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ON THE CONVERGENCE OF STEFFENSEN–TYPE METHODS

USING RECURRENT FUNCTIONS

IOANNIS K. ARGYROS∗ and SAÏD HILOUT†

Abstract. We introduce the new idea of recurrent functions to provide a new
semilocal convergence analysis for Steffensen–type methods (STM) in a Banach
space setting. It turns out that our sufficient convergence conditions are weaker,
and the error bounds are tighter than in earlier studies in many interesting
cases [1]–[5], [12], [14]–[17], [23], [24], [26]. Applications and numerical examples,
involving a nonlinear integral equation of Chandrasekhar–type, and a differential
equation are also provided in this study.
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally
unique solution x? of equation

(1) F (x) +G(x) = 0,

where F is a Fréchet–differentiable operator defined on a convex subset D of a
Banach space X with values in X , and G : D −→ X is a continuous operator.

A large number of problems in applied mathematics and also in engineering
are solved by finding the solutions of certain equations. For example, dynamic
systems are mathematically modeled by difference or differential equations,
and their solutions usually represent the states of the systems. For the sake
of simplicity, assume that a time–invariant system is driven by the equation
ẋ = T (x), for some suitable operator T , where x is the state. Then the equi-
librium states are determined by solving equation (1). Similar equations are
used in the case of discrete systems. The unknowns of engineering equations
can be functions (difference, differential, and integral equations), vectors (sys-
tems of linear or nonlinear algebraic equations), or real or complex numbers
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(single algebraic equations with single unknowns). Except in special cases,
the most commonly used solution methods are iterative – when starting from
one or several initial approximations a sequence is constructed that converges
to a solution of the equation. Iteration methods are also applied for solving
optimization problems. In such cases, the iteration sequences converge to an
optimal solution of the problem at hand. Since all of these methods have the
same recursive structure, they can be introduced and discussed in a general
framework.

We introduce Steffensen’s–type method (STM)

(2)
xn+1 = xn −A−1

n (F (xn) +G(xn)) (n ≥ 0), (x0 ∈ D),
An := A(xn) = [xn, q(xn);F ]−1,

has been used to generate a sequence {xn} approximating x?, when G = 0 on
D [4], [12], [14]–[17], [23], [24], [26].

Here, [x, y;F ] denotes a divided difference of order one of F at points x, y,
satisfying

(3) [x, y;F ] (y − x) = F (y)− F (x), x, y ∈ D, x 6= y,

and q : X −→ X is a continuous operator.
Note that if G = 0, and q(x) = x, then, (2) reduces to Newton’s method

[3], [4], [12], [20]–[23], [24]–[28]. Moreover, if q(x) = x, (STM) reduces to
Zincenko’s method [4], [28].

Case G = 0. If q(x) = x for x ∈ D and under Kantorovich–type assumptions,
Rheinboldt [25] established a convergence theorem for Newton–type
method (NTM), which includes the Kantorovich theorem for the New-
ton method (A(x) = F ′(x)) as a special case [1], [4], [14]. A further
generalization was given by Dennis in [10], Deuflhard and Heindl in
[11], [12], Potra in [23].

Miel [20], [21] improved the error bounds for Rheinboldt [25]. Moret
[22] obtained a convergence theorem as well as error bounds for (NTM)
under stronger conditions than those of Rheinboldt.

Case G 6= 0. If A(x) = F ′(x), (x ∈ D), Zabrejko and Nguen [27] established
a convergence theorem for the Krasnoselskii–Zincenko–type iteration
[28]. Later, Yamamoto and Chen [8] extended the results in [27], [28],
when A(x) is not necessarily equal to F ′(x). Under the same condi-
tions, the results were specialized in [7], [9], [18], [19] for Broyden–like
methods. More recently, Argyros [5] provided a unified convergence
theory for even more general (NTM).

