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Abstract. Given a finite dimensional subspace V and a certain family F of
nonempty closed and bounded subsets of C0(T,U), where T is a locally compact
Hausdorff space and U is a strictly convex Banach space, we investigate here
lower semicontinuity of the restricted center multifunction CV : F →→V. In par-
ticular, we establish a Haar-like intrinsic characterization of finite dimensional
subspaces V of C0(T,U) which yields lower semicontinuity of CV .
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1. INTRODUCTION

Let us be given a family F of nonempty closed and bounded subsets of a
normed linear space X, and a finite dimensional subspace V of X. For F ∈ F
and x ∈ X, let

r(F ;x) := sup{‖x− y‖ : y ∈ F}
denote the radius of the smallest closed ball centered at x covering F and let

rV (F ) := inf{r(F ; v) : v ∈ V },
CV (F ) := {v0 ∈ V : r(F ; v0) = rV (F )}.

The number rV (F ) is called the restricted (Chebyshev) radius of F in V. It
is easily seen that the set CV (F ) is nonempty, closed and convex. A typical
element v0 ∈ CV (F ) is usually called a restricted (Chebyshev) center or a best
simultaneous approximant of F in V. The multifunction CV : F →→V, with
values CV (F ), F ∈ F , is called the restricted center multifunction.

Let us note that in case F is a singleton {x}, rV (F ) is the distance of x from
V, denoted by d(x, V ), and CV (F ) is the set

PV (x) := {v0 ∈ V : ‖x− v0‖ = d(x, V )}
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of best approximants to x in V. The multifunction PV : X→→V, in this case, is
usually called the metric projection onto V . The problems concerning various
continuities of metric projection in the Banach space C0(T ) of real-valued
continuous functions vanishing at infinity have been significantly investigated
by a number of authors (cf., e.g., [2], [3], [5], [9], [6], [7], [12], [16]). Some of
these results pertaining to lower semicontinuity of metric projection have been
generalized to the space C0(T,U), where U is a strictly convex Banach space
in ([4], [11], [12]).

The problems concerning various continuities of the restricted center mul-
tifunction have received some attention recently (cf., e.g., [14], [20], [1], ([15]
Ch. 8, §5), [18], [8], [19]).

Given a finite dimensional subspace V of an arbitrary real normed linear
space X, we investigate here a sufficient condition for lower semicontinuity
of the restricted center multifunction CV defined on a certain family F of
subsets of X. This extends certain results in [4] for lower semicontinuity of
metric projection. In [8], a characterization of lower semicontinuity of re-
stricted center multifunction defined on a certain family F of subsets of the
space C0(T ) (Theorem 3.2) was studied. This result was in the same spirit as
that of the particular case of ([11], Theorem 4.1) for metric projections. Here
we extend this investigation to the space C0(T,U). This approach naturally
leads us to our main goal of exploring an intrinsic Haar-like characterization
of finite-dimensional subspaces V of C0(T,U) , for which the restricted center
multifunction CV : F →→V , with values CV (F ), F ∈ F , is lower semicontinu-
ous.

2. PRELIMINARIES

Throughout the following, X will be a real normed linear space which for
the most part will be the Banach space C0(T,U), where T is a locally compact
Hausdorff space and U is a strictly convex (real) Banach space, and V will be
a finite dimensional subspace of X.

Let us recall that C0(T,U) consists of all continuous functions f : T → U
vanishing at infinity, i.e, a continuous function f is in C0(T,U) if and only if,
for every ε > 0, the set {t ∈ T : ‖f(t)‖ ≥ ε} is compact. The space C0(T,U) is
endowed with the norm:

‖f‖ := max{‖f(t)‖ : t ∈ T}, f ∈ C0(T,U).

Throughout the remainder, V will be a finite dimensional subspace of X.
Let CLB(X) denote the family of all nonempty closed and bounded subsets

of X equipped with the Hausdorff metric H defined by

H(A,B) := max{e(A,B), e(B,A)}, A,B ∈ CLB(X),

where e(A,B) := sup{d(a,B) : a ∈ A} denotes the excess of A over B.
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If F ⊆ CLB(X), we regard F as a metric space equipped with the induced
Hausdorff metric topology. By a multifunction T : F →→V we mean a set-
valued function whose values T (F ), F ∈ F are nonempty closed subsets of
V . Recall that a multifunction T : F →→V is said to be lower semicontinuous
(resp. upper semicontinuous) abbreviated lsc (resp. usc) if the set {F ∈ F :
T (F ) ∩ O 6= ∅} (resp. {F ∈ F : T (F ) ∩ K 6= ∅}) is open (resp. closed)
whenever O (resp K) is an open (resp. a closed) subset of V . Let us also
recall the notion of the derived submultifunction T ∗ : F →→V of T defined by

T ∗(F ) := {v ∈ T (F ) : limn d(v, T (Fn)) = 0,
for every sequence Fn in F convergent to F}.

It follows immediately from the definitions that T is lsc if and only if T = T ∗.
Next, let us recall [17] that a set F ∈ CLB(X) is said to be sup-compact
w.r.t. V if for each v0 ∈ V, every maximizing sequence {fn}, i.e., a sequence
{fn} ⊆ F such that limn ‖fn − v0‖ = r(F ; v0), has a convergent subsequence
converging in F. Clearly, if F is sup-compact w.r.t. V, then the set

QF,v0 := {f0 ∈ F : ‖f0 − v0‖ = r(F ; v0)}
of all remotal points of v0 in F is non-void for each v0 ∈ V. Sets which are
sup-compact (w.r.t. X) are called M-compact in [21]. Examples of sets which
are sup-compact but not compact are also given there. Let

s-KV (X) := {F ∈ CLB(X) : F is sup-compact w.r.t V

and rV (F ) > rX(F )}.
In the sequel, for some of the results to follow, we will take F = s-KV (X)
which contains the family KV (X) of all nonempty compact subsets F of X
satisfying the same restriction rV (F ) > rX(F ).

