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Abstract. The main result of the paper unifies two important fixed point the-
orems published in the same year, 1965, the first one discovered independently
by Browder [F.E. Browder, Nonexpansive nonlinear operators in Banach spaces,
Proc. Nat. Acad. Sci. U.S.A., 54 (1965), 1041–1044], Göhde [D. Göhde, Zum
Prinzip der kontraktiven Abbildung, Math. Nachr., 30 (1965), 251–258] and Kirk
[W.A. Kirk, A fixed point theorem for mappings which do not increase distances,
Amer. Math. Monthly, 72 (1965), 1004–1006], while the second one is due to
Presić [S.B. Presić, Sur une classe d’ inéquations aux différences finite et sur
la convergence de certaines suites, Publ. Inst. Math. (Beograd)(N.S.), 5(19)
(1965), 75–78]. In this way we show how amazingly two apparently different
beautiful results in mathematics can meet after almost half a century!
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1. INTRODUCTION

One of the most interesting generalizations of Banach’s contraction mapping
principle has been obtained in 1965 by S. Presić [19]:

Theorem 1 (S. Presić [19], 1965). Let (X, d) be a complete metric space,

k a positive integer, α1, α2, . . . , αk ∈ R+,
k∑
i=1
αi = α < 1 and f : Xk → X a

mapping satisfying

(1.1) d(f(x0, . . . , xk−1), f(x1, . . . , xk)) ≤ α1d(x0, x1) + · · ·+ αkd(xk−1, xk),

for all x0, . . . , xk ∈ X.
Then:
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1) f has a unique fixed point x∗, that is, there exists a unique x∗ ∈ X
such that f(x∗, . . . , x∗) = x∗;

2) the sequence {xn}n≥0 defined by

(1.2) xn+1 = f(xn−k+1, . . . , xn) , n = k − 1, k, k + 1, . . .

converges to x∗, for any x0, . . . , xk−1 ∈ X.

It is easy to see that, in the particular case k = 1, from Theorem 1 we
get exactly the well-known contraction mapping principle of Banach, while
the k-step iterative method (1.2) reduces to the one step method of successive
approximations for the self-mapping f : X → X, i.e., to

(1.3) xn+1 = f(xn) , n = 0, 1, 2, 3, . . . ,

also known as Picard iteration.
For this reason, in this paper, a mapping satisfying the contraction condition

(1.1) in Theorem 1 will be called a Presić contraction.
Theorem 1 and other similar results, like the ones in [5], [14], [15], [21],

have important applications in the iterative solution of nonlinear equations,
see [17] and [18], as well as in the study of global asymptotic stability of the
equilibrium for nonlinear difference equations, see the very recent paper [3].

An important generalization of Theorem 1 was proved in I.A. Rus [21], see
also [22], for operators f fulfilling the more general condition

(1.4) d(f(x0, . . . , xk−1), f(x1, . . . , xk)) ≤ ϕ(d(x0, x1), . . . , d(xk−1, xk)),

for any x0, . . . , xk ∈ X, where ϕ : Rk+ → R+ satisfies certain conditions.
Another important generalization of Presić’s result was recently obtained

by L. Cirić and S. Presić in [5], where, instead of (1.1) and its generalization
(1.4), the following contraction condition is considered:

(1.5) d(f(x0, . . . , xk−1), f(x1, . . . , xk)) ≤ λmax{d(x0, x1), . . . , d(xk−1, xk)},

for any x0, . . . , xk ∈ X, where λ ∈ (0, 1).
Other general Presić type fixed point results have been very recently ob-

tained by the second author in [13]-[16].
The main result in [14] is the following fixed point theorem.