In this study, we provide a semilocal convergence analysis for (STM) by in-
troducing recurrent functions. This new idea leads to an analysis with weaker
sufficient convergence conditions than before [1]–[5], [12], [14]–[17], [23], [24],
[26].
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Numerical examples and special cases are also given in this study, to show:
our results can apply to solve equations, where earlier ones cannot, and also
provide tighter error bounds.

2. SEMILOCAL CONVERGENCE ANALYSIS OF (STM)

We need the following result on majorizing sequences for (NTM).

Lemma 1. Assume: there exist constants K > 0, M > 0, µ ≥ 0, L > 0,
and η > 0, such that:

(4) 2 M < K;

Quadratic polynomial f1 given by

(5) f1(s) = 2 L η s2 −
(
2 (1− L η)−K η

)
s+ 2 (M η + µ),

has a root in (0, 1), denoted by δ
2 , and for

(6) δ0 = K η+2 µ
1−L η ,

(7) α = 2 (K−2 M)

K+
√
K2 + 8 L (K − 2 M)

,

the following holds

(8) δ0 ≤ δ ≤ 2 α.

Then, scalar sequence {tn} (n ≥ 0) given by

(9) t0 = 0, t1 = η, tn+2 = tn+1 + K (tn+1−tn)+2 (M tn+µ)
2 (1−L tn+1) (tn+1 − tn)

is increasing, bounded above by

(10) t?? = 2 η
2−δ ,

and converges to its unique least upper bound t? ∈ [0, t??].
Moreover the following estimates hold for all n ≥ 1:

(11) tn+1 − tn ≤ δ
2 (tn − tn−1) ≤

(
δ
2

)n
η,

and

(12) t? − tn ≤ 2 η
2−δ

(
δ
2

)n
.

Proof. We shall show using induction on the integer m:

(13)
0 < tm+2 − tm+1 = K (tm+1−tm)+2 (M tm+µ)

2 (1−L tm+1) (tm+1 − tm)

≤ δ
2 (tm+1 − tm),

and

(14) L tm+1 < 1.
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If (13) and (14) hold, we have (11) holds, and

tm+2 ≤ tm+1 + δ
2 (tm+1 − tm)

≤ tm + δ
2 (tm − tm−1) + δ

2 (tm+1 − tm)

≤ η +
(
δ
2

)
η + · · ·+

(
δ
2

)m+1
η

=
1−
(
δ
2

)m+2

1− δ
2

η < 2 η
2−δ = t?? by (10).

Estimates (13) and (14) hold by the initial conditions for m = 0. Indeed
(13) and (14) become:

0 < t2 − t1 = K (t1−t0)+2 (M t0+µ)
2 (1−L t1) (t1 − t0)

= K η+2 µ
2 (1−L η) (t1 − t0) = δ0

2 (t1 − t0) ≤ δ
2 (t1 − t0),

L η < 1,

which are true by the choices of δ0, and δ, (8), (9), and the initial conditions.
Let us assume (11), (13) and (14) hold for all m ≤ n+ 1.

Estimate (13) can be re-written as

K (tm+1 − tm) + 2 (M tm + µ) ≤ (1− L tm+1) δ

or

(15) K (tm+1 − tm) + 2 (M tm + µ) + δ L tm+1 ≤ 0,

or

(16) K
(
δ
2

)m
η + 2

(
M

1−
(
δ
2

)m
1− δ

2

η + µ
)

+ δ L
1−
(
δ
2

)m+1

1− δ
2

η − δ ≤ 0.

Replace δ
2 by s, and define functions fm on [0,+∞) (m ≥ 1):

(17)
fm(s) = K sm η + 2

[
M (1 + s+ s2 + · · ·+ sm−1) η + µ

]
+2 s L (1 + s+ · · ·+ sm) η − 2 s.

