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SOME TYPES OF CONVEX FUNCTIONS ON NETWORKS
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Abstract. We present and study some kinds of convex functions defined on
undirected networks. The relations between these concepts are also presented.
We adopt the definition of network as metric space used by Dearing P. M. and
Francis R. L. in 1974.
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1. INTRODUCTION

A class of sets and a class of functions called E-convex sets and E-convex
functions are introduced in [35] by relaxing the definitions of convex sets and
convex functions. This kind of generalized convexity is based on the effect of
an operator E on the sets and domain of definition of the functions.

We recall the definitions of E-convex sets and E-convex functions.
We consider a map E : Rn → Rn.

Definition 1. [35] A set A ⊂ Rn is said to be E-convex if λE(x) + (1 −
λ)E(y) ∈ A, for each x, y ∈ A and 0 ≤ α ≤ 1.

Definition 2. [35] A function f : A→ R, A ⊂ Rn being E-convex, is said
to be E-convex on A if for each x, y ∈ A and 0 ≤ α ≤ 1 the following inequality
is satisfied

f(λE(x) + (1− λ)E(y)) ≤ λf(E(x)) + (1− λ)f(E(y)).

We recall first the definitions of undirected networks as metric space intro-
duced in [1] and also used in many other papers (see, e.g., [2], [9], [7], etc.).

We consider an undirected, connected graph G = (W,A), without loops or
multiple edges. To each vertex wi ∈ W = {w1, ..., wn} we associate a point
vi from an euclidean space X. This yields a finite subset V = {v1, ..., vn}
of X, called the vertex set of the network. We also associate to each edge
(wi, wj) ∈ A a rectifiable arc [vi, vj ] ⊂ X called edge of the network. We
assume that any two edges have no interior common points. Consider that

∗Department of Mathematics, Faculty of Automation and Computer Science, Technical
University of Cluj-Napoca, Constantin Daicoviciu, no. 15, 400020 Cluj-Napoca, Romania,
e-mail: daniela.marian@math.utcluj.ro.

www.ictp.acad.ro/jnaat


56 Daniela Marian 2

[vi, vj ] has the positive length lij and denote by U the set of all edges. We
define the network N = (V,U) by

N = {x ∈ X | ∃ (wi, wj) ∈ A such that x ∈ [vi, vj ]} .
It is obvious that N is a geometric image of G, which follows naturally

from an embedding of G in X. Suppose that for each [vi, vj ] ∈ U there is a
continuous one-to-one mapping θij : [vi, vj ]→ [0, 1] with θij (vi) = 0, θij (vj) =
1, and θij ([vi, vj ]) = [0, 1]. We denote by Tij the inverse function of θij.

Any connected and closed subset of an edge bounded by two points x and
y of [vi, vj ] is called a closed subedge and is denoted by [x, y]. If one or both
of x, y are missing we say than the subedge is open in x, or in y or is open and
we denote this by (x, y] , [x, y) or (x, y), respectively. Using θij , it is possible
to compute the length of [x, y] as

l ([x, y]) = |θij (x)− θij (y)| · lij .
Particularly we have

l ([vi, vj ]) = lij , l ([vi, x]) = θij (x) lij

and

l ([x, vj ]) = (1− θij (x)) · lij .
A path L(x, y) linking two points x and y in N is a sequence of edges and at

most two subedges at extremities, starting at x and ending at y. If x = y then
the path is called cycle. The length of a path (cycle) is the sum of the lengths
of all its component edges and subedges and will be denoted by l (L (x, y)). If
a path (cycle) contains only distinct vertices then we call it elementary.

A network is connected if for any points x, y ∈ N there exists a path
L (x, y) ⊂ N .

A connected network without cycles is called tree.
Let L∗ (x, y) be a shortest path between the points x, y ∈ N . This path is

also called geodesic.