3. A SUFFICIENT CONDITION FOR LOWER SEMICONTINUITY OF THE

MULTIFUNCTION CV

Throughout this section X will be a (real) normed linear space whose
normed dual will be denoted by X∗, and V will be a finite dimensional sub-
space of X. The weak∗ or σ(X∗, X)-topology of X∗ will be denoted by w∗.
Let Ext(B(X∗)) denote the set of all extreme points of the closed unit ball
B(X∗) of X∗. For the sake of brevity, let us denote

EX∗ := Ext
w∗

(B(X∗)),

the closure being taken in the w∗-topology. Also, for x ∈ X, let

Ex := {x∗ ∈ EX∗ : |x∗(x)| = ‖x‖},
denote the set of all critical functionals. Clearly, Ex is nonempty and w∗-
compact subset of X∗ for each x ∈ X. For A ⊆ X, we denote by A⊥ the
annihilator of A :

A⊥ := {x∗ ∈ X∗ : x∗(A) = {0}}.
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For f ∈ X, let

Ef−A = ∩α∈AEf−α
= {x∗ ∈ EX∗ : |x∗(f − α)| = ‖f − α‖,∀α ∈ A}.

For F in CLB(X), let us denote by GF , the subspace

GF := span{v1 − v2 : v1, v2 ∈ CV (F )}.

Note that

G⊥F =
⋃

v∈CV (F )

{v − v0}⊥,

for any fixed v0 ∈ CV (F ). Hence, for F ∈ CLB(X) such that 0 ∈ CV (F ),
we have G⊥F = CV (F )⊥. We will denote the relative interior of CV (F ) by
relintCV (F ).

Lemma 1. Let V be a finite dimensional subspace of a normed space X,
and let F ∈ CLB(X) be sup-compact w.r.t. V. If v0 ∈ relintCV (F ), then

Ef−v0 = Ef0−CV (F ) ⊆ G⊥F ∩ EX∗ ,(1)

for every f0 ∈ QF,v0 . Also

QF,v0 =
⋂

v∈CV (F )

QF,v.(2)

Proof. Let v0 ∈ relintCV (F ). Then there exists ε > 0 such that for every
v ∈ CV (F ), whenever |λ| < ε, v0 + λ(v − v0) ∈ CV (F ). Let f0 ∈ QF,v0 and
x∗ ∈ Ef0−v0 . Then for any λ with |λ| < ε,

|x∗(f0 − v0 − λ(v − v0))| ≤ ‖f0 − v0 − λ(v − v0)‖
≤ sup

f∈F
‖f − v0 − λ(v − v0)‖

= rV (F ) = ‖f0 − v0‖ = |x∗(f0 − v0)|.

Strict convexity of R entails that x∗(v − v0) = 0. Hence, x∗ ∈ G⊥F ∩ EX∗ .
Therefore,

Ef0−v0 ⊆ G⊥F ∩ EX∗ .
Also, if x∗ ∈ Ef0−v0 and v ∈ CV (F ), then

‖f0 − v0‖ ≥ |x∗(f0 − v)| = |x∗(f0 − v0)| = rV (F )

≥ ‖f0 − v‖.

This implies that |x∗(f0−v)| = ‖f0−v‖ = rV (F ). Therefore, x∗ ∈ Ef0−v, f0 ∈
QF,v, and we conclude that

Ef0−v0 = Ef0−CV (F ), and QF,v0 =
⋂

v∈CV (F )

QF,v.

�
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Theorem 2. Let X,V and F be as in Lemma 1. If

(3) Ef0−v0 ⊆ int (G⊥F ∩ EX∗),
the interior being taken in the induced w∗-topology of EX∗ , for every f0 ∈ QF,v0 ,
whenever v0 ∈ relintCV (F ), then the multifunction CV : s-KV (X)→→V is lsc
at F.

Proof. It would be enough to prove that C∗V (F ) = CV (F ). Let us denote

int (G⊥F ∩EX∗) byM. By hypothesis, for every f ∈ F and x∗ ∈ EX∗\M, |x∗(f−
v0)| < rV (F ). Since M is open in EX∗ ,

sup
f∈F

sup
x∗∈EX∗\M

|x∗(f − v0)| < rV (F ).

Let

0 < ε < 1
4

{
rV (F )− sup

f∈F
sup

x∗∈EX∗\M
|x∗(f − v0)|

}
.

Since V is finite dimensional, CV is usc. Therefore, there exists a δ > 0 such
that d(v′, CV (F )) < ε for every v′ ∈ CV (G) whenever G ∈ s-KV (X) is such
that H(G,F ) < δ. Pick v ∈ CV (F ) such that ‖v − v′‖ < ε. For G ∈ s-KV (X)
such that H(G,F ) < min{ε, δ} and any g ∈ G, we have

(4) sup
x∗∈M

|x∗(g − (v0 + v′ − v))| = sup
x∗∈M

|x∗(g − v′)| ≤ rV (G).

For g ∈ G ∩ F,
sup

x∗∈EX∗\M
|x∗(g − (v0 + v′ − v))| ≤(5)

≤ sup
x∗∈EX∗\M

|x∗(g − v0)|+ sup
x∗∈EX∗\M

|x∗(v′ − v)|

≤ rV (F )− 4ε+ ε

≤ rV (F )− ε
< rV (F )−H(G,F )

≤ rV (G).