Theorem 2. Let (X, d) be a complete metric space, k a positive integer,
a ∈ R a constant such that 0 ≤ ak(k + 1) < 1 and f : Xk → X an operator
satisfying the following condition:

(1.6) d(f(x0, . . . , xk−1), f(x1, . . . , xk)) ≤ a
k∑
i=0

d(xi, f(xi, . . . , xi)),

for any x0, x1, . . . , xk ∈ X. Then

1) f has a unique fixed point x∗, that is, there exists a unique x∗ ∈ X
such that f(x∗, . . . , x∗) = x∗;
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2) the sequence {yn}n≥0 defined by yn+1 = f(yn, yn, . . . , yn), n ≥ 0, con-
verges to x∗;

3) the sequence {xn}n≥0 with x0, . . . , xk−1 ∈ X and xn = f(xn−k, xn−k+1,
. . . , xn−1), n ≥ k, also converges to x∗, with a rate estimated by:

d(xn+1, x
∗) ≤Mθn, n ≥ 0,

for a positive constant M and a certain θ ∈ (0, 1).

Notice that the proofs of the main results in [13]-[19] for mappings f :
Xk → X are essentially based on some known (common) fixed point theorems
for usual Banach contractions and, respectively, Kannan type contractions of
the form F : X → X.

Some important results related to Presić contractions and their applications
to multi-step iterative methods have been obtained in [17] and [18].

As nonexpansive mappings are obvious generalizations of usual contraction
mappings f : X → X, it is the main aim of this paper to obtain Presić fixed
point theorems for nonexpansive type mappings of the form f : Xk → X.

To this end we shall present in the next section a brief introduction to fixed
point theory for nonexpansive mappings.

2. BASIC FIXED POINT THEORY FOR NONEXPANSIVE MAPPINGS

Let (X, d) be a metric space. A mapping T : X → X is said to be an
α-contraction if there exists α ∈ [0, 1) such that

(2.1) d(Tx, Ty) ≤ αd(x, y), ∀x, y ∈ X.

In the case α = 1 in (2.1), T is said to be nonexpansive.
Nonexpansive mappings, although are generalizations of contractions, do

not inherit more from contraction mappings. More precisely, if K is a
nonempty closed subset of a Banach space E and T : K → K is nonex-
pansive, it is known, see [1], that T may not have a fixed point (unlike the
case when T is α-contraction), see the examples in [7].

Even in the cases when T has a fixed point, the Picard iteration associated
to T may fail to converge to the fixed point.

For the above and many other reasons, a much more richer geometrical
structure of the ambient space is needed in order to ensure the existence of a
fixed point and / or the convergence of an iterative method (generally more
elaborated than Picard iteration) to a fixed point of a nonexpansive mapping
T .

Definition 3. A normed linear space is called uniformly convex if, for any
ε ∈ (0, 2], there exists δ = δ(ε) > 0 such that if x, y ∈ E with ‖x‖ = ‖y‖ = 1
and ‖x− y‖ ≥ ε, then ∥∥1

2 (x+ y)
∥∥ ≤ 1− δ.
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Definition 4. A normed linear space is called strictly convex if, for all
x, y ∈ E, x 6= y, ‖x‖ = ‖y‖ = 1, we have

‖λx+ (1− λ)y‖ < 1, ∀λ ∈ (0, 1).

If we denote by Sr(a) the sphere centered at a in E with radius r, that is,

Sr(a) = {x ∈ E : ‖x− a‖ = r},
then E is uniformly convex, see [7] if, for any two distinct points x, y on the
unit sphere centered at origin, the midpoint of the line segment joining x and
y is never on the sphere but is close to sphere only if x and y are closed enough
to each other.

Similarly, E is strictly convex if, for any two distinct points x, y on the unit
sphere centered at origin, any point of the line segment joining x and y is
never on the sphere, except for its endpoints.

Remark 5. Similar to the considerations above, it follows that any uni-
formly convex space is strictly convex. The converse is generally not true, see
for example [7]. �

We can now formulate one of the most influential fixed point theorems for
nonexpansive mappings, which was discovered independently by F.E. Browder,
D. Göhde and W.A. Kirk in 1965, cf. [2], [8], [10].

Theorem 6. Let K be a nonempty closed convex and bounded subset of a
uniformly Banach space E and let T : K → K be a nonexpansive mapping.
Then T has a fixed point.

