X ≤ L ‖f (xn)‖Y ,

then the order of the convergence speed of the sequence (xn)n≥0 ⊆ D generated

through the relations (16) and (18) is p+ 1 (see [4], [6], [8], [11] and [12]).
Furthermore, as we have shown in [7], given a sequence (yn)n≥0 ⊆ D with

a convergence order p ≥ 1 in connection with the function f : D → Y
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and the sequence (xn)n≥0, meaning there exists the numbers K0, L0 > 0 so
that, for any n ≥ 0 the following inequalities are true

(20)

{
‖f (yn)‖Y ≤ K0 ‖f (xn)‖pY ,
‖yn − xn‖X ≤ L0 ‖f (xn)‖Y ,

then the sequence (xn)n≥0 ⊆ D generated by the relation:

(21) xn+1 = yn −
[
f ′ (xn)

]−1
f (yn) ,

or through the relations:

(22)


xn+1 = yn −An

[
r∑

k=0

(IY − f ′ (xn)An)k
]
f (yn) ,

An+1 = An
q∑

k=0

(IY − f ′ (xn+1)An)k

has the convergence order p+ 1 in connection with the same function f : D →
Y.

In the paper [3] we have considered a mapping Q : D × (Y,X)∗ → X with
the property that for any A ∈ (Y,X)∗ the inclusion Q (D,A) ⊆ D takes place.
Using this mapping we will build an iterative method for the approximation
of the solution of the equation (1), with the sequences (xn)n≥0 and (An)n≥0
that are obtained form the recurrence relations

(23)


xn+1 = Q (xn, An)−An

[
r∑

k=0

(IY − f ′ (xn)An)k
]
f (Q (xn, An)) ,

An+1 = An
q∑

k=0

(IY − f ′ (xn+1)An)k ,

starting from the elements x0 ∈ D and A0 ∈ (Y,X)∗ arbitrarily chosen.
In order to ensure the convergence of the approximation sequence (xn)n≥0 ⊆

D generated through the relations (23), we will replace the relations (19) with
others more adequate to the mapping Q : D × (Y,X)∗ → X. Thus we will
suppose that the numbers m ∈ N and M > 0, and, for any i = 1,m, the
numbers pi, qi,Ki > 0 with pi + qi > 1 exist so that for any x ∈ D and any
A ∈ (Y,X)∗ the following inequalities are true:

(24)

 ‖f (Q (x,A))‖Y ≤
m∑
i=1

Ki ‖f (x)‖piY · ‖IY − f ′ (x)A‖qi ,

‖Q (x,A)− x‖X ≤M ‖f (x)‖Y .

In this paper we will study the more general case of an iterative proceeding
in which a sequence (yn)n≥0 ⊆ D is given and a sequence (xn)n≥0 ⊆ D is built

using the recurrence relation (22).
However, we will replace the inequalities (20). Supposing that the numbers

m ∈ N and L > 0 exist, and for any i = 1,m the numbers pi, qi,Ki > 0 exist
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with pi + qi ≥ 1 so that for any n ≥ 0 the following inequalities are true

(25)

 ‖f (yn)‖Y ≤
m∑
i=1

Ki ‖f (xn)‖piY · ‖IY − f ′ (xn)An‖qi ,

‖yn − xn‖X ≤M ‖f (xn)‖Y .

It is clear that if there exists the mapping Q : D× (Y,X)∗ → X so that for
any n ≥ 0 we have yn = Q (xn, An) , the proposed iterative proceeding goes
back to the iterative proceeding generated through the relations (23), while
the inequalities (24) are verified.

2. THE CONVERGENCE OF THE ITERATIVE PROCEEDING (??), (??)

In order to simplify the writing we will introduce the function

g : [0,+∞[× [0,+∞[→ R, g (u, v) =
m∑
i=1

Kiu
pivqi

where the number m ∈ N and for any i = 1,m the elements Ki, pi, qi > 0
with pi + qi > 1 are the same for which the inequalities (25) are verified. It is
evident that for any u, v ≥ 0 it results g (u, v) ≥ 0.

We will consider as well the function:

h : [0,+∞[→ R, h (t) = 1 + t+ t2 + ...+ tr = 1−tr+1

1−t .