Also, for g ∈ G with g /∈ F , pick f ∈ F such that ‖f − g‖ < d(g, F ) + ε.
Then

sup
x∗∈EX∗\M

|x∗(g − (v0 + v′ − v))| ≤(6)

≤ sup
x∗∈EX∗\M

|x∗(f − g)|+ sup
x∗∈EX∗\M

|x∗(f − v0)|+ sup
x∗∈EX∗\M

|x∗(v′ − v)|

≤ H(G,F ) + ε+ rV (F )− 4ε+ ε

≤ rV (F )− ε < rV (F )−H(G,F )

≤ rV (G).

From (4), (5) and (6), it follows that r(G, v0 + v′ − v) ≤ rV (G). Hence, v0 +
v′ − v ∈ CV (G). Therefore, d(v0, CV (G)) ≤ ‖v0 − (v0 + v′ − v)‖ < ε. Hence,
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v0 ∈ C∗V (F ). Since C∗V (F ) is closed and relintCV (F ) is dense in CV (F ), it
follows that C∗V (F ) = CV (F ). �

Remark 3. Since CV (F − v0) = CV (F )− v0 for v0 ∈ V, we can say that if

(7) Ef0 ⊆ int (C⊥V (F ) ∩ EX∗)

for every f0 ∈ QF,0 whenever 0 ∈ relintCV (F ), then the multifunction CV :
s - KV (X)→→V is lsc at F. �

4. LOWER SEMICONTINUITY OF CV IN THE SPACE C0(T,U)

Let X = C0(T,U), where T is a locally compact Haussdorff space, and U is
a strictly convex (real) Banach space. Throughout the remainder, V will be a
finite dimensional subspace of X. For X = C0(T,U), f ∈ X and A ⊆ X, let

Z(A) := {t ∈ T : α(t) = 0 for all α ∈ A}.

For α ∈ A, let

E(f − α) := {t ∈ T : ‖f(t)− α(t)‖ = ‖f − α‖},

denote the set of all critical points of the function f − α. Also let

E(f −A) := ∩{E(f − α) : α ∈ A}
= {t ∈ T : ‖f(t)− α(t)‖ = ‖f − α‖ for all α ∈ A}.

We note that in case X = C0(T,U) the set of extreme points of the closed unit
ball of X∗ is given by (cf., e.g., [15], p.422),

ExtB(X∗) = {x∗u∗,t : u∗ ∈ ExtB(U∗), t ∈ T},

where

x∗u∗,t(x) = u∗(x(t)), x ∈ X.
Also note that in this case if U∗ is also assumed to be strictly convex, then
in the above representation of ExtB(X∗), we may take u∗ in S(U∗), the unit
sphere of U∗.

The following theorem for characterization of restricted centers whose proof
follows easily from ([17], Theorem 2.6) and the above representation of the
extreme points of B(X∗) will be required as a tool in the sequel.

Theorem 4. Let X = C0(T,U), V = span{v1, . . . , vn} be an n-dimensional
subspace of X, and v0 ∈ V. Let F ∈ K(X). The following statements are
equivalent.

(i) v0 ∈ CV (F ).
(ii) For each v ∈ V,

max{u∗(f0(t)−v0(t))u∗(v(t)) : f0 ∈ QF,v0 , t∈ E(f0−v0) and u∗∈ Ef0(t)−v0(t)}≥ 0.
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(iii) The origin (0, . . . , 0) of Rn belongs to the convex hull co(S) of S, where

S := {(u∗((f0(t)− v0(t))u∗(v1(t)), . . . , u∗(f0(t)− v0(t))u∗(vn(t))) :

f0 ∈ QF,v0 , t ∈ E(f0 − v0) and u∗ ∈ Ef0(t)−v0(t)

}
.

(iv) There exist fi ∈ QF,v0 , ti ∈ E(f0 − v0), u∗i ∈ Ef0(t)−v0(t), i = 1, . . . ,m

and λ1, . . . , λm > 0 with
∑m

i=1 λi = 1, where m ≤ n+ 1, such that for
every v ∈ V,

m∑
i=1

λiu
∗
i (fi(ti)− v0(ti))u

∗
i (v(ti)) = 0.

The next lemma is an analogue of Lemma 1 for the present case. Its proof
is exactly identical. Let us recall that we are denoting by GF the subspace
span{v2 − v1 : v1, v2 ∈ CV (F )} of V, and by relintCV (F ), the relative interior
of CV (F ).

Lemma 5. Let X,V and F be as in the last theorem. If v0 ∈ relintCV (F ),
then

E(f − v0) = E(f − CV (F )) ⊆ Z(GF )

for every f ∈ QF,v0 . Also QF,v0 =
⋂
v∈CV (F )QF,v.

Remark 6. Note that Z(GF ) = ∩{Z(v − v0) : v ∈ CV (F )} for any fixed
v0 ∈ CV (F ). Hence, the conclusion of the lemma can be restated as follows:

If 0 ∈ relintCV (F ), then

E(f − v0) = E(f − CV (F )) ⊆ Z(CV (F ))

for every f0 ∈ QF,0. �

4.1. An intrinsic characterization of lower semicontinuity of the mul-
tifunction CV . As before, let X = C0(T,U) and V be a finite dimensional
subspace of X. The next lemma involves perturbation of sets. For F,G in
K(X), and S ⊆ T, we write F |S = G|S if for every f ∈ F, there is a g ∈ G
such that f |S = g|S , and conversely. The proof is a verbatim reproduction of
Lemma 2 in [8] which was given for C0(T ). However, for the convenience of
the reader, we give it once again here.

Lemma 7. Let F ∈ K(X) be such that 0 ∈ relintCV (F ) and rV (F ) = 1.
Let O be any open neighborhood of Z(CV (F )). If G ∈ K(X) is such that
G|O = F |O and supg∈G ‖g‖ = 1, then 0 ∈ CV (G) and CV (G) ⊆ spanCV (F ).