Definition 3. [1] For any x, y ∈ N , the distance from x to y, d (x, y) in
the network N is the length of a shortest path from x to y:

d (x, y) = l (L∗ (x, y)) .

It is obvious that (N, d) is a metric space.
For x, y ∈ N , we denote

(1) 〈x, y〉 = {z ∈ N | d (x, z) + d (z, y) = d (x, y)} ,
and 〈x, y〉 is called the metric segment between x and y.

One of the natural analogs of convexity in a metric space (X, d) is d-
convexity, which has been introduced independently by K. Menger [13], P. S.
Soltan and K. F. Prisakaru [28], J. de Groot [3], and other authors. However,
except for definitions, these papers contain almost no theorems on d-convex
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sets. The theory of d-convex sets was mainly developed by P. S. Soltan and
his students, see, e.g., [25], [30]. In graphs, the theory of d-convex sets was
developed by V. P. Soltan [33], [29] and in networks by M. E. Iacob[7], M. E.
Iacob and V. P. Soltan [8].

We recall the definitions of d-convex sets.
We consider a metric space (X, d) and the points x, y ∈ X. The set

(2) {z ∈ X | d(x, z) + d(z, y) = d(x, y)}

is called d-segment with endpoints x, y and is denoted with 〈x, y〉.

Definition 4. [13] A set D ⊂ X is called d-convex if 〈x, y〉 ⊂ D for every
x, y ∈ D.

The empty set is d-convex and also X is d-convex.
Consequently, we have from network the next definition.

Definition 5. [1] A set D ⊂ N is called d-convex if 〈x, y〉 ⊂ D for any
x, y ∈ D.

2. E-d-CONVEX SETS ON UNDIRECTED NETWORKS

We consider a network N and a map E : N → N .
According to Definitions 1 we define:

Definition 6. A set A ⊂ N is said to be E-d-convex if 〈E(x), E(y)〉 ⊂ A,
for each x, y ∈ A.

Example 7. We consider the network N = (V,U) with V = {v1, v2, v3, v4}
and

U = {[v1, v2] , [v1, v3] , [v3, v2] , [v4, v2] , [v4, v3]}
such that

l([v1, v2]) = 1 = l([v3, v2]) = l([v4, v3]) and

l([v1, v3]) = 2 = l([v4, v2]).

For every edge [vi, vj ] ∈ U we consider the corresponding function
θij : [vi, vj ] → [0, 1]. For every z ∈ [vi, vj ] we denote by z′ the point of the
edge [v1, v2] such that d(v1, z

′) = θij(z). We define now

E : N → N, E(z) =

{
z′, ∀z ∈ N\{v3}
v2, z = v3.

The set A = [v1, v2] ∪ [v4, v2] it is not d-convex since v3 ∈ 〈v1, v4〉 but v3 /∈ A.
But it is obviously that the set A is E-d-convex with E defined above. �

Theorem 8. If a set A ⊂ N is E-d-convex then E(A) ⊆ A.
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Proof. If the set A is E-d-convex then for every x, y ∈ A we have

〈E(x), E(y)〉 = {z ∈ N | d (E(x), z) + d (z, E(y)) = d (E(x), E(y))} ⊆ A.
But E(x) ∈ 〈E(x), E(y)〉 since d (E(x), E(x))+d (E(x), E(y))=d (E(x), E(y)).
Consequently E(A) ⊆ A. �

Theorem 9. If E(A) is d-convex and E(A) ⊆ A then A is E-d-convex.

Proof. We suppose that x, y ∈ A. Then E(x) and E(y) ∈ A. Since E(A) is
d-convex we have 〈E(x), E(y)〉 ⊂ A. Consequently A is E-d-convex. �

Theorem 10. If the sets A1 ⊂ N and A2 ⊂ N are E-d-convex then the set
A1 ∩A2 is E-d-convex.