We need to find a relationship between two consecutive fm:
(18)

fm+1(s) = K sm+1 η + 2
(
M (1 + s+ s2 + · · ·+ sm−1 + sm) η + µ

)
+2 s L (1 + s+ · · ·+ sm + sm+1) η − 2 s

= K sm+1 η −K sm η +K sm η

+2
(
M (1 + s+ s2 + · · ·+ sm−1) η + µ

)
+2 M sm η+2 s L (1 + s+· · ·+ sm) η+2 s L sm+1 η−2 s

= fm(s) +K sm+1 η −K sm η + 2 M sm η + 2 s L sm+1 η
= fm(s) + g(s) sm η,

where

(19) g(s) = 2 L s2 +K s+ 2 M −K.
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Note that in view of (4), function g has a unique positive zero α given by
(7), and

(20) g(s) < 0 s ∈ (0, α).

Estimate (16) certainly holds, if

(21) fm( δ2) ≤ 0 (m ≥ 1).

Clearly, (21) holds for m = 1 as equality. We then get by (17), (18)–(20):

f2( δ2) = f1( δ2) + g( δ2) δ2 η = g( δ2) δ2 η ≤ 0,

Assume (21) holds for all k ≤ m. We shall show (21) for m replaced by
m+ 1. Indeed, we have

fm+1( δ2) = fm( δ2) + g( δ2)
(
δ
2

)m
η ≤ 0,

which shows (21) for all m.
Moreover, we obtain

f∞( δ2) = lim
m→∞

fm( δ2) ≤ 0.

That completes the induction.
Moreover, estimate (12) follows from (11) by using standard majorization

techniques [2], [4], [14].
Finally, sequence {tn} is increasing, bounded above by t??, and as such it

converges to its unique least upper bound t?.
That completes the proof of Lemma 1. �

Remark 2. The hypotheses of Lemma 1 have been left as uncluttered as
possible. Note that these hypotheses involve only computations only at the
initial point x0. Below, we shall provide some simpler but stronger hypotheses
under which the hypotheses of Lemma 1 hold. �

We can also show the following alternative to Lemma 1.

Lemma 3. Let K > 0, M > 0, µ > 0, with L > 0, and η > 0, be such that:

µ < α, 2 M < K,

and

(22) 0 < hA = a η ≤ 1
2 ,

where

(23) a = 1
4 (α−µ) max{2 L α2 + 2 L α+K α+ 2 M, K + 2 α L}.

Then, the following hold:

f1 has a positive root δ
2 , max{δ0, δ} ≤ 2 α ,

and

the conclusions of Lemma 1 hold, with α replacing δ
2 .
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Proof. It follows from (18), (22) that

(24) fm(α) = f1(α) ≤ 0, m ≥ 1,

which together with f1(0) = 2 (M η+µ) > 0, imply that there exists a positive
root δ

2 of polynomial f1, satisfying

(25) δ ≤ 2 α.

It also follows from (6), and (22) that

(26) δ0 ≤ 2 α,

and (21) holds, with α replacing δ
2 (by (24)). Note also α ∈ (0, 1) by (4).

That completes the proof of Lemma 3 �

We shall show the following semilocal convergence theorem for (STM).

Theorem 4. Let F : D ⊆ X −→ X be a Fréchet–differentiable operator,
G : D −→ X be a continuous operator, [x, y;F ] be a divided difference of
order one of F on D, satisfying (3), q : D −→ X a continuous operator, and
let A(x) ∈ L(X ,X ) given in (2) be an approximation of F ′(x). Assume that
there exist an open convex subset D of X , x0 ∈ D, a bounded inverse A−1

0 of
A0, and constants K > 0, M0 > 0, β ≥ 0, b ≥ 0, µ0 ≥ 0, µ1 ≥ 0, η > 0,
parameter α ∈ [0, 1), such that for all x, y ∈ D:

‖A−1
0 [F (x0) +G(x0)]‖ ≤ η,(27)

‖A−1
0 [F ′(x)− F ′(y)]‖ ≤ K ‖x− y‖,(28)

‖A−1
0 [F ′(x)−A(x)]‖ ≤M0 ‖x− q(x)‖+ µ0,(29)

‖A−1
0 [A(x)−A0]‖ ≤ β (‖x− x0‖+ ‖q(x)− q(x0)‖),(30)

‖A−1
0 [G(x)−G(y)]‖ ≤ µ1 ‖x− y‖,(31)

‖q(x)− q(x0)‖ ≤ b ‖x− x0‖,(32)

t? ≥ ‖x0−q(x0)‖
1−b ,(33)

U(x0, t
?) = {x ∈ X , ‖x− x0‖ ≤ t?} ⊆ D,(34)

and the hypotheses of Lemmas 1, or 3 hold with

µ = µ0 + µ1, M = M0 (1 + b),

µ0 = M0 ‖x0 − q(x0) ‖, and L = (1 + b) β.