Proof. Since 0 ∈ relintCV (F ), by Lemma 5, E(f0) ⊆ Z(CV (F )) for every
f0 ∈ QF,0. Also rV (F ) = supf∈F ‖f‖ = 1. Hence ‖f‖T\O < 1 for all f ∈
F, whenever O is an open neighborhood of Z(CV (F )). Let 0 < λ < 1

2(1 −
supf∈F ‖f‖B), where B = T \O. Let p ∈ CV (G). Then,

(8) sup
g∈G
‖g − p‖ ≤ sup

g∈G
‖g‖ = 1.
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For any f ∈ F,

‖f − λp‖B ≤ ‖f‖B + λ‖p‖B
≤ ‖f‖B + 2λ

< sup
f∈F
‖f‖B + 1− sup

f∈F
‖f‖B

= 1.

Therefore, supf∈F ‖f − λp‖B ≤ 1.
For any f ∈ F and t ∈ O,

‖f(t)− λp(t)‖ = ‖f(t)− λf(t) + λf(t)− λp(t)‖
≤ (1− λ)‖f(t)‖+ λ‖f(t)− p(t)‖
≤ (1− λ) + λ

= 1.

Therefore,

(9) sup
f∈F
‖f − λp‖O ≤ 1.

Hence,

(10) sup
f∈F
‖f − λp‖ ≤ 1 = rV (F ).

The relation (10) implies that λp ∈ CV (F ). Since this is true for every p ∈
CV (G), we get CV (G) ⊆ spanCV (F ).

Also strict inequality in (8) gives strict inequality in (9) and hence in (10),
which is not possible. Thus 0 ∈ CV (G). �

Let us now recall the following well known result for lower semicontinuity
of metric projection due to Blatter, Morris and Wulbert [2].

Theorem 8. Let X = C(T ) and V be a finite dimensional subspace of X.
The metric projection multifunction PV : X→→V is lsc if and only if Z(PV (f))
is open for every f in C(T ) for which 0 ∈ PV (f).

We are now ready to state and prove our first main characterization theorem
for lower semicontinuity of CV . This extends Theorem 2 of [8] and Theorems
6 and 9 of [4].

Theorem 9. Let V be a finite dimensional subspace of C0(T,U).

(i) If the multifunction CV := K(X)→→V is lsc for all F ∈ K(X) with
0 ∈ relintCV (F ), then

E(g − v0) ⊆ int Z(GG)

for every G ∈ K(X), v0 ∈ relintCV (G) and g ∈ QG,v0 .
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(ii) The multifunction CV := K(X)→→V is lsc at F ∈ K(X) if

E(f − v0) ⊆ int Z(GF )

for every f ∈ QF,v0 , whenever v0 ∈ relintCV (F ).

Proof. (i) For every F ∈ K(X) with 0 ∈ relintCV (F ), CV is given to be lsc
at F. If possible let (i) be not true, i.e., suppose there exists G ∈ K(X), v0 ∈
relintCV (G) and an element g0 ∈ QG,v0 such that

E(g0 − v0) 6⊆ int
⋂

v∈CV (G)

Z(v0 − v).

Let F = G − v0. Then 0 ∈ relintCV (F ), and by hypothesis CV is lsc at F.
Also let f0 = g0 − v0. Then ‖f0‖ = ‖g0 − v0‖ = rV (G) = rV (F ). Therefore,
f0 ∈ QF,0 and E(f0) 6⊆ int Z(CV (F )).

By Lemma 5, E(f0) ⊆ Z(CV (F )). Hence there exists a t0 ∈ E(f0) such
that t0 ∈ bdZ(CV (F )), i.e., there exists a net {tλ : λ ∈ Λ} such that tλ 6∈
Z(CV (F )), λ ∈ Λ, and tλ → t0. Let {v1, . . . , vm} ⊆ CV (F ) be such that
V1 = span{v1, . . . , vm} = spanCV (F ). Two cases arise as follows.
Case (i) Since V is finite-dimensional, if necessary by passing to a subnet,
we may assume that for each λ ∈ Λ there exists some x∗λ ∈ Ef0(t0) such that
x∗λ(v1(tλ)) 6= 0.

If necessary by passing once more to a subnet, it can be ensured that there
are signs εk ∈ {−1, 1}, k = 1, . . . ,m, such that we have

ε1x
∗
λ(v1(tλ)) < 0 and

εkx
∗
λ(vk(tλ)) ≤ 0, k = 2, . . . ,m.

For each δ > 0, the set Bδ = {t ∈ T : |f0(t0) − f0(t)| < δ} is a neighborhood
of t0. Hence there exists λ ∈ Λ such that tλ ∈ Bδ. Since tλ 6∈ Z(CV (F )), tλ 6∈
E(f0). Since Z(CV (F )) is a closed set, there exists a compact neighborhood
W of tλ such that Z(CV (F )) ∩W = ∅. Without loss of generality, we may
assume that W ⊂ Bδ. Let ρ be a continuous function such that 0 ≤ ρ(t) ≤ 1
for t ∈ T, ρ(tλ) = 1 and ρ(t) = 0 for t ∈ T \W. Define

fδ(t) := ρ(t)f0(t0) + (1− ρ(t))f0(t).

Then fδ ∈ C0(T,U) and ‖fδ−f0‖ < δ. Also, for 0 < δ < ‖f0‖−maxt∈W ‖f0(t)‖,
it is easily seen that ‖fδ‖ = ‖f0‖. Let Fδ = F ∪ {fδ}. Then Fδ ∈ K(X) for
each δ > 0 and H(F, Fδ) < δ.