Proof. Indeed, if x, y ∈ A1∩A2 then x, y ∈ A1 and x, y ∈ A2. Since the sets
A1 and A2 are E-d-convex then 〈E(x), E(y)〉 ⊂ A1 and 〈E(x), E(y)〉 ⊂ A2.
Consequently 〈E(x), E(y)〉 ⊂ A1 ∩A2. �

Theorem 11. If the set A ⊂ N is E1-d-convex and E2-d-convex then it is
(E1 ◦ E2)-d-convex and (E2 ◦ E1)-d-convex.

Proof. We consider the points x, y ∈ A. We suppose there is

z ∈ 〈(E1 ◦ E2)(x), (E1 ◦ E2)(y)〉 = 〈E1(E2(x)), (E1(E2(y))〉
such that z /∈ A. From Theorem 8 we have E2(x) ∈ A and E2(y) ∈ A.
We denote x′ = E2(x) and y′ = E2(y). Consequently z ∈ 〈E1(x′), E1(y′)〉 but
z /∈ A, wich contradict E1-d-convexity of A. Hence A is (E1◦E2)-d-convex. �

Similarly, A is an (E2 ◦ E1)-d-convex set.

3. E-d-CONVEX FUNCTIONS ON UNDIRECTED NETWORKS

We consider again a network N and a map E : N → N . We denote
R = R ∪ {−∞,+∞}.

We recall first the definitions of d-convex functions introduced by Soltan in
[27].

Definition 12. [27] The function f : N → R is called d-convex on N if
for any pair of points x, y ∈ N, x 6= y and for all z ∈ 〈x, y〉 is satisfied the
inequality

(3) f (z) ≤ d(z,y)
d(x,y)f (x) + d(x,z)

d(x,y)f (y) .

This functions was studied in [33], [30], [31], [32], [7], [26], [6], etc.
According to Definitions 2 we define:

Definition 13. A function f : A→ R, A ⊂ N being E-d-convex, is said to
be E-d-convex on A if for each x, y ∈ A is satisfied the inequality

f (z) ≤ d(z,E(y))
d(E(x),E(y))f (E(x)) + d(E(x),z)

d(E(x),E(y))f (E(y))

for any z ∈ 〈E(x), E(y)〉.
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Example 14. We consider the network N = (V,U) with V = {v1, v2, v3, v4}
and

U = {[v1, v2] , [v1, v3] , [v1, v4]} ,
such that

l([v1, v2]) = 1 = l([v1, v3]) = l([v1, v4]).

For every edge [vi, vj ] ∈ U we consider the corresponding function
θij : [vi, vj ] → [0, 1]. For every z ∈ [vi, vj ] we denote by z′ the point of the
edge [v1, v2] such that d(v1, z

′) = θij(z). We define now

E : N → N,E(z) = z′, ∀z ∈ N
and

f : N → R, f(x) =

{
1, if x ∈ N\ [v1, v2]

d(v1, x), if x ∈ [v1, v2]
.

It is obviously that f is E-d-convex on N . But this function it is not d-convex.
Indeed, if we consider a point x ∈ [v1, v2] such that d(v1, x) = d(v2, x), y = v4

and a point z such that d(v1, z) = d(v4, z) we see that z ∈ 〈x, y〉 but

f(z) = 1 > d(z,y)
d(x,y)f (x) + d(x,z)

d(x,y)f (y) = 1
3 ·

1
2 + 2

3 · 1 = 5
6

�

Theorem 15. If the function f : N → R is E-d-convex on N and f(E(z))≤
f(z) for every z ∈ N then for every α ∈ R the sets A = {z ∈ N | f(E(z)) ≤ α}
and B = {z ∈ N | f(E(z)) < α} are E-d-convex.

Proof. Let us verify, for example, that the set A is E-d-convex. Let x, y ∈ A
and z ∈ 〈E(x), E(y)〉. Then

f (z) ≤ d(z,E(y))
d(E(x),E(y))f (E(x)) + d(E(x),z)

d(E(x),E(y))f (E(y))

≤
[
d(z,E(y))+d(E(x),z)

d(E(x),E(y))

]
α = α.