Finally, for x0 ∈ D and R > 0, we will note by S (x0, R) the closed ball
with the center at the point x0 and the radius R, so we have:

S (x0, R) = {x ∈ R/ ‖x− x0‖X ≤ R} .

We suppose that the following hypothesis is fulfilled:
Hypothesis I1. The function f : D → Y admits a Fréchet differential at

every point x ∈ D, this differential being f ′ (x) ∈ (X,Y )∗ . The function f ′ :
D → (X,Y )∗ verifies the Lipschitz condition, namely there exists a constant
L > 0 so that for any x ∈ D the following inequality is true:

(26)
∥∥f ′ (x)− f ′ (y)

∥∥ ≤ L ‖x− y‖X .
In the same context we suppose that for any x ∈ D the mapping f ′ (x) ∈

∈ (X,Y )∗ is invertible, therefore the inverse mapping [f ′ (x)]−1 ∈ (Y,X)∗

exists. We also suppose the existence of a number B > 0 so that for any
x ∈ D we have the inequality:

(27)
∥∥∥[f ′ (x)

]−1
∥∥∥ ≤ B.

The main result of this paper is the following:

Theorem 4. If the following hypotheses are true:

i) the linear normed space (X, ‖·‖X) is a Banach space and the function
f : D → Y verifies the hypothesis I1.
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ii) the numbers C1, C2 > 0, r ∈ N∪{0} and q ∈ N exist and the following
conditions are verified:

(28)


L
2B

2 (1 + C2)2 g2 (C1, C2)h (C2) +

+g (C1, C2)
[
Cr+1

2 + LMBC1 (1 + C2)h (C2)
]
≤ C1

C2 + LMBC1 (1 + C2) + LB2 (1 + C2)2 g (C1, C2)h (C2) ≤ C
1
q+1
2 ,

together with the inequality:

(29) d = max
{

1
C1
‖f (x0)‖Y ,

1
C2

∥∥IY − f ′ (x0)A0

∥∥} < 1

and the inclusion relation S (x0, R) ⊆ D, where:

(30) R = [2MC1 +B (1 + C2) g (C1, C2)h (C2)] d
1−dα−1 ,

with the number α has the value:

min {2 (p1 + q1) , ..., 2 (pm + qm) , p1 + q1 + 1, ..., pm + qm + 1, q + 1} ,
then:

j) the sequences (xn)n≥0 , (yn)n≥0 ⊆ D and (An)n≥0 ⊆ (Y,X)∗ that for

any n ≥ 0 verify the relations (22) and the inequalities (25) and they
are convergent;

jj) the equation (1) has a solution x ∈ S (x0, R) and x = lim
n→∞

xn =

lim
n→∞

yn;

jjj) the mapping A = [f ′ (x)]−1 ∈ (Y,X)∗ exists and A = lim
n→∞

An;

jv) for any n ≥ 0 the following inequalities are true:

(31) ‖xn+1 − xn‖X ≤ [MC1 +B (1 + C2) g (C1, C2)h (C2)] dα
n
,

(32) ‖An+1 −An‖ ≤ B (1 + C2)
βdα

n−(βdα
n
)
q+1

1−βdαn ,

where:

β = C1 +BLMC1 (1 + C2) +B2L (1 + C2)2 h (C2) g (C1, C2) ,

(33) ‖x− xn‖X ≤ [MC1 +B (1 + C2) g (C1, C2)h (C2)] dα
n

1−dαn(α−1) ,

(34)
∥∥A−An∥∥ ≤ B (1 + C2)

q∑
k=1

(βdα
n
)
k

1−dkαn(α−1) ,

(35)
‖x− yn‖X ≤

≤ [2MC1 +B (1 + C2) g (C1, C2)h (C2)] dα
n

1−dαn(α−1) .

Proof. Using the method of mathematical induction we will prove that the
following assertions are true for any n ≥ 0.
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a) xn ∈ S (x0, R) ,
b) ρn = ‖f (xn)‖Y ≤ C1d

αn ,

δn = ‖IY − f ′ (xn)An‖ ≤ C2d
αn ,

c) ‖An‖ ≤ B (1 + C2) ,
d) yn ∈ S (x0, R) .