We now have an F ∈ K(X) with 0 ∈ relintCV (F ) and T \W is a neigh-
borhood of Z(CV (F )). Also Fδ ∈ K(X) is such that Fδ|T\W = F |T\W and
supf ′∈Fδ ‖f

′‖ = supf∈F ‖f‖. Hence by Lemma 7, 0 ∈ CV (Fδ) and CV (Fδ) ⊆
spanCV (F ) = V1. Since 0 ∈ CV (Fδ),

rV (Fδ) = sup
f ′∈Fδ

‖f ′‖ = sup
f∈F
‖f‖ = rV (F ).
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We now define an open set A in V1 such that CV (F )∩A 6= ∅, but CV (Fδ)∩
A = ∅. Define the set A by

A :=

{
m∑
k=1

akεkvk : ak > 0, k = 1, . . . ,m

}
.

Then 0 ∈ bd A (w.r.t. V1) and 0 ∈ relintCV (F ). Hence CV (F ) ∩ A 6= ∅. But
for any u ∈ A,

sup
f∈Fδ

‖f − u‖ ≥ ‖fδ − u‖

≥ ‖fδ(tλ)− u(tλ)‖
≥ x∗λ(fδ(tλ)− u(tλ))

= x∗λ(f0(t0))−
m∑
k=1

akεkx
∗
λ(vk(tλ)

= ‖f0‖ −
m∑
k=1

akεkx
∗
λ(vk(tλ))

> rV (F ) = rV (Fδ).

In the above set of inequalities, tλ is a fixed element of the net {tλ : λ ∈ Λ}
such that tλ ∈ Bδ and u =

∑m
k=1 akεkvk for some ak > 0, k = 1, . . . ,m. Hence

for any u ∈ A, u 6∈ CV (Fδ), i.e., CV (Fδ) ∩A = ∅.
If the net {tλ : λ ∈ Λ} does not satisfy the conditions that we assumed in

the first case, then we need to consider the following alternative.
Case (ii) By passing to a subnet, if necessary, we may assume that

u∗(v1(tλ)) = 0 for all λ ∈ Λ and u∗ ∈ Ef0(t0).

Let u∗λ ∈ Ef0(t0)+v1(tλ). Since U is strictly convex and v1(tλ) is not proportional
to f0(t0), u∗λ /∈ Ef0(t0). Therefore,

u∗λ(f0(t0)) < ‖f0(t0)‖.

Also, for z∗ ∈ Ef0(t0), we have

‖f0(t0) + v1(tλ)‖ ≥ z∗(f0(t0)) + z∗(v1(tλ)) = ‖f0(t0)‖.

Therefore,

‖f0(t0)‖ ≤ ‖f0(t0) + v1(tλ)‖ = u∗λ(f0(t0) + v1(tλ))

< ‖f0(t0)‖+ u∗λ(v1(tλ)).

Hence, it follows that

(11) ‖f0(t0) + v1(tλ)‖ ≥ rV (F )

and u∗λ(v1(tλ)) > 0 for each λ ∈ Λ.
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If necessary by passing once more to a subnet, it can be ensured that there
are signs εk ∈ {−1, 1}, k = 1, . . . ,m, such that we have

ε1u
∗
λ(v1(tλ)) < 0 and

εku
∗
λ(vk(tλ)) ≤ 0, k = 2, . . . ,m.

For δ > 0, the set

Bδ := {t ∈ T : ‖f0(t0)− f0(t)‖ < δ/3, ‖v1(t)‖ < δ/3 and

| ‖f0(t0) + v1(t)‖ − rV (F ) | < δ/3}

is a neighborhood of t0. Hence there exists λ ∈ Λ such that tλ ∈ Bδ. Also,
there exists a compact neighborhood W of tλ such that W∩Z(CV (F )) = ∅. We
may assume, without loss of generality, that W ⊂ Bδ. Let ρ be a continuous
function such that 0 ≤ ρ(t) ≤ 1 for t ∈ T, ρ(tλ) = 1 and ρ(t) = 0 for t ∈ T \W.
Let us define

fδ(t) := rV (F )
(
ρ(t) f0(t0)+v1(tλ)

‖f0(t0)+v1(tλ)‖ + (rV (F ))−1(1− ρ(t))f0(t)
)
.

Then fδ ∈ C0(T,U), and using (11), for t ∈ Bδ, we have

‖fδ(t)− f0(t)‖ = rV (F )ρ(t)
∥∥∥ f0(t0)+v1(tλ)
‖f0(t0)+v1(tλ)‖ − (rV (F ))−1f0(t)

∥∥∥
= rV (F )ρ(t)
‖f0(t0)+v1(tλ)‖‖f0(t0)− f0(t) + v1(tλ)

+ (1− ‖f0(t0) + v1(tλ)‖(rV (F ))−1)f0(t)‖
≤ ‖f0(t0)−f0(t)‖+‖v1(tλ)‖+| rV (F )−‖f0(t0)+v1(tλ)‖ | < δ.

For t /∈ Bδ, we have fδ(t) = f0(t). Hence, ‖fδ − fo‖ < δ. Also, for

0 < δ < ‖f0‖ −max
t∈W
‖f0(t)‖,

it is easy to see that ‖fδ‖ = ‖f0‖. Thus again defining Fδ := F ∪{fδ}, we have
Fδ ∈ K(X) for each δ > 0 and H(F, Fδ) < δ.

Exactly as in case(i) we again have an F ∈ K(X) with 0 ∈ relintCV (F ) and
T \W is a neighborhood of Z(CV (F )). Also Fδ ∈ K(X) is such that Fδ|T\W =
F |T\W and supf ′∈Fδ ‖f

′‖ = supf∈F ‖f‖. Hence by Lemma 7, 0 ∈ CV (Fδ) and
CV (Fδ) ⊆ spanCV (F ) = V1. Again since 0 ∈ CV (Fδ),

rV (Fδ) = sup
f ′∈Fδ

‖f ′‖ = sup
f∈F
‖f‖ = rV (F ).