But f(E(z)) ≤ f(z) for every z ∈ N , hence f(E(z)) ≤ α and 〈E(x), E(y)〉 ⊂
A. Consequently A is E-d-convex. �

4. ROUGHLY d-CONVEX FUNCTIONS

Roughly d-convex functions are a generalization of roughly convex functions
and respective of d-convex functions proposed by V. P. Soltan and P. S. Soltan
in [27]. We recall that there are several kinds of roughly convex functions:
ρ-convex functions, proposed by Klötzler and investigated by Hartwig and
Söllner in [4], [24], δ-convex and midpoint δ-convex functions established by
Hu, Klee, Larman in [5] and γ-convex, strictly γ-convex, lightly γ-convex,
midpoint γ-convex, strictly r-convexlike functions, proposed and investigated
by Phu in [14], [15], [16], [17], [18], [19] etc.

In the following lines we consider a network N = (V,U). We denote R= R∪
{+∞}.
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Extending Phu’s observation at this function, we remark in [12] that the
inequality (3) can be satisfied just for the points x, y ∈ N with d(x, y) ≥ r, r
being a fixed positive real number convenient selected.

We consider the positive real numbers rρ, rδ, rγ , r and a d-convex set A ⊂ N .

Definition 16. [12] The function f : A→ R is called:

(1) ρ-d-convex on A with the roughness degree rρ if for any pair of points
x, y ∈ A with d (x, y) ≥ rρ, is satisfied the inequality (3) for any
z ∈ 〈x, y〉;

(2) δ-d-convex on A with the roughness degree rδ if for any pair of points
x, y ∈ A with d (x, y) ≥ rδ, is satisfied the inequality (3) for any
z ∈ 〈x, y〉 with d (x, z) ≥ rδ/2, and d (z, y) ≥ rδ/2;

(3) midpoint δ-d-convex on A with the roughness degree rδ if for any pair
of points x, y ∈ A with d (x, y) ≥ rδ, is satisfied the inequality (3) for
any z ∈ 〈x, y〉 with d (x, z) = d (z, y) = d (x, y) /2;

(4) γ-d-convex on A with the roughness degree rγ if for any pair of points
x, y ∈ A with d (x, y) ≥ rγ , is satisfied the inequality

(4) f
(
x′
)

+ f
(
y′
)
≤ f (x) + f (y)

for any pair of points x′, y′ ∈ 〈x, y〉 with d (x, x′) = d (y, y′) = rγ ;
(5) lightly γ-d-convex on A with the roughness degree rγ if for any pair of

points x, y ∈ A with d (x, y) ≥ rγ , is satisfied the inequality (3) for any
z ∈ 〈x, y〉 with d (x, z) = rγ or for any z ∈ 〈x, y〉 with d (z, y) = rγ ;

(6) midpoint γ-d-convex on A with the roughness degree rγ if for any pair
of points x, y ∈ A with d (x, y) = 2rγ , is satisfied the inequality (3) for
any z ∈ 〈x, y〉 with d (x, z) = d (z, y) = rγ ;

(7) strictly γ-d-convex on A with the roughness degree rγ if for any pair
of points x, y ∈ A with d (x, y) > rγ , is satisfied the inequality

(5) f
(
x′
)

+ f
(
y′
)
< f (x) + f (y) ,

for any pair of points x′, y′ ∈ 〈x, y〉 with d (x, x′) = d (y, y′) = rγ ;
(8) strictly r-d-convexlike (or strictly roughly d-convexlike) on A with the

roughness degree r if for any pair of points x, y ∈ A with d (x, y) > r
there is z ∈ 〈x, y〉 , z 6= x, z 6= y such that is satisfied the inequality:

(6) f (z) < d(z,y)
d(x,y)f (x) + d(x,z)

d(x,y)f (y) .