Indeed, from the theorem’s hypotheses it is clear that the assertions a)–c)
are true for n = 0 with the specification for c) that:

‖A0‖ =
∥∥∥[f ′ (x0)]−1 +A0 − [f ′ (x0)]−1

∥∥∥ ≤
≤
∥∥∥[f ′ (x0)]−1

∥∥∥ (1 + ‖IY − f ′ (x0)A0‖) ≤ B (1 + C2) .

For the assertion d) with n = 0 we have:

‖y0 − x0‖X ≤M ‖f (x0)‖Y ≤MC1d ≤ R.

We suppose that the assertions a)–d) are true for values of indexes that do
not go beyond a certain n ≥ 0 and from this hypothesis we deduce that they
are true for n+ 1.

Let us look at them successively:
a) For any i ∈ {1, 2, ..., n} we have:

‖xi+1 − xi‖X ≤ ‖yi − xi‖X + ‖Ai‖ · ‖f (yi)‖Y
r∑

k=0

∥∥IY − f ′ (xi)Ai∥∥k .
From the induction’s hypothesis and the hypotheses of the theorem we

deduce that

‖yi − xi‖X ≤M ‖f (xi)‖Y ≤MC1d
αi ,

‖Ai‖ ≤ B (1 + C2)

and

‖f (yi)‖Y ≤
m∑
j=1

Kj ‖f (xi)‖
pj
Y ·
∥∥IY − f ′ (xi)Ai∥∥qj ≤

≤
m∑
j=1

KjC
pj
1 C

qj
2 d

(pj+qj)α
i
.

But for any j ∈ {1, 2, ...,m} we have that pj +qj ≥ 1, therefore for the same
values of the natural number j we deduce that (pj + qj)α

i ≥ αi and as d < 1
it result that

‖f (yi)‖Y ≤ d
αi

m∑
j=1

KjC
pj
1 C

qj
2 = g (C1, C2) dα

i
.
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Finally
r∑

k=0

∥∥IY − f ′ (xi)Ai∥∥k ≤ r∑
k=0

Ck2d
kαi .

As kαi ≥ 0 and d < 1 we deduce that dkα
i ≤ 1, therefore

r∑
k=0

Ck2d
kαi ≤

≤
r∑

k=0

Ck2 = h (C2) .

In this way

‖xi+1 − xi‖X ≤ [MC1 +B (1 + C2) g (C1, C2)h (C2)] dα
i
,

from where

‖xn+1 − x0‖X ≤
n∑
i=0

‖xi+1 − xi‖X ≤(36)

≤ [MC1 +B (1 + C2) g (C1, C2)h (C2)]
n∑
i=0

dα
i
<

< [MC1 +B (1 + C2) g (C1, C2)h (C2)] d
1−dα−1 < R,

therefore it is clear that xn+1 ∈ S (x0, R) .
b) It is clear that

(37)
‖f (xn+1)‖Y ≤ ‖f (xn+1)− f (yn)− f ′ (yn) (xn+1 − yn)‖Y +

+ ‖f (yn) + f ′ (yn) (xn+1 − yn)‖Y .
Since the mapping f ′ : D → (Y,X)∗ verifies the Lipschitz condition, it is

known that for any x, y ∈ D the following inequality is true:

(38)
∥∥f (x)− f (y)− f ′ (y) (x− y)

∥∥
Y
≤ L

2 ‖x− y‖
2
X .

Taking into account the fact that xn+1, yn ∈ S (x0, R) we deduce that

(39)
∥∥f (xn+1)− f (yn)− f ′ (yn) (xn+1 − yn)

∥∥
Y
≤ L

2 ‖xn+1 − yn‖2X .
But

‖xn+1 − yn‖X ≤
∥∥∥S(r+1)

f ′(xn) (An)
∥∥∥ · ‖f (yn)‖Y ≤ ‖An‖ ·

·

(
n∑
k=0

∥∥IY − f ′ (xn)An
∥∥k) ·

 m∑
j=1

Kj ‖f (xn)‖pjY
∥∥IY − f ′ (xn)An

∥∥qj ≤
≤ B (1 + C2)h (C2)

m∑
j=1

KjC
pj
1 C

qj
2 d

(pj+qj)α
n
.