Then, sequence {xn} (n ≥ 0) generated by (STM) is well defined, remains
in U(x0, t

?) for all n ≥ 0, and converges to a solution x? of equation F (x) +
G(x) = 0 in U(x0, t

?).
Moreover, the following estimates hold for all n ≥ 0:

(35) ‖xn+1 − xn‖ ≤ tn+1 − tn,
and

(36) ‖xn − x?‖ ≤ t? − tn,
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where sequence {tn} (n ≥ 0), and t? are given in Lemma 1.
Furthermore, the solution x? of equation (1) is unique in U(x0, t

?) provided
that: (

K
2 +M + L

)
t? + µ < 1.

Proof. We shall show using induction on m ≥ 0:

(37) ‖xm+1 − xm‖ ≤ tm+1 − tm,
and

(38) U(xm+1, t
? − tm+1) ⊆ U(xm, t

? − tm).

For every z ∈ U(x1, t
? − t1),

‖z − x0‖ ≤ ‖z − x1‖+ ‖x1 − x0‖
≤ t? − t1 + t1 = t? − t0,

implies z ∈ U(x0, t
? − t0). We also have

‖x1 − x0‖ = ‖A−1
0 [F (x0) +G(x0)]‖ ≤ η = t1 − t0.

That is (37) and (38) hold for m = 0. Given they hold for n ≤ m, then:

‖xm+1 − x0‖ ≤
m+1∑
i=1

‖xi − xi−1‖

≤
m+1∑
i=1

(ti − ti−1) = tm+1 − t0 = tm+1,

and
‖xm + θ (xm+1 − xm)− x0‖ ≤ tm + θ (tm+1 − tm)

≤ t?,

for all θ ∈ (0, 1).
We have:

‖q(xm+1)− x0‖ ≤ ‖q(xm+1)− q(x0)‖+ ‖q(x0)− x0‖
≤ b ‖xm+1 − x0‖+ ‖q(x0)− x0‖
≤ b (tm+1 − t0) + ‖q(x0)− x0‖
≤ b t? + ‖q(x0)− x0‖ ≤ t? < 1

by (33).
Using (30), (32), and the induction hypotheses, we get:

(39)

‖A−1
0 [Am+1 −A0]‖ ≤ β (‖xm+1 − x0‖+ ‖q(xm+1)− q(x0)‖)

≤ β (‖xm+1 − x0‖+ b‖xm+1 − x0‖)
= L ‖xm+1 − x0‖
≤ L (tm+1 − t0) = L tm+1 < 1.

It follows from (39), and the Banach lemma on invertible operators [4], [14]
that A−1

m+1 exists, and

(40) ‖A−1
m+1 A0‖ ≤ (1− L tm+1)−1.
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We have for x ∈ U(x0, t
?):

(41)
‖A−1

0 [F ′(x)−A(x)]‖ ≤ M0 ‖x− q(x)‖
≤ M0 ‖(x−x0)+(x0−q(x0))+(q(x0)−q(x))‖
≤ M0 (‖x−x0‖+S‖x0−q(x0)‖+ b ‖x−x0‖)
≤ M0 ((1 + b) ‖x− x0‖+ ‖x0 − q(x0)‖)
= M ‖x− x0‖+ µ0.