The functions who satisfy one of the conditions (1)-(8) are called
roughly d-convex.

5. ROUGHLY E-d-CONVEX FUNCTIONS

In the following lines we will define and study roughly E-d-convex func-
tions on networks, starting from roughly d-convex functions and E-d-convex
functions respectively.
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We consider the positive real numbers rρ, rδ, rγ , r, a map E : N → N and
a E-d-convex set A ⊂ N .

Definition 17. The function f : A→ R is called:

(1) ρ-E-d-convex on A with the roughness degree rρ if for any pair of points
x, y ∈ A with d (E(x), E(y)) ≥ rρ, is satisfied the inequality

(7) f (z) ≤ d(z,E(y))
d(E(x),E(y))f (E(x)) + d(E(x),z)

d(E(x),E(y))f (E(y))

for any z ∈ 〈E(x), E(y)〉;
(2) δ-E-d-convex on A with the roughness degree rδ if for any pair of points

x, y ∈ A with d (E(x), E(y)) ≥ rδ, is satisfied the inequality (7) for any
z ∈ 〈E(x), E(y)〉 with d (E(x), z) ≥ rδ/2, and d (z, E(y)) ≥ rδ/2;

(3) midpoint δ-E-d-convex on A with the roughness degree rδ if for any
pair of points x, y ∈ A with d (E(x), E(y)) ≥ rδ, is satisfied the in-
equality (7) for any z ∈ 〈E(x), E(y)〉 with d (E(x), z) = d (z, E(y)) =
d (E(x), E(y)) /2;

(4) γ-E-d-convex on A with the roughness degree rγ if for any pair of
points x, y ∈ A with d (E(x), E(y)) ≥ rγ , is satisfied the inequality

(8) f
(
x′
)

+ f
(
y′
)
≤ f (E(x)) + f (E(y))

for any pair of points x′, y′ ∈ 〈E(x), E(y)〉 with

d
(
E(x), x′

)
= d

(
E(y), y′

)
= rγ ;

(5) lightly γ-E-d-convex on A with the roughness degree rγ if for any pair
of points x, y ∈ A with d (E(x), E(y)) ≥ rγ , is satisfied the inequality
(7) for any z ∈ 〈E(x), E(y)〉 with d (E(x), z) = rγ or for any z ∈
〈E(x), E(y)〉 with d (z, E(y))=rγ ;

(6) midpoint γ-E-d-convex on A with the roughness degree rγ if for any
pair of points x, y ∈ A with d (E(x), E(y)) = 2rγ , is satisfied the
inequality (7) for any z ∈ 〈E(x), E(y)〉 with d (E(x), z) = d (z, E(y)) =
rγ ;

(7) strictly γ-E-d-convex on A with the roughness degree rγ if for any pair
of points x, y ∈ A with d (E(x), E(y)) > rγ , is satisfied the inequality

(9) f
(
x′
)

+ f
(
y′
)
< f (E(x) + f (E(y)) ,

for any pair of points x′, y′ ∈ 〈E(x), E(y)〉 with

d
(
E(x), x′

)
= d

(
E(y), y′

)
= rγ ;

(8) strictly r-E-d-convexlike (or strictly roughly E-d-convexlike) on A with
the roughness degree r if for any pair of points x,y∈A with d(E(x),E(y))
> r there is z ∈ 〈E(x), E(y)〉 , z 6= E(x), z 6= E(y) such that is satisfied
the inequality:

(10) f (z) < d(z,E(y))
d(E(x),E(y))f (E(x)) + d(E(x),z)

d(E(x),E(y))f (E(y)) .
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The functions who satisfy one of the conditions (1)-(8) are called roughly
E-d-convex.