From the definition of α we deduce that for any j = 1,m we have that
pj + qj ≥ α

2 and as d < 1 we have

(40) ‖xn+1 − yn‖X ≤ B (1 + C2)h (C2) g (C1, C2) d
1
2α

n+1

.
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From the inequalities (39) and (40) it results that

(41)
‖f (xn+1)− f (yn)− f ′ (yn) (xn+1 − yn)‖Y ≤

≤ L
2B

2 (1 + C2)2 h2 (C2) g2 (C1, C2) dα
n+1

.

At the same time

(42)
∥∥f (yn) + f ′ (yn) (xn+1 − yn)

∥∥
Y
≤
∥∥∥IY − f ′ (yn)S

(r+1)
f ′(xn) (An)

∥∥∥·‖f (yn)‖ .

Here

(43)
∥∥∥IY − f ′ (xn)S

(r+1)
f ′(xn) (An)

∥∥∥ ≤ ∥∥IY − f ′ (xn)An
∥∥r+1 ≤ Cr+1

2 d(r+1)αn

and from xn, yn ∈ S (x0, R) ⊆ D we deduce that∥∥f ′ (xn)− f ′ (yn)
∥∥ ≤ L ‖xn − yn‖X ≤ LM ‖f (xn)‖Y ≤ LMC1d

αn ,

and finally∥∥∥S(r+1)
f ′(xn) (An)

∥∥∥ ≤ ‖An‖ r∑
k=0

∥∥IY − f ′ (xn)An
∥∥k ≤ B (1 + C2)

r∑
k=0

Ck2d
kαn ≤

≤ B (1 + C2)h (C2) .

Taking into account the fact that r ≥ 0, from the inequality (43) we deduce
that

∥∥∥IY − f ′ (yn)S
(r+1)
f ′(xn) (An)

∥∥∥ ≤ Cr+1
2 d(r+1)αn + LMBC1 (1 + C2)h (C2) dα

n
.

(44)

The last expression is not great as dα
n [
Cr+1

2 + LMBC1 (1 + C2)h (C2)
]
.

From (42) and (2) we deduce that

(45)

‖f (yn) + f ′ (yn) (xn+1 − yn)‖Y ≤
≤ dαn

[
Cr+1

2 + LMBC1 (1 + C2)h (C2)
]
·

·
m∑
j=1

Kj ‖f (xn)‖pjY ‖IY − f ′ (xn)An‖qj ,

and so

(46)

‖f (yn) + f ′ (yn) (xn+1 − yn)‖Y ≤

≤
[
Cr+1

2 + LMBC1 (1 + C2)h (C2)
] m∑
j=1

KjC
pj
1 C

qj
2 d

(pj+qj+1)αn .

As for any j = 1,m we have pj + qj + 1 ≥ α, therefore

(pj + qj + 1)αn ≥ αn+1 and d(pj+qj+1)αn ≤ dαn+1
and so:

(47)
‖f (yn) + f ′ (yn) (xn+1 − yn)‖Y ≤

≤
[
Cr+1

2 + LMBC1 (1 + C2)h (C2)
]
g (C1, C2) dα

n+1
.
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From the relations (37), (41) and (47), using the hypothesis implying that
the pair (C1, C2) verifies the system (28), we deduce that:

(48)

‖f(xn+1)‖Y
dαn+1 ≤ L

2B
2 (1 + C2)2 h2 (C2) g2 (C1, C2) +

+
[
Cr+1

2 + LMBC1 (1 + C2)h (C2)
]
g (C1, C2) ≤ C1,

also:
‖f (xn+1)‖Y ≤ C1d

αn+1
.

For the second inequality from b) it is clear that:

(49)

‖IY − f ′ (xn+1)An+1‖ =

=
∥∥∥IY − f ′ (xn+1)S

(q+1)
f ′(xn+1) (An)

∥∥∥ ≤ ‖IY − f ′ (xn+1)An‖q+1 ≤

≤ [‖IY − f ′ (xn)An‖+ ‖f ′ (xn)− f ′ (xn+1)‖ · ‖An‖]q+1 .