Consider again the open set A in V1 defined by

A :=

{
m∑
k=1

akεkvk : ak > 0, k = 1, . . . ,m

}
.
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Note that 0 ∈ bd A (w.r.t. V1) and 0 ∈ relintCV (F ). Hence CV (F ) ∩ A 6= ∅.
However, for each u ∈ A,

sup
f∈Fδ

‖f − u‖ ≥ ‖fδ − u‖

≥ ‖fδ(tλ)− u(tλ)‖

≥ u∗λ

(
fδ(tλ)−

m∑
k=1

akεkvk(tλ)

)

= u∗λ

(
rV (F )(f0(t0)+v1(tλ))
‖f0(t0)+v1(tλ)‖

)
−

m∑
k=1

akεku
∗
λ(vk(tλ))

> rV (F ).

Therefore, CV (Fδ)∩A = ∅. Thus in either case the hypothesis that the multi-
function CV is lsc at F is contradicted, and we conclude that contrary to our
assumption, E(g0 − v0) ⊆ int Z(GG) must hold. This completes the proof of
(i).
(ii) The proof of Theorem 2 (ii) of [8] extends verbatim to the present case. �

We can now state a global necessary and sufficient condition for lower semi-
continuity of CV as follows.

Theorem 10. Let V be a finite dimensional subspace of X = C0(T,U). Then
the multifunction CV : K(X)→→V is lsc if and only if for each F ∈ K(X), we
have

E(f − v0) ⊆ int Z(GF )

for every f ∈ QF,v0 , whenever v0 ∈ relintCV (F ).

The next theorem partially extends Theorem 4.5 of Blatter, Morris, and
Wulbert [2].

Theorem 11. Let X,V as in the last theorem. If for every F ∈ K(X)
with 0 ∈ relintCV (F ), the set ZF := Z(CV (F )) is open, then the multifunction
CV : K(X)→→V is lsc.

Proof. Let F ∈ K(X) and v0 ∈ relintCV (F ). Since CV (F−v0) = CV (F )−v0

and CV is lsc at F if and only if it is lsc at F − v0, we may assume, without
loss of generality, that 0 ∈ relintCV (F ). Let f0 ∈ QF,v0 . Since ZF is both open
as well as closed, the function g0 : T → U defined by

g0(t) :=

{
f0(t), if t ∈ ZF
0, if t ∈ T \ ZF ,

is in C0(T,U). Let
∑

:= {x∗ ∈ X∗ : x∗(g0) > 0}. Then
∑

is w∗-open. Also, if
x∗u∗,t ∈ EX∗ ∩

∑
, then

x∗u∗,t(v) = u∗(v(t)) = u∗(0) = 0 for all v ∈ CV (F ).
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Hence, EX∗ ∩
∑
⊆ C⊥V (F ) ∩ EX∗ . Since

Ef0 ⊆ EX∗ ∩
∑
⊆ C⊥V (F ) ∩ EX∗ ,

Ef0 ⊆ int (C⊥V (F ) ∩ EX∗ , and by Theorem 2, we conclude that CV is lsc at
F. �

4.2. Characterization of lower semicontinuity of CV using Haar-like
condition. Our goal here is to give an intrinsic characterization of finite di-
mensional subspaces V of C0(T,U) for which the restricted center multifunc-
tion CV : K(X)→→V is lsc.

Let us recall that a finite dimensional subspace V of C0(T ) is called a Haar
subspace (or that it is said to satisfy Haar condition) if for each v ∈ V \
{0}, cardZ(v) ≤ dimV −1. It is easily seen that V is a Haar subspace of dimen-
sion n if and only if dimV |S = n for every subset S of T such that card(S) = n.
Here card(S) denotes the cardinality of S and V |S := {v|S : v ∈ V }. Let us also
recall the generalized Haar condition introduced by Zukhovitskii and Stechkin
[22] for a finite dimensional subspace V of C0(T,U). Consider the following
properties of V .

(Tm) For each v ∈ V \ {0}, there are at most m zeros in T.
(Pm) For each set of m distinct points ti ∈ T and m elements ui ∈ U, there

exists at least one v ∈ V , such that

v(ti) = ui, i = 1, . . . ,m.

An n-dimensional subspace V of C0(T,U) is said to satisfy the generalized
Haar condition if either dimU = k ≤ n and V satisfies conditions (Tm) and
(Pm) where m ∈ N is the unique integer satisfying

mk < n ≤ (m+ 1)k,

or dimU > n, and V satisfies condition (T0). It is easily seen that in case
dimU = k < ∞, V satisfies conditions (Tm) and (Pm) if and only if for any
finite set S ⊆ T,

dimV |S ≥ min{dimV, k.card(S)}.
For finite dimensional subspaces V of C0(T ), the following extension of Haar
condition is due to W. Li [10].

Definition 12. V is said to satisfy property (Li) if for every v ∈ V \ {0},
cardbdZ(v) ≤ dim{p ∈ V : p|int Z(v) = 0} − 1.

For finite dimensional subspaces V of C0(T,U), the following variant of the
generalized Haar condition is also due to W. Li [12].

Definition 13. A finite dimensional subspace V of C0(T,U) is said to
satisfy property (Li′) if for every v ∈ V \ {0},

cardbdZ(v) ≤ (dimU)−1 · dim{p|bdZ(v) : p ∈ V and p|int Z(v) = 0}.
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Note that if T is connected, then property (Li) coincides with the Haar
condition. Moreover, in case dimU = k ≤ n = dimV , the property (Li′) is
implied by the generalized Haar condition.

We require the following lemma due to W. Li [12] to prove the next theorem.