Example 18. We consider the network N = (V,U) from the Example (7).
The function f : N → R,

f(z) =

{
2
3 − d(v1, z), d(v1, z) <

1
3

0, otherwise

is ρ-E-d-convex on A = [v1, v2]∪ [v4, v2] with the roughness degree rρ ≥ 2
3 . �

We compared this kinds of roughly E-d-convex functions and we got the
following scheme for the relation between them:

Theorem 19. Between some different kinds of roughly E-d-convex functions
there are the following relations:

f E-d-convex
∀rρ>0
=⇒ f ρ-E-d-convex

rρ≤rδ
=⇒ f δ-E-d-convex =⇒ f midpoint

δ-E-d-convex
⇓ rρ ≤ rγ ⇓ rδ = 2rγ

f γ-E-d-convex =⇒ f lightly
γ-E-d-convex

=⇒ f midpoint
γ-E-d-convex

Proof. The implications f E-d-convex on A
∀rρ>0
=⇒ f ρ-E-d-convex on A

rρ≤rδ
=⇒

f δ-E-d-convex on A =⇒ f midpoint δ-E-d-convex on A
rδ=2rγ
=⇒ f midpoint γ-E-

d-convex on A and f lightly γ-E-d-convex on A =⇒ f midpoint γ-E-d-convex
on A follow directly from Definition 17.

We verify now f ρ-E-d-convex on A
rρ≤rγ
=⇒ f γ-E-d-convex on A. So let f

be ρ-E-d-convex on A and rρ ≤ rγ . Then for any pair of points x, y ∈ A
with d (E(x), E(y)) ≥ rγ and for all pair of points x′, y′ ∈ 〈E(x), E(y)〉 with
d (E(x), x′) = d (y′, E(y)) = rγ we have

f (x′) ≤ d(x′,E(y))
d(E(x),E(y))f (E(x)) + d(E(x),x′)

d(E(x),E(y))f (E(y)) ,

f (y′) ≤ d(y′,E(y))
d(E(x),E(y))f (E(x)) + d(E(x),y′)

d(E(x),E(y))f (E(y)) .

By addition the two inequalities yield

f
(
x′
)
+f

(
y′
)
≤

≤ d(x′,E(y))+d(y′,E(y))
d(E(x),E(y)) f (E(x))+ d(E(x),x′)+d(E(x),y′)

d(E(x),E(y)) f (E(y))

= d(x′,E(y))+d(x′,E(x))
d(E(x),E(y)) f (E(x))+ d(y′,E(y))+d(E(x),y′)

d(E(x),E(y)) f (E(y))

=f (E(x))+f (E(y)) .

Hence, f is γ-E-d-convex on A when rρ ≤ rγ .
Remain to verify f γ-E-d-convex on A =⇒ f lightly γ-E-d-convex on A.

For that we suppose f is γ-E-d-convex on A but f is not lightly γ-E-d-convex
on A, that means there exist two points x, y ∈ A with d (E(x), E(y)) ≥ rγ and
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a pair of points x′, y′ ∈ 〈E(x), E(y)〉 with d (E(x), x′) = d (y′, E(x)) = rγ such
that

f
(
x′
)
> d(x′,E(y))

d(E(x),E(y))f (E(x)) + d(E(x),x′)
d(E(x),E(y))f (E(y))

and
f
(
y′
)
> d(y′,E(y))

d(E(x),E(y))f (E(x)) + d(E(x),y′)
d(E(x),E(y))f (E(y)) .

By addition this two inequalities yield

f
(
x′
)

+ f
(
y′
)
> d(x′,E(y))+d(y′,E(y))

d(x,y) f (E(x)) +

+ d(E(x),x′)+d(E(x),y′)
d(x,y) f (E(y)) =

= f (E(x)) + f (E(y)) .

hence f is not γ-E-d-convex on A, contradiction. �

Theorem 20. If the function f : A→ R is strictly γ-E-d-convex on A, with
the roughness degree rγ , then f is strictly r-E-d-convexlike, with any roughness
degree r ≥ rγ .