In the last expression from (49) it is clear that:

‖IY − f ′ (xn)An‖ ≤ C1d
αn , ‖An‖ ≤ B (1 + C2) , ‖f ′ (xn)− f ′ (xn+1)‖ ≤

≤ L ‖xn+1 − xn‖X ≤ L
[
‖yn − xn‖X +

∥∥∥S(r+1)
f ′(xn) (An)

∥∥∥ · ‖f (yn)‖Y
]
≤

≤ L [M ‖f (xn)‖Y +B (1 + C2)h (C2) ‖f (yn)‖Y ] ≤
≤ L [MC1 +B (1 + C2)h (C2) g (C1, C2)] dα

n
.

In this way, from (49) we obtain:

(50)

‖IY −f ′(xn+1)An+1‖
d(q+1)αn ≤

≤ {C1 +BL (1 + C2) [MC1 +B (1 + C2)h (C2) g (C1, C2)]}q+1 .

As q + 1 ≥ α and d < 1 it is clear that d(q+1)αn < dα
n+1

, therefore, using
again the fact that (C1, C2) is a solution of the system (28), from the inequality
(50) we deduce that

(51)
∥∥IY − f ′ (xn+1)An+1

∥∥ ≤ C2d
αn+1

,

and so the second inequality from b) is also true.
c) As xn+1 ∈ S (x0, R) it is clear that the mapping f ′ (xn+1) ∈ (X,Y )∗

exists, this mapping is invertible, so the mapping [f ′ (xn+1)]−1 ∈ (Y,X)∗ exists

and we have the inequality
∥∥∥[f ′ (xn+1)]−1

∥∥∥ ≤ B.
Thus we have the inequalities:

(52)

‖An+1‖ =
∥∥∥[f ′ (xn+1)]−1 +An+1 − [f ′ (xn+1)]−1

∥∥∥ ≤
≤
∥∥∥[f ′ (xn+1)]−1

∥∥∥+
∥∥∥[f ′ (xn+1)]−1 (IY − f ′ (xn+1)An+1)

∥∥∥ ≤
≤
∥∥∥[f ′ (xn+1)]−1

∥∥∥ (1 + ‖IY − f ′ (xn+1)An+1‖) ≤ B
(

1 + C2d
αn+1

)
,

and as α > 1 and d < 1 it is clear that dα
n+1

< 1, therefore
‖An+1‖ ≤ B (1 + C2) .
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d) It is clear as well that:

‖yn+1 − x0‖X ≤ ‖yn+1 − xn+1‖X + ‖xn+1 − x0‖X .

From the theorem’s hypothesis we have that:

(53) ‖yn+1 − xn+1‖X ≤M ‖f (xn+1)‖Y ≤MC1d
αn+1

,

therefore:

‖yn+1 − x0‖X ≤ [2MC1 +B (1 + C2) g (C1, C2)h (C2)] d
1−dα−1 ≤ R,

and so yn+1 ∈ S (x0, R) .
Thus all the 4 assertions are true for n substituted by n+1. Therefore based

on the principle of mathematical induction, these assertions will be true for
every n ≥ 0.

We will now prove that the sequences (xn)n≥0 ⊆ D ⊆ X and (An)n≥0 ⊆
(Y,X)∗ are Cauchy sequences in the respective spaces.

Indeed, for any n ∈ N we have:

‖xn+m − xn‖ ≤
n+m−1∑
i=n

‖xi+1 − xi‖X ≤

≤ [MC1 +B (1 + C2) g (C1, C2)h (C2)] ·
(
dα

n
+ dα

n+1
+ ...+ dα

n+m−1
)
.

But:

dα
n

+ dα
n+1

+ ...+ dα
n+m−1

= dα
n
[
1 + dα

n+1−αn + ...+ dα
n+m−1−αn

]
.

For this expression, for any i = 1,m− 1, we have:

αn+i − αn = αn
(
αi − 1

)
= αn (α− 1)

(
1 + α+ ...+ αi−1

)
.