Lemma 14. For a finite dimensional subspace V of C0(T,U), the following
statements are equivalent.

(i) The metric projection multifunction PV : X→→V is lsc.
(ii) V satisfies property (Li′).
(iii) For any set {ti : 1 ≤ i ≤ m} ⊆ T, if there exist u∗i ∈ U∗\{0}, 1 ≤ i ≤ m

such that
m∑
i=1

u∗i (v(ti)) = 0, v ∈ V,

then for any v ∈ V with {ti : 1 ≤ i ≤ m} ⊆ Z(v), we have

{ti : 1 ≤ i ≤ m} ⊆ int Z(v).

The next theorem gives an intrinsic characterization of finite dimensional
subspaces V of C0(T,U) for which the restricted center multifunction CV is
lsc. It generalizes Theorem 3 of [8].

Theorem 15. For a finite dimensional subspace V of C0(T,U), the following
statements are equivalent.

(i) The multifunction CV : KV (X)→→V is lsc.
(ii) V satisfies property (Li′).

Proof. We imitate here the proof of Thorem 3 of [8].
(i) ⇒ (ii) : The statement (i) restricted to singletons is nothing but the lower
semicontinuity of metric projection PV . It follows from Lemma 14 that the
lower semicontinuity of metric projection PV is equivalent to V satisfying
property (Li′). Hence (ii) is true.
(ii) ⇒ (i): In view of Theorem 9 (ii), without loss of generality, it is enough
to prove that property (Li′) gives,

(12) E(f0) ⊆ intZ(CV (F ))

for all f0 ∈ QF,0, whenever F ∈ KV (X) and 0 ∈ relintCV (F ). We prove
this by the method of contradiction. Assume (12) does not hold for some
F ∈ KV (X) and some f0 ∈ QF,0, where 0 ∈ relintCV (F ). For simplicity,
we denote int Z(CV (F )) by M . Therefore, we have Af0 := E(f0) \M 6= ∅,
for some f0 ∈ QF,0. Let T0 := T \M,F0 := (F )|T0 , and V0 = {v|T0 : v ∈
V and v|M = 0}.

We claim that rV (F ) = rV0(F0), 0 ∈ CV0(F0), and

Af0 = {t ∈ T0 : ‖f0(t)‖ = ‖f0‖T0}.
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If v ∈ V0, then v|M = 0. Hence

sup
f∈F

sup
t∈T
‖f(t)− v(t)‖ ≤

≤ sup
f∈F

max

{
sup
t∈T0
‖f(t)− v(t)‖, sup

t∈M
‖f(t)‖

}
.

Since 0 ∈ CV (F ), sup
f∈F
‖f(t)‖ ≤ rV (F ). If for some v ∈ V0,

(13) sup
f∈F

sup
t∈T0
‖f(t)− v(t)‖ ≤ sup

f∈F
sup
t∈M
|f(t)‖,

then sup
f∈F

sup
t∈T
‖f(t)−v(t)‖ ≤ rV (F ). Hence v ∈ CV (F ). By Lemma 1, f0 which

is a farthest point in F of 0 is also a farthest point of v. By our assumption,
Af0 ⊂ T0, and it contains points of E(f0 − CV (F )). Therefore,

sup
f∈F

sup
t∈T0
‖f(t)− v(t)‖ = rV (F ),

and we get equality in (13). Hence we have,

rV (F ) = inf
v∈V

sup
f∈F

sup
t∈T
‖f(t)− v(t)‖

≤ inf
v∈V0

sup
f∈F

sup
t∈T
‖f(t)− v(t)‖

= inf
v∈V0

sup
f∈F

sup
t∈T0
‖f(t)− v(t)‖

= rV0(F0).

Also for every f ∈ F,

rV (F ) = ‖f0‖ = ‖f0‖T0
≥ ‖f‖
≥ ‖f‖T0 ,

i.e., rV (F ) ≥ supf∈F ‖f‖T0 ≥ rV0(F0). Hence rV (F ) = rV0(F0), and ‖f0‖T0 =
rV0(F0), which in turn implies that 0 ∈ CV0(F0).

From the above, it also follows that Af0 = {t ∈ T0 : ‖f0(t)‖ = ‖f0‖T0}, i.e.,
Af0 = E(f0) ∩ T0. Hence Af0 is none other than the set of all critical points
of 0 with f0|T0 as the farthest point.

Let X0 = C0(T0, U). By the assumption rV (F ) > rV (X), and condition
(iv) in the characterization theorem (Theorem 4) applied to 0 ∈ CV0(F0),

there exist scalars λi > 0, functionals v∗i ∈ Ext
w∗
B(U∗), points ti ∈ T0, and

elements f0
i ∈ F0, i = 1, . . . ,m such that

(14)
m∑
i=1

λi = 1, |v∗i (f0
i (ti))| = rV0(F0)
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and

(15)

m∑
i=1

λiv
∗
i (f

0(ti))v
∗
i (v(ti)) = 0 for all v ∈ V.

Since f0
i is of the form fi|T0 for some fi ∈ F, we have, in fact, {t1, . . . , tm} ⊆

E(fi). By Lemma 5, {t1, . . . , tm} ⊆ Z(v) for all v ∈ CV (F ). Since V satisfies
property (Li′), taking u∗i = λiv

∗
i (f

0(ti))v
∗
i in Lemma 14 (iii), we get, for every

v ∈ CV (F ),

{t1, . . . , tm} ⊆ intZ(v) ∩ T0.

Since V is finite dimensional, this in turn implies that,

{t1, . . . , tm} ⊆ int
⋂

v∈CV (F )

(Z(v) ∩ T0).