Remark 7. Under the assumptions of Theorem 6, no information on the
approximation of the fixed points of T is available. Actually, Picard iter-
ation does not resolve this situation, in general. Due to this fact, for the
class of nonexpansive mappings other fixed point iteration procedures have
been considered, see [1] and [4]. The two most usual ones are defined in the
following. �

Let K be a convex subset of a normed linear space E and let T : K → K
be a mapping. For x0 ∈ K and λ ∈ [0, 1] the sequence {xn} defined by

(2.2) xn+1 = (1− λ)xn + λTxn, n = 0, 1, 2, · · ·
is usually called Krasnoselskij iteration, or Krasnoselskij-Mann iteration.
Clearly, (2.2) reduces to the Picard iteration (1.3) for λ = 1.

For x0 ∈ K the sequence {xn} defined by

(2.3) xn+1 = (1− λn)xn + λnTxn, n = 0, 1, 2, · · · ,
where {λn} ⊂ [0, 1] is a sequence of real numbers satisfying some appropriate
conditions, is called Mann iteration.

It was shown by Krasnoselskij [11], in the case λ = 1/2, and then by Schaefer
[24], for λ ∈ (0, 1) arbitrary, that if E is a uniformly convex Banach space and
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K is a convex and compact subset of E (and so having the set of fixed points
nonempty, by Theorem 6), then the Krasnoselskij iteration converges to a fixed
point of T .

Moreover, Edelstein [6] proved that strict convexity of E suffices for the
same conclusion, see also [4].

The question of whether strict convexity can be removed or not has been
practically answered in the affirmative by Ishikawa [9], who proved the follow-
ing result.

Theorem 8. Let K be a subset of a Banach space E and let T : K → K be
a nonexpansive mapping. For arbitrary x0 ∈ K, consider the Mann iteration
process {xn} given by (2.3) under the following assumptions

(a) xn ∈ K for all positive integers;
(b) 0 ≤ λn ≤ b < 1 for all positive integers;
(c)

∑∞
n=0 λn =∞.

If {xn} is bounded, then xn − Txn → 0 as n→∞.

The following corollaries of Theorem 8 will be particularly important for
our considerations in the paper.

Corollary 9. [4, Th. 6.17] Let K be a convex and compact subset of a
Banach space E and let T : K → K be a nonexpansive mapping. If the Mann
iteration process {xn} given by (2.3) satisfies assumptions (a)–(c) in Theorem
8 then {xn} converges strongly to a fixed point of T .

Corollary 10. ([4], Corollary 6.19) Let K be a closed bounded convex
subset of a real normed space E, and let T : K → K be a nonexpansive map-
ping. If I − T maps closed bounded subsets of E into closed subsets of E and
{xn} is the Mann iteration defined by (2.3), with {λn} satisfying assumptions
(b)–(c) in Theorem 8, then {xn} converges strongly to a fixed point of T in K.

3. APPROXIMATING FIXED POINTS OF PRESIĆ NONEXPANSIVE OPERATORS

Definition 11. Let (X, d) be a metric space, k a positive integer and

α1, α2, . . . , αk ∈ R+ such that
k∑
i=1
αi = α ≤ 1. A mapping f : Xk → X

satisfying

(3.1) d(f(x0, . . . , xk−1), f(x1, . . . , xk)) ≤
k∑
i=1

αid(xi−1, xi),

for all x0, . . . , xk ∈ X, is called a Presić nonexpansive operator.

Since in Definition 11 the constant α is allowed to be less or equal to 1, we
can see that the class of Presić nonexpansive operators strictly includes the
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class of Preśıc contractions appearing in Theorem 1. Also note that in the
case of a normed linear space X, condition (3.1) will be

(3.2) ‖f(x0, . . . , xk−1)− f(x1, . . . , xk)‖ ≤
k∑
i=1

αi ‖xi−1 − xi‖ ,

which, in the case k = 1, reduces to the Banach’s contractive condition (2.1),
if α < 1, and to the nonexpansiveness condition if α = 1.

The next theorem is our main result in this paper.