As α ≥ 1 it is clear that 1 + α+ ...+ αi−1 ≥ i, therefore
αn+i − αn ≥ iαn (α− 1) and as d < 1 we deduce in addition that:

dα
n+i−αn ≤

(
dα

n(α−1)
)i
,

therefore:

dα
n

+ dα
n+1

+ ...+ dα
n+m−1

< dα
n
∞∑
i=0

(
dα

n(α−1)
)i

= dα
n

1−dαn(α−1) ,

and so:

(54) ‖xn+m − xn‖X ≤ [MC1 +B (1 + C2) g (C1, C2)h (C2)] dα
n

1−dαn(α−1) .

At the same time:

‖An+1 −An‖ ≤ ‖An‖
q∑

k=1

∥∥IY − f ′ (xn+1)An
∥∥k
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and through the same proceeding as in the case of the relations (49) we will
have:

(55) ‖An+1 −An‖ ≤ B (1 + C2)

q∑
k=1

(
βdα

n)k
,

where β has the value from the enunciation.
It is clear that:

q∑
k=1

(
βdα

n)k
=

βdα
n−(βdα

n
)
q+1

1−βdαn ,

therefore we will obtain the inequality (32).
From the inequality (55) we deduce immediately that:

(56)

‖An+m −An‖ ≤
n+m−1∑
i=n

‖Ai+1 −Ai‖ ≤

≤ B (1 + C2)
n+m−1∑
i=n

q∑
k=1

(
βdα

i
)k

= B (1 + C2)
q∑

k=1

βk
n+m−1∑
i=n

dkα
i
,

therefore:

(57) ‖An+m −An‖ ≤ B (1 + C2)

q∑
k=1

(βdα
n
)
k

1−dkαn(α−1) .

As d < 1 and α ≥ 1 it is clear that:

lim
n→∞

dα
n

1−dαn(α−1) = lim
n→∞

q∑
k=1

(βdα
n
)
k

1−dkαn(α−1) = 0

and so the inequalities (54) and (57) indicate that the sequence (xn)n≥0 is a

Cauchy sequence in the space X and the sequence (An)n≥0 is a sequence of

the same type in the space (Y,X)∗ .
As (X, ‖·‖X) is a Banach space, on account of a well-known theorem, the

space ((Y,X)∗ , ‖·‖) is a Banach space as well, so the sequence (xn)n≥0 ⊆ ⊆ X
and (An)n≥0 ⊆ (Y,X)∗ are convergent in the respective spaces, therefore there

exist x ∈ X and A ∈ (Y,X)∗ so that x = lim
n→∞

xn and A =

= lim
n→∞

An.

If in the inequalities (54) and (57) we consider m → ∞ we obtain the
inequalities (33) and (34) from the theorem’s conclusions.

From the inequality (32) with n = 0 we obtain:

‖x− x0‖ ≤ [MC1 +B (1 + C2) g (C1, C2)h (C2)] d
1−dα−1 ≤ R

therefore x ∈ S (x0, R) .
From the fact that S (x0, R) ⊆ D we deduce x ∈ D therefore the map-

ping f ′ (x) ∈ (X,Y )∗ exists and even [f ′ (x)]−1 ∈ (Y,X)∗ together with the

inequality
∥∥∥[f ′ (x)]−1

∥∥∥ ≤ B.
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From the fact that for any n ∈ N we have the inequality ‖f (xn)‖Y ≤
≤ C1d

αn with d < 1 and α > 1 we deduce that lim
n→∞

‖f (xn)‖Y = 0, from

where on account of the continuity of the norme and of the mapping
f : D → Y in x ( this last is even differentiable in x ) we deduce that∥∥∥f ( lim

n→∞
xn

)∥∥∥
Y

= 0 that ip ‖f (x)‖Y = 0, from where f (x) = θY , therefore x

is a solution of the equation (1).
On the other hand:[

f ′ (xn)
]−1 −

[
f ′ (x)

]−1
=
[
f ′ (xn)

]−1 (
f ′ (x)− f ′ (xn)

) [
f ′ (x)

]−1
,

therefore:

(58)

∥∥∥[f ′ (xn)]−1 − [f ′ (x)]−1
∥∥∥ ≤

≤
∥∥∥[f ′ (xn)]−1

∥∥∥ · ∥∥∥[f ′ (x)]−1
∥∥∥ · ‖f ′ (x)− f ′ (xn)‖ ≤ B2L ‖x− xn‖X .