Using (2), we obtain the approximation:
(42)
xm+2 − xm+1 = −A−1

m+1 (F (xm+1 +G(xm+1))

= −A−1
m+1 A0 A

−1
0(∫ 1

0
[F ′(xm+1+θ (xm−xm+1))−F ′(xm)] (xm+1−xm) dθ

+(F ′(xm)−Am) (xm+1 − xm) +G(xm+1)−G(xm)
)

Using (28), (29), (31), (40)–(42), and the induction hypotheses, we obtain
in turn:
(43)
‖xm+2 − xm+1‖ ≤ (1− L tm+1)−1

(
K
2 ‖xm+1 − xm‖2

+(M‖xm−x0‖+µ0)‖xm+1−xm‖+µ1‖xm+1−xm ‖
)

≤ (1−L tm+1)−1
(
K
2 (tm+1−tm)+Mtm+µ

)
(tm+1−tm)

= tm+2 − tm+1,

which shows (37) for all m ≥ 0.
Thus, for every z ∈ U(xm+2, t

? − tm+2), we have:

‖z − xm+1‖ ≤ ‖z − xm+2‖+ ‖xm+2 − xm+1‖
≤ t? − tm+2 + tm+2 − tm+1 = t? − tm+1,

which shows (38) for all m ≥ 0.
Lemmas 1 or 3 imply that sequence {tn} is Cauchy. Moreover, it follows

from (37) and (38) that {xn} (n ≥ 0) is also a Cauchy sequence in a Banach
space X , and as such it converges to some x? ∈ U(x0, t

?) (since U(x0, t
?) is a

closed set).
We also have by (42) and (43):∥∥A−1

0 (F (xm+1 +G(xm+1))
∥∥

≤
[
K

2
(tm+1 − tm) +Mtm + µ

]
(tm+1 − tm)

≤
(
K

2
(tm+1 − tm) +Mt∗ + µ

)
(tm+1 − tm)→ 0

as m→∞.
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Hence, by the continuity of operators F and G we obtain

F (x∗) +G(x∗) = 0.

Furthermore estimate (36) is obtained from (35) by using standard majoriza-
tion techniques [2], [4], [14]. Finally to show that x? is the unique solution of
equation (1) in U(x0, t

?), as in (42) and (43), we get in turn for y? ∈ U(x0, t
?),

with F (y?) +G(y?) = 0, the estimation:

(44)
‖y? − xm+1‖ ≤ ‖A−1

m A0‖{(∫ 1

0
‖A−1

0 (F ′(xm+θ (y?−xm))−F ′(xm))‖ dθ

+‖A−1
0 [F ′(xm)−Am]‖

)
‖y? − xm‖+

‖A−1
0 [G(xm)−G(y?)]‖

}
≤ (1− L tm+1)−1

(
K
2 ‖y

? − xm‖2+
(M ‖xm − x0‖+ µ) ‖y? − xm‖

)
≤ (1−L tm+1)−1

(
K
2 (t? − tm)+M tm+µ

)
‖y?−xm‖

≤ (1− L t?)−1

(
K
2 (t? − t0) +M t? + µ

)
‖x? − xm‖

< ‖y? − xm‖,
by the uniqueness hypothesis.

It follows by (44) that lim
m−→∞

xm = y?. But we showed lim
m−→∞

xm = x?.

Hence, we deduce x? = y?.
That completes the proof of Theorem 4. �

Note that t? can be replaced by t?? given by (10) in the uniqueness hypoth-
esis provided that U(x0, t

??) ⊆ D, or in all hypotheses of the theorem.

Remark 5. A direct comparison between earlier results and ours is not
possible at this generality. Let us then set G = 0 on D. Păvăloiu [15]–
[17] has made an extensive research on Steffensen’s method in this case, and
under various conditions. In particular, in [17], Păvăloiu extended some results
of ours [1] from the Secant method to Steffensen’s method using the set of
hypotheses:

(45) ‖[y, u;F ]− [x, y;F ]‖ ≤ c1‖x− u‖+ c2‖x− y‖+ c3‖u− y‖,

(46) ‖[x, y;F ]−1‖ ≤ c4,

(47) ‖F (q(x))‖ ≤ c5‖F (x)‖c6 ,

(48) ‖x− q(x)‖ ≤ c7‖F (x)‖,
to provide the semilocal convergence theorem for Steffensen’s method.