Theorem 12. Let C be a nonempty closed convex and bounded subset of
a uniformly Banach space E, k a positive integer, and let f : Ck → C be a
Presić nonexpansive mapping. Then f has a fixed point x∗ in C, that is, there
exists x∗ ∈ C such that f(x∗, . . . , x∗) = x∗.

Proof. Let F : C → C, be defined by F (x) = f(x, x, . . . , x), x ∈ C. For any
x, y ∈ C one has:

‖F (x)− F (y)‖ = ‖f(x, x, . . . , x)− f(y, y, . . . , y)‖
≤ ‖f(x, . . . , x)− f(x, . . . , x, y)‖+

+ ‖f(x, . . . , x, y)− f(x, . . . , x, y, y)‖+

+ . . .+ ‖f(x, y, . . . , y)− f(y, . . . , y)‖ .

By (3.2) it follows that

‖f(x, x, . . . , x)− f(x, . . . , x, y)‖ ≤ αk · ‖x− y‖ ,

‖f(x, . . . , x, y)− f(x, . . . , x, y, y)‖ ≤ αk−1 · ‖x− y‖ ,
. . .

‖f(x, y, . . . , y)− f(y, . . . , y)‖ ≤ α1 · ‖x− y‖ ,
and hence

‖F (x)− F (y)‖ ≤ αk · ‖x− y‖+ αk−1 · ‖x− y‖+ · · ·+ α1 · ‖x− y‖ .

Using the fact that
k∑
i=1
αi = α ≤ 1, we get

‖F (x)− F (y)‖ ≤ α · ‖x− y‖ ≤ ‖x− y‖ ,

which shows that F is nonexpansive. Now we apply the Browder-Göhde-Kirk
fixed point theorem (Theorem 6) to F to get the conclusion of the theorem. �

Remark 13. Note that Theorem 12 is a generalization of Theorem 1 and
that, in the particular case k = 1, Theorem 12 reduces to Theorem 6. As in
the case of Theorem 6, a Presić nonexpansive mapping f has generally more
than one fixed point. The next example gives a Presić nonexpansive mapping
f whose set of fixed points is an interval and also shows that Theorem 12 is
an effective generalization of Theorem 1. �
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Example 14. Let [0, 1] be the unit interval with the usual Euclidian norm

and let f : [0, 1]× [0, 1]→ [0, 1] be given by f(x, y) =
x+ y

2
, for all x, y ∈ [0, 1].

Then: a) f is Presić nonexpansive b) f is not a Presić contraction. �

Proof. a) In this case (k = 2), the Presić nonexpansive condition (3.2) reads
as follows: there exist α1, α2 ∈ R+ with α1 + α2 = α ≤ 1 such that for all
x0, x1, x2 ∈ [0, 1]:

(3.3) |f(x0, x1)− f(x1, x2)| ≤ α1 |x0 − x1|+ α2 |x1 − x2| .
By the definition of f , (3.3) becomes∣∣x0−x2

2

∣∣ ≤ α1 |x0 − x1|+ α2 |x1 − x2| ,

which obviously holds for α1 = α2 =
1

2
, in view of the triangle inequality.

b) The Presić contraction condition (1.1) will be in this case: there exist
α1, α2 ∈ R+ with α1 + α2 < 1 such that for all x0, x1, x2 ∈ [0, 1]:

(3.4) |f(x0, x1)− f(x1, x2)| ≤ α1 |x0 − x1|+ α2 |x1 − x2| .
We shall prove now that we can find a triple x0, x1, x2 ∈ [0, 1] for which (3.4)
cannot be true under the strict inequality α1 + α2 < 1.

Indeed, let x0 = 1, x2 = 0 and x1 = x ∈ [0, 1], when condition (3.4) becomes

(3.5) 1
2 − α1 ≤ (α2 − α1)x.

We have to discuss tree cases.
Case 1. α2 − α1 > 0. Then by (3.5),

(3.6) x ≥
1
2−α1

α2−α1
.