As lim
n→∞

‖x− xn‖X = 0 we deduce that lim
n→∞

∥∥∥[f ′ (xn)]−1 − [f ′ (x)]−1
∥∥∥ = 0,

therefore:

(59) lim
n→∞

[
f ′ (xn)

]−1
=
[
f ′ (x)

]−1

in the sense of the norm from (Y,X)∗ .
Afterwards we deduce that:

(60)

∥∥∥An − [f ′ (x)]−1
∥∥∥ ≤

≤
∥∥∥An − [f ′ (xn)]−1

∥∥∥+
∥∥∥[f ′ (xn)]−1 − [f ′ (x)]−1

∥∥∥ ≤
≤
∥∥∥[f ′ (xn)]−1

∥∥∥ · ‖IY − f ′ (xn)An‖+
∥∥∥[f ′ (xn)]−1 − [f ′ (x)]−1

∥∥∥ ≤
≤ BC2d

αn +
∥∥∥[f ′ (xn)]−1 − [f ′ (x)]−1

∥∥∥ ,
from where, on account of the fact that d < 1 and α > 1 together with the

relation (59), we deduce that lim
n→∞

∥∥∥An − [f ′ (x)]−1
∥∥∥ = 0, therefore:

lim
n→∞

An =
[
f ′ (x)

]−1
.

On account of the unicity of the limit we deduce that A = [f ′ (x)]−1 .
On account of the inequality (53) we deduce that lim

n→∞
‖yn − xn‖X = 0,

therefore:
lim
n→∞

yn = lim
n→∞

xn = x.

From the same inequality (53) we deduce that:

‖yn − xn‖X ≤MC1
dα
n

1−dαn(α−1) ,

from where:
‖yn − x‖X ≤ ‖yn − xn‖X + ‖x− xn‖X ,
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and in this way one obtain the inequality (35).
The theorem is proven. �

3. SPECIAL CASES

Let us consider the case in which we choose the sequence (yn)n≥0 ⊆ X
defined through:

(61) yn = xn − S
(p+1)
f ′(xn) (An) f (xn)

with a certain p ∈ N. In this case the relations of recurrence (22) become:

(62)


xn+1 = xn − S

(p+1)
f ′(xn) (An) f (xn)−

−S(r+1)
f ′(xn) (An) f

(
xn − S

(p+1)
f ′(xn) (An) f (xn)

)
,

An+1 = S
(q+1)
f ′(xn+1) (An) .

In this case the function g : [0,+∞[× [0,+∞[→ R is defined through:

(63) g (u, v) = LB2

2 u2 (1 + v)2
p∑

k=0

vk + uvp+1

where L,B > 0 are the constants that result from the verification of the
hypothesis I1) also needed in this case.

The convergence of the pair of sequences (xn)n∈N∪{0} ⊆ D and

(An)n≥0 ⊆ (Y,X)∗ is expressed through the following:

Theorem 5. If the following statements are true:

i) the linear normed space (X, ‖·‖X) is a Banach space and with regard
to the function f : D → Y the hypothesis I1) is true;

ii) the numbers C1, C2 > 0, r ∈ N∪{0} and q ∈ N exist and the sys-
tem (28), of the inequality (29) together with the relation of inclusion
S (x0, R) ⊆ D, where R is expressed through the equality (30) and
α = min {3, q + 1} are verified;

then:

j) if the sequence (yn)n≥0 is defined by relation (61), then for any n ≥ 0

the following relations, of the same type as the relation (25), are true:

(64)


‖f (yn)‖Y ≤

LB2

2 (1 + δn)2 ‖f (xn)‖2Y
p∑

k=0

δkn+

+δp+1
n · ‖f (xn)‖Y ,

‖yn − xn‖X ≤ B (1 + C2)h (C2) ‖f (xn)‖Y ,
where δn = ‖IY − f ′ (xn)An‖ ;

jj) the conclusions j)–jv) of the theorem 4 with g (u, v) defined through
(62) and M = B (1 + C2)h (C2) are true.
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Proof. We apply Theorem 4 in the case in which the
sequence (yn)n≥0 is generated by the relation (61). For this it is enough to

show that for any n ≥ 0 the relations (64) are true.
Through mathematical induction we will show that for any n ≥ 0 the propo-

sitions a)–c) from the proof of Theorem 4 followed by the inequalities (64) are
true.