Here, some advantages of our approach:
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(a) Our results are given in affine invariant form. The advantages of affine
invariant over non–affine invariant results have been explained in [4],
[12].

(b) Hypotheses (28)–(30), and (32) are simpler, and weaker than (45)–
(48).

In a future paper, we hope to find a result, similar to Lemma 1, but where
conditions (45)–(48) are used, so we can have a more direct comparison be-
tween our results and the corresponding ones in [17]. �

3. SPECIAL CASES AND APPLICATIONS

Application 6. Let q(x) = x, G(x) = 0 (x ∈ D). We can now compare
our Theorem 4 with the Newton–Kantorovich theorem for solving equations in
the interesting case of Newton’s method [4], [14].

The famous for its simplicity and clarity Newton–Kantorovich hypothesis
for solving nonlinear equations

(49) hK = K η ≤ 1
2 .

Note that in this case, functions fm (m ≥ 1) should be defined by

(50) fm(s) =
(
K sm−1 + 2 L (1 + s+ s2 + · · ·+ sm)

)
η − 2,

and

(51) fm+1(s) = fm(s) + g(s) sm−1 η.

However, it is simple algebra to show that conditions (8) reduces to:

(52) hA = L η ≤ 1
2 ,

where
L = 1

8

(
K + 4 L+

√
K2 + 8 K L

)
.

Note also that

(53) L ≤ K
holds in general, and K

L can be arbitrarily large [4].

In view of (49), (52) and (53), we get

(54) hK ≤ 1
2 =⇒ hA ≤ 1

2 ,

but not necessarily vice versa unless if L = K.

In the example that follows, we show that K
L can arbitrarily large. Indeed:

Example 7. Let X = Y = R, x0 = 1, and define scalar functions F and G
by

(55) F (x) = c0 x+ c1 + c2 sin ec3 x, G(x) = 0,

where ci, i = 0, 1, 2, 3 are given parameters. Using (55), it can easily be seen
that for c3 large and c2 sufficiently small, K

L can be arbitrarily large. �
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In the next examples, we show (49) is violated but (52) holds.

Example 8. Let X = Y = R2, equipped with the max–norm, and

x0 = (1, 1)T, U0 = {x : ‖x− x0‖ ≤ 1− c}, c ∈
[
0, 1

2

)
.

Define function F on U0 by

(56) F (x) = (ξ3
1 − c, ξ3

2 − c), x = (ξ1, ξ2)T.

The Fréchet–derivative of operator F is given by

F ′(x) =

[
3 ξ2

1 0
0 3 ξ2

2

]
.

Using hypotheses of Theorem 4, we get:

η = 1
3 (1− c), L = 3− c, and K = 2 (2− c).

The Newton–Kantorovich condition (49) is violated, since

4
3 (1− c) (2− c) > 1 for all c ∈

[
0, 1

2

)
.

Hence, there is no guarantee that Newton’s method (2) converges to x? =

( 3
√
c, 3
√
c)T, starting at x0.

However, our condition (52) is true for all c ∈ I =
[
.450339002, 1

2

)
. Hence,

the conclusions of our Theorem 4 can apply to solve equation (56) for all
c ∈ I. �

Example 9. Let X = Y = C[0, 1] be the space of real–valued continuous
functions defined on the interval [0, 1] with norm

‖x‖ = max
0≤s≤1

|x(s)|.

Let θ ∈ [0, 1] be a given parameter. Consider the “Cubic” integral equation

(57) u(s) = u3(s) + λu(s)

∫ 1

0
q(s, t)u(t) dt+ y(s)− θ.