As x ∈ [0, 1], the inequality (3.6) holds for all x only if

1
2−α1

α2−α1
≤ 0,

which implies that α1 ≥ 1
2 . Since α2 > α1, we conclude that α1 + α2 > 1,

which contradicts the contraction condition α1 + α2 < 1.
Case 2. α2 − α1 = 0. Then by (3.5) we get α1 ≥ 1

2 which shows that
α1 + α2 = 2α1 ≥ 1, which again contradicts α1 + α2 < 1.

Case 3. α2 − α1 < 0. Then by (3.5) we obtain

(3.7) x ≤
1
2−α1

α2−α1
=

α1−1
2

α1−α2
.

Having in view the fact that x ∈ [0, 1], the inequality (3.7) holds for all x only
if

α1−1
2

α1−α2
≥ 1,

which implies α2 ≥ 1
2 . Since α1 > α2, we obtain that α1 + α2 > 1, a contra-

diction. Therefore f is not a Presić contraction.
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An indirect proof of part b) easily follows by Theorem 1 and the fact that
Fix (f) = [0, 1]. �

Theorem 12 ensures merely the existence of a fixed point of f . We can fur-
ther obtain a method for approximating the fixed point of Presić nonexpansive
mappings f , as in the next two theorems.

Theorem 15. Let C be a convex and compact subset of a Banach space E,
k a positive integer, and let f : Ck → C be a Presić nonexpansive mapping. If
the sequence {λn} satisfies assumptions (b)–(c) in Theorem 8, then the Mann
type iteration process {xn} defined by x0 ∈ C and

(3.8) xn+1 = (1− λn)xn + λnf(xn, xn, . . . , xn), n = 0, 1, 2, . . .

converges strongly to a fixed point of f , that is, to a point x∗ ∈ C for which
f(x∗, . . . , x∗) = x∗.

Proof. We use the same arguments as in the proof of Theorem 12 to show
that the mapping F : C → C given by F (x) = f(x, x, . . . , x), x ∈ C is nonex-
pansive. Then apply Corollary 9 to get the conclusion. �

Theorem 16. Let E be a real normed space, C a closed bounded convex
subset of E, k a positive integer, and let f : Ck → C be a Presić nonexpansive
mapping. If T given by T (x) = x− f(x, x, . . . , x) maps closed bounded subsets
of E into closed subsets of E and {xn} is the Mann iteration defined by (3.8),
with {λn} satisfying assumptions (b)–(c) in Theorem 8, then {xn} converges
strongly to a fixed point of f in C.

Proof. We use similar arguments to those in the proof of Theorem 12 to
show that the mapping F : C → C given by F (x) = f(x, x, . . . , x), x ∈ C is
nonexpansive. Then apply Corollary 10 to get the conclusion. �

4. CONCLUSIONS AND AN OPEN PROBLEM

Note that in the proof of Theorem 12 we basically used Theorem 6. Due to
this fact Theorem 12 is, strictly speacking, not a generalization of Theorem 6,
but we can give a direct proof of the former which actually follows the main
steps of the latter.

It was shown, see Theorem 1 and 2 as well as the related results in [5],
[13]-[16], that if f is Presić contraction or a Presić-Kannan contraction and so
on, then a k-step iterative method {xn}n≥0 defined by x0, . . . , xk−1 ∈ X and

xn = f(xn−k, xn−k+1, . . . , xn−1), n ≥ k,
can be used to approximate the unique solution x∗ of the equation x =
f(x, . . . , x).

On the other hand, the Mann type iteration process {xn} given by (3.8),
that is

xn+1 = (1− λn)xn + λnf(xn, xn, . . . , xn), n = 0, 1, 2, . . .
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used in Theorems 15 and 16 to approximate a solution x∗ of the equation
x = f(x, . . . , x) for Presić nonexpansive mappings f , is a one step iterative
method.

The following question then naturally arises: is it still possible to approxi-
mate the fixed points in Theorems 12, 15 and 16, by means of a k-step iterative
method of the form

xn = (1− λn)xp + λnf(xn−k, xn−k+1, . . . , xn−1), n ≥ k,

where n− 1 ≤ p ≤ n− k ?
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