The relations a)–c) for a certain number n ∈ N∪{0} are proved in the same
manner as in the proof of Theorem 4.

Afterwards for the same number n ≥ 0 we have:

‖yn − xn‖X ≤
∥∥∥S(p+1)

f ′(xn) (An)
∥∥∥ · ‖f (xn)‖Y .

But: ∥∥∥S(p+1)
f ′(xn) (An)

∥∥∥ ≤ ‖An‖ p∑
k=0

∥∥IY − f ′ (xn)An
∥∥k

and:

‖An‖ =
∥∥∥[f ′ (xn)

]−1
+An −

[
f ′ (xn)

]−1
∥∥∥ ≤

≤
∥∥∥[f ′ (xn)

]−1
∥∥∥ (1 +

∥∥IY − f ′ (xn)An
∥∥) ≤ B (1 +

∥∥IY − f ′ (xn)An
∥∥) .

From here:

‖f (yn)‖Y ≤
≤ ‖f (yn)− f (xn)− f ′ (xn) (yn − xn)‖Y + ‖f (xn) + f ′ (xn) (yn − xn)‖Y ,

for which:

‖f (yn)− f (xn)− f ′ (xn) (yn − xn)‖Y ≤
L
2 ‖yn − xn‖

2
X ≤

≤ LB2

2 (1 + ‖IY − f ′ (xn)An‖)2 ‖f (xn)‖2Y ·
p∑

k=1

‖IY − f ′ (xn)An‖k ,

and:

‖f (xn) + f ′ (xn) (yn − xn)‖Y ≤
∥∥∥IY − S(p+1)

f ′(xn) (An)
∥∥∥ · ‖f (xn)‖Y +

+ ‖IY − f ′ (xn)An‖p+1 · ‖f (xn)‖Y .
In this way:

‖f (yn)‖Y ≤

≤ LB2

2 (1 + ‖IY − f ′ (xn)An‖)2 ‖f (xn)‖2Y ·
p∑

k=1

‖IY − f ′ (xn)An‖k +

+ ‖IY − f ′ (xn)An‖p+1 · ‖f (xn)‖Y .
For the finishing of the second inequality from (64) we have:

‖yn − xn‖X ≤

[
B (1 + C2)

p∑
k=0

Ck2

]
‖f (xn)‖Y = B (1 + C2)h (C2) ‖f (xn)‖Y .

The theorem is thus proven. �
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Remark 6. From the conclusions of Theorem 4 it results that the conver-
gence speed of the sequence (xn)n≥0 does not depend on r and p. So the order
of this speed is α = 3 for any q ≥ 2. In this way, for the simplicity of the
calculation, the most efficient methods are the ones for which r = p = 0 and
q = 2. The relations (62) will become:

(65)

 xn+1 = xn −Anf (xn)−Anf (xn −Anf (xn)) ,

An+1 = An

[
3IY − 3f ′ (xn+1)An + (f ′ (xn+1)An)2

]
.

�

If we introduce this values in the expression of g (u, v) and h (v) we will
obtain:

g (u, v) = LB2

2 u2 (1 + v)2 + uv, h (v) = 1.

The pair (C1, C2) ∈ [0,+∞[ × [0,+∞[ must be a solution of the system in
u and v : {

z [z (z − v) + w] ≤ 1

[w + z (2z − v)]3 ≤ v
where z = LB2

2 u (1 + v)2 + v and w = v + LMBu (1 + v) .
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itératives, “Babeş-Bolyai” University, Faculty of Mathematics, Research Seminars, Sem-
inar of Functional Analysis and Numerical Methods, Preprint No. 1, pp. 25–74, 1987.
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