Proof. We consider a function f : A → R, strictly γ-E-d-convex on A. We
suppose that f it is not strictly r-E-d-convexlike. We consider the points
x, y ∈ A such that d (E(x), E(y)) > r ≥ rγ and the pair of points x′, y′ ∈
〈E(x), E(y)〉 with d (E(x), x′) = d (E(y), y′) = rγ . Since f it is not strictly
r-E-d-convexlike on A, we have:

f
(
x′
)
≥ d(x′,E(y))

d(E(x),E(y))f (E(x)) + d(E(x),x′)
d(E(x),E(y))f (E(y)) =

=
d(E(x),E(y))−rγ
d(E(x),E(y)) f (E(x)) +

rγ
d(E(x),E(y))f (E(y))

f
(
y′
)
≥ d(y′,E(y))

d(E(x),E(y))f (E(x)) + d(E(x),y′)
d(E(x),E(y))f (E(y)) =

=
rγ

d(E(x),E(y))f (E(x)) +
d(E(x),E(y))− rγ
d(E(x),E(y)) f (E(y))

By addition this two inequalities yield

f
(
x′
)

+ f
(
y′
)
≥ f (E(x)) + f (E(y)) ,

and this is in contradiction with the assumption that f strictly γ-E-d-convex on
A. Hence f is strictly r-E-d-convexlike, with any roughness degree r ≥ rγ . �

We consider the function f : A→ R. We denote

E − arg min f = {x∗ ∈ A | f (E(x)) ≥ f (E(x))∗ ,∀x ∈ A} .
Theorem 21. If the function f : A → R is strictly r-E-d-convexlike on A

with the roughness degree r and E(A) is d-convex then

d (E(x), E(y)) ≤ r
for every x, y ∈ E − arg min f.
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Proof. We suppose the contrary, that there is the points x, y ∈ E−arg min f
such that d (E(x), E(y)) > r. Since the set E(A) is d-convex, we have
〈E(x), E(y)〉 ⊂ E(A). Hence there is t ∈ A such that E(t) = z, for every
z ∈ 〈E(x), E(y)〉 .

Consequently

f(z) = f(E(t)) ≥ f(E(x) = f(E(y) =

= d(z,E(y))
d(E(x),E(y))f (E(x)) + d(E(x),z)

d(E(x),E(y))f (E(y))

for every z ∈ 〈E(x), E(y)〉 and this contradict 10. Hence d (E(x), E(y)) ≤ r
for every x, y ∈ E − arg min f. �

We consider now a set A ⊂ N , E-d-convex, a real number r > 0 and a
function f : A→ R.

Definition 22. We say that the function f : A → R attains a r-E-d-local
minimum at a point x∗ ∈ A if

f (E(x)) ≥ f (E(x)∗)

for any x ∈ A satisfying d (E(x), E(x∗)) < r.

Definition 23. We say that the function f : A → R attains a E-d-global
minimum at a point x∗ ∈ A if

f (E(x)) ≥ f (E(x∗))

for any x ∈ A.

We denote

E −B(x∗, rγ) = {x ∈ A | d (E(x), E(x∗)) < r}
and

E −B(x∗, rγ) = {x ∈ A | d (E(x), E(x∗)) ≤ r} .
We consider a a tree network N , a set A ⊂ N , E-d-convex and a function

f : A→ R. We suppose that E(A) is d-convex.

Theorem 24. If the function f : A → R is a midpoint δ-E-d-convex on A
with the roughness degree rδ > 0, x∗ ∈ A and

(11) f (E(x∗)) ≤ f (E(x))

for any x ∈ E−B(x∗, rγ) then f (E(x∗)) ≤ f (E(x)) for any x ∈ A (f attains
its global minimum in A at x∗).