This contradicts the definition of T0. Hence E(f0) ⊆ intZ(CV (F )) must hold
for every f0 ∈ QF,0, 0 ∈ relintCV (F ) and F ∈ KV (X). We can now apply
Theorem 9 (ii) to conclude that the multifunction CV is lsc. �

As observed in Theorem D and Theorem 3 of Li [12], in case U is a strictly
convex Banach space such that dimU = k ≤ n, and V is an n-dimensional
subspace of X, the generalized Haar condition consisting of (Pm) and (Tm)
where m ∈ N is the unique integer satisfying mk < n ≤ (m+1)k is equivalent
to the condition

(16) cardZ(v)) ≤ (dimU)−1 · dim{p|bdZ(v) : p ∈ V and p|int Z(v) = 0}.

In conjunction with Theorem 3.5 of [17], this result yields the next theorem.

Theorem 16. Let U be a k-dimensional Euclidean space and V be an n-
dimensional subspace of X = C0(T,U). If k ≤ n, then in order that CV (F )
be a singleton for each F ∈ K(X) it is necessary and sufficient that condition
(16) be satisfied.

REFERENCES

[1] Beer, G. and Pai, D., On convergence of convex sets and relative Chebyshev centers,
J. Approx. Theory, 62, pp. 147–179, 1990.

[2] Blatter, J., Morris P.D. and Wulbert D.E., Continuity of the set-valued metric
projection, Math. Ann, 178 , pp. 12–24, 1968.

[3] Blatter, J. and Schumaker, L., The set of continuous selections of a metric projec-
tion in C(X),, J. Approx. Theory, 36, pp. 141–155, 1982.

[4] Brosowski, B. and Wegmann, R., On the lower semicontinuity of the set-valued
metric projection, J. Approx. Theory, 8, pp. 84–100, 1973.

[5] Brown, A.L., On continuous selections for metric projections in spaces of continuous
functions, J. Funct. Anal., 8, pp. 431–449, 1971.

[6] Deutsch, F., Continuous selections for metric projections: Some recent progress, in
“Approximation Theory V ”, Chui, C.K., Schumaker, L.L. and Ward, J.D. (eds.),
pp. 319–322, Academic Press, New York, 1986.



17 The restricted center multifunction 103

[7] Deutsch, F., An exposition of recent results on continuous metric selections, in “Nu-
merical Methods of Approximation Theory”, Collatz, L., Meinardus, G. and Nurn-
berger, G. (eds.), ISNM 81, pp. 67–80, Birkhauser Verlag, Basel, 1987.

[8] Indira K. and Pai, D., Hausdorff strong uniqueness in simultaneous approximation.
Part I, in “Approximation Theory XI: Gatlinburg 2004”, Chui, C.K, Neamtu, M. and
Schumaker, L.L. (eds.), pp. 101–118, Nashboro Press, Brentwood, TN, USA, 2005.

[9] Lazar, A.J., Morris, P.D. and Wulbert, D.E., Continuous selections for metric
projections, J. Funct. Anal., 3, pp. 193–216, 1969.

[10] Li, W., Strong uniqueness and Lipschitz continuity of metric projections: A generaliza-
tion of the Classical Haar theory, J. Approx. Theory, 56 , pp. 164–184, 1989.

[11] Li, W., Various continuities of metric projection in C0(T,X), J. Approx. Theory, 57,
pp. 150–168, 1989.

[12] Li, W., An intrinsic characterization of lower semicontinuity of the metric projection
in C0(T,X), J. Approx. Theory, 57, pp. 136-149, 1989.

[13] Li, W., Continuous Selections for Metric Projection and Interpolating Subspaces, in
“Approximation & Optimization”, Vol. 1, Lang, P., Fankfurt am Main, 1991.

[14] Mach, J., Continuity properties of Chebyshev centers, J. Approx. Theory, 29, pp. 223–
230, 1980.

[15] Mhaskar, H.N. and Pai, D.V., Fundamentals of Approximation Theory, CRC Press,
Boca Raton, Florida, 2000.

[16] Nurnberger, G. and Sommer, M., Weak Chebyshev subspaces and continuous selec-
tions for the metric projection, Trans. Amer. Math. Soc., 238, pp. 129–138, 1978.

[17] Pai, D.V., Strong uniqueness of best simultaneous approximation, J. Indian Math. Soc.
(N.S.), 67, pp. 201–215, 2000.

[18] Pai, D.V. and Indira, K., On well-posedness of some problems in approximation the-
ory, in “Advances in Constructive Approximation”, Neamtu, M. and Saff, E.B. (eds.),
pp. 371–392, Nashboro Press, Brentwood, TN, 2004.

[19] Pai, D. and Indira, K., Hausdorff strong uniqueness in simultaneous approximation.
Part II, in “Frontiers in Interpolation and Approximation”, Govil, N.K. Mhaskar,
H.N., Mohapatra, R.N., Nashed, Z.and Szabados, J. (eds.), pp. 365–380, Chapman
& Hall/CRC, Taylor & Francis Group, Boca Raton, USA, 2007.

[20] Pai, D.V. and Nowroji, P.T., On restricted centers of sets, J. Approx. Theory, 66,
pp. 170–189, 1991.

[21] Panda, B.B. and Kapoor, O.P., On farthest points of sets, J. Math. Anal. Appl., 62,
pp. 345–353, 1978.

[22] Zuhovickii, S.I. and Steckin, S.B., On the approximation of abstract functions, Amer.
Math. Soc. Transl., 16, pp. 401–406, 1960.

Received by the editors: May 30, 2008.


	1. Introduction
	2. Preliminaries
	3. A sufficient condition for lower semicontinuity of the multifunction CV
	4. Lower Semicontinuity of CV in the Space C0(T,U)
	4.1. An intrinsic characterization of lower semicontinuity of the multifunction CV
	4.2. Characterization of lower semicontinuity of CV using Haar-like condition

	References