Here the kernel q(s, t) is a continuous function of two variables defined
on [0, 1] × [0, 1]; the parameter λ is a real number called the “albedo” for
scattering; y(s) is a given continuous function defined on [0, 1] and x(s) is the
unknown function sought in C[0, 1]. Equations of the form (57) arise in the
kinetic theory of gasses [4], [6]. For simplicity, we choose u0(s) = y(s) = 1,
and q(s, t) = s

s+t , for all s ∈ [0, 1], and t ∈ [0, 1], with s + t 6= 0. If we let

D = U(u0, 1− θ), and define the operator F on D by

(58) F (x)(s) = x3(s)− x(s) + λx(s)

∫ 1

0
q(s, t)x(t) dt+ y(s)− θ,

for all s ∈ [0, 1], then every zero of F satisfies equation (57).
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We have the estimates:

max
0≤s≤1

∣∣∣∣∫ s
s+t dt

∣∣∣∣ = ln 2.

Therefore, if we set ξ = ‖F ′(u0)−1‖, then it follows from hypotheses of
Theorem 4 that

η = ξ (|λ| ln 2 + 1− θ),

K = 2 ξ (|λ| ln 2 + 3 (2− θ)) and L = ξ (2 |λ| ln 2 + 3 (3− θ)).
It follows from Theorem 4 that if condition (52) holds, then problem (57)

has a unique solution near u0. This assumption is weaker than the one given
before using the Newton–Kantorovich hypothesis (49).

Note also that L < K for all θ ∈ [0, 1]. �

Example 10. Consider the following nonlinear boundary value problem [4]{
u′′ = −u3 − γ u2

u(0) = 0, u(1) = 1.

It is well known that this problem can be formulated as the integral equation

(59) u(s) = s+

∫ 1

0
Q(s, t) (u3(t) + γ u2(t)) dt

where Q is the Green function:

Q(s, t) =

{
t (1− s), t ≤ s
s (1− t), s < t.

We observe that

max
0≤s≤1

∫ 1

0
|Q(s, t)| = 1

8 .

Let X = Y = C[0, 1], with norm

‖x‖ = max
0≤s≤1

|x(s)|.

Then problem (59) is in the form (1), where F : D −→ Y is defined as

[F (x)] (s) = x(s)− s−
∫ 1

0
Q(s, t) (x3(t) + γ x2(t)) dt,

and

G(x) (s) = 0.

It is easy to verify that the Fréchet derivative of F is defined in the form

[F ′(x)v] (s) = v(s)−
∫ 1

0
Q(s, t) (3 x2(t) + 2 γ x(t)) v(t) dt.
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If we set u0(s) = s, and D = U(u0, R), then since ‖u0‖ = 1, it is easy to
verify that U(u0, R) ⊂ U(0, R+ 1). It follows that 2γ < 5, then

‖I − F ′(u0)‖ ≤ 3‖u0‖2+2γ‖u0‖
8 = 3+2γ

8 ,

‖F ′(u0)−1‖ ≤ 1

1− 3+2γ
8

= 8
5−2γ ,

‖F (u0)‖ ≤ ‖u0‖
3+γ‖u0‖2

8 = 1+γ
8 ,

‖F (u0)−1 F (u0)‖ ≤ 1+γ
5−2 γ .

On the other hand, for x, y ∈ D, we have

[(F ′(x)− F ′(y))v] (s) = −
∫ 1

0
Q(s, t)(3x2(t)−3 y2(t)+2γ (x(t)−y(t)))v(t)dt.

Consequently,

‖F ′(x)− F ′(y)‖ ≤ ‖x−y‖(2γ+3(‖x‖+‖y‖))
8

≤ ‖x−y‖(2γ+6R+6‖u0‖)
8

= γ+6R+3
4 ‖x− y‖,

‖F ′(x)− F ′(u0)‖ ≤ ‖x−u0‖(2γ+3(‖x‖+‖u0‖))
8

≤ ‖x−u0‖(2γ+3R+6‖u0‖)
8

= 2γ+3R+6
8 ‖x− u0‖.

Therefore, conditions of Theorem 4 hold with

η = 1+γ
5−2γ , K = γ+6R+3

4 , L = 2γ+3R+6
8 .

Note also that L < K. �
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