Proof. We consider a midpoint δ-E-d-convex function on A with the rough-
ness degree rδ > 0 such that f (E(x∗)) ≤ f (E(x)) for any x ∈ E−B(x∗, rγ).We
suppose that f does not attain its global minimum at x∗. Then there is
x0 ∈ A\E − B(x∗, rγ) such that f (E(x∗)) > f (E(x0)) . We consider now
a point z1 ∈ 〈E(x0), E(x∗)〉 such that d(E(x0), z1) = d(z1, E(x∗)). Since f is
midpoint δ-E-d-convex function on A, we have
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f(z1) ≤ d(E(x0),z1)
d(E(x0),E(x∗))f (E(x∗)) + d(z1,E(x∗))

d(E(x0),E(x∗))f (E(x0)) <

< d(E(x0),z1)
d(E(x0),E(x∗))f (E(x∗)) + d(z1,E(x∗))

d(E(x0),E(x∗))f (E(x∗)) = f(E(x∗)).

Since the set E(A) is d−convex, there is the point x1 ∈ A such that E(x1) =
z1. Consequently f(E(x1)) < f(E(x∗)). We repeat this construction, and we
get zi ∈ E(A) and xi ∈ A, i ∈ I ⊂ N , such that E(xi) = zi and f(E(xi)) <
f(E(x∗)) for any i ∈ I. Since d (E(xi), E(x∗)) = d (E(xi−1), E(x∗)) /2, there
is i∗ ∈ I such that d (E(xi∗), E(x∗)) < rδ. Hence xi∗ ∈ E − B(x∗, rγ), con-
sequently f (E(xi∗)) ≥ f (E(x∗)), which contradicts the relation f (E(x∗)) >
f (E(xi)) for any i ∈ I. This contradiction completes our proof. �

Remark 25. Since ρ-E-d-convexity and δ-E-d-convexity imply midpoint δ-
E-d-convexity, ρ-E-d-convex functions and δ-E-d-convex functions have this
property, too. �

We consider a tree network N , a set A ⊂ N , E-d-convex and a function
f : A→ R. We suppose that E(A) is d-convex.

Theorem 26. If the function f : A → R is a lightly γ-E-d-convex on A
with the roughness degree rγ > 0, x∗ ∈ A and

f (E(x∗)) ≤ f (E(x))

for any x ∈ E −B(x∗, rγ) then f (E(x∗)) ≤ f (E(x)) for any x ∈ A.

Proof. Assume the contrary that f does not attains its global minimum at
x∗, then there is x0 ∈ A\E −B(x∗, rγ) such that f (E(x∗)) > f (E(x0)). We
consider now the points s, z1 ∈ 〈E(x0), E(x∗)〉 such that

d(E(x∗), s) = rγ and d(z1, E(x0)) = rγ .

Since the set E(A) is d−convex, there are the points t, x1 ∈ A such that
E(t) = s and E(x1) = z1. Since f(E(x0)) < f(E(x∗)) ≤ f(E(t)), the definition
of lightly γ-E-d-convexity implies

f(z1) ≤ d(E(x0),z1)
d(E(x0),E(x∗))f (E(x∗)) + d(z1,E(x∗))

d(E(x0),E(x∗))f (E(x0)) < f(E(x∗)).

We repeat this construction, and we get zi ∈ 〈E(x0), E(x∗)〉 , xi ∈ A, i ∈
I ⊂ N , such that E(xi) = zi and f(E(xi)) < f(E(x∗)) for any i ∈ I.
Since d (E(xi), E(x∗)) = d (E(xi−1), E(x∗)) − rγ , there is i∗ ∈ I such that
d (E(xi∗), E(x∗)) < rδ and hence for xi∗ we have f (E(xi∗)) ≥ f (E(x∗)),
which contradicts the relation f (E(x∗)) > f (E(xi)) for any i ∈ I. This
contradiction completes our proof. �

Remark 27. Since every γ-E-d-convex function is lightly γ-E-d-convex, this
conclusion holds for γ-E-d-convex functions, too. �
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