EXTENSIONS OF SEMI-HÖLDER REAL VALUED FUNCTIONS ON A QUASI–METRIC SPACE

COSTICA MUSTĂŢA

Abstract. In this note the semi-Hölder real valued functions on a quasi–metric (asymmetric metric) space are defined. An extension theorem for such functions and some consequences are presented.

Keywords. Semi-Hölder functions, extensions.

1. PRELIMINARIES

Let X be a non-empty set. A function $d : X \times X \to [0, \infty)$ is called a quasi–metric on X [9] (see also [1]) if the following conditions hold:

AM1) $d(x, y) = d(y, x) = 0 \iff x = y$
AM2) $d(x, z) \leq d(x, y) + d(y, z)$, for all $x, y, z \in X$.

When X is non-empty set and d a quasi–metric on X, the pair (X, d) is called a quasi–metric space.

The function $\overline{d} : X \times X \to [0, \infty)$ defined by $\overline{d}(x, y) = d(y, x)$ for all $x, y \in X$ is also a quasi–metric on X, called the conjugate quasi–metric of d.

Obviously, the function $d^*(x, y) = \max\{d(x, y), \overline{d}(x, y)\}$ is a metric on X. Each quasi–metric d on X induces a topology $\tau(d)$, which has as a base the family of balls (forward open balls [4]).

\begin{equation}
B^+(x, \varepsilon) : \{y \in X : d(x, y) < \varepsilon\}, \ x \in X, \ \varepsilon > 0.
\end{equation}

This topology is called the forward topology of X ([4], [1]) and is denoted also by τ_+.

The topology induced by the quasi–metric \overline{d} is called the backward topology and is denoted by τ_-.

The topology τ_+ is a T_0 topology. If the condition AM1) is replaced by the condition

AM0) $d(x, y) \geq 0$ and $d(x, y) = 0$, for all $x, y \in X$

then the topology τ_+ is a T_1 topology.

*Institutul de Calcul “T. Popoviciu”, Cluj-Napoca, Romania, e-mail: cmustata2001@yahoo.com, cmustata@ictp.acad.ro.
Let \((X, d)\) be quasi-metric space. A sequence \((x_k)_{k \geq 1}\) \(d\)-converge to \(x_0 \in X\), respectively \(\overline{d}\)-converge to \(x_0 \in X\), iff
\[
\lim_{k \to \infty} d(x_0, x_k) = 0, \quad \text{respectively} \\
\lim_{k \to \infty} \overline{d}(x_0, x_k) = \lim_{k \to \infty} d(x_k, x_0) = 0.
\]
A set \(K \subset X\) is called \(d\)-compact if every open cover of \(K\) with respect to the topology \(\tau_+\) has a finite subcover. We say that \(K\) is \(d\)-sequentially compact if every sequence in \(K\) has a \(d\)-convergent subsequence with limit in \(K\) (Definition 4.1 in [1]).

Finally, the set \(Y\) in \((X, d)\) is called \((d, \overline{d})\)-sequentially compact if every sequence \((y_n)_{n \geq 1}\) in \(Y\) has a subsequence \((y_{n_k})_{k \geq 1}\) \(d\)-convergent to \(u \in Y\) and \(d\)-convergent to \(v \in Y\). By Lemma 3.1 in [1] if the topology of \(X\) is \(T_1\), i.e. \(d\) verifies the axioms AM0) and AM2), it follows that \(u = v\).

The following definition of a \(d\)-semi-Hölder function (of exponent \(\alpha \in (0, 1)\)) is inspired by the definition of semi-Lipschitz function in [9].

Definition 1. Let \(Y\) be a non-empty subset of a quasi-metric space \((X, d)\), and \(\alpha \in (0, 1)\) arbitrarily chosen, but fixed. A function \(f : Y \to \mathbb{R}\) is called \(d\)-semi-Hölder (of exponent \(\alpha\)) if there exists \(L = L(f, Y) \geq 0\) (named a \(d\)-semi-Hölder constant for \(f\)) such that
\[
f(x) - f(y) \leq Ld^{\alpha}(x, y),
\]
for all \(x, y \in Y\).

The smallest \(d\)-semi-Hölder constant for \(f\), verifying (1.3), is denoted by \(\|f\|_{\alpha, Y}\) and
\[
\|f\|_{\alpha, Y} = \sup \left\{ \frac{(f(x) - f(y))d^{\alpha}(x, y)}{d(x, y)} : d(x, y) > 0, \quad x, y \in Y \right\}.
\]
This means that \(\|f\|_{\alpha, Y} = \inf \{L \geq 0 : L\) verifying (1.3)\}.

The set of all \(d\)-semi-Hölder function \(f : Y \to \mathbb{R}\) is denoted by \(\Lambda_\alpha(Y)\), i.e.
\[
\Lambda_\alpha(Y) := \{f : Y \to \mathbb{R}, \text{ } f \text{ is } d\text{-semi-Hölder of exponent } \alpha\}.
\]
This set is a cone in the linear space \(\mathbb{R}^Y\) of all functions \(f : Y \to \mathbb{R}\), i.e. \(\Lambda_\alpha(Y)\) is closed with respect to pointwise operations of multiplication with nonnegative real numbers of a function in \(\Lambda_\alpha(Y)\), and of addition of two functions in \(\Lambda_\alpha(Y)\).

The functional \(\|\cdot\|_{\alpha, Y} : \Lambda_\alpha(Y) \to [0, \infty)\) is nonnegative and sublinear, and the pair \((\Lambda_\alpha(Y), \|\cdot\|_{\alpha, Y})\) is called the asymmetric normed cone of \(d\)-semi Hölder functions on \(Y\) (compare with [10]).

The cone \((\Lambda_\alpha(Y), \|\cdot\|_{\alpha, Y})\) is different from the cone of \(d\)-semi-Lipschitz function \((\alpha = 1)\) considered in [9]. For example, if one considers \(Y = [0, 1]\) \(d(x, y) = |x - y|\) and \(f : [0, 1] \to \mathbb{R}, f(x) = x \sin \frac{x}{2}, x \in (0, 1]; f(0) = 0\), then it is known that \(f \in \Lambda_\alpha(X, d)\) if and only if \(\alpha \in (0, 1/2]\) (see [14], Problem 153) and in this case \(\|f\|_{\alpha, Y} \leq \{1 + 2 \ln(1 + 2\pi) + 2\pi\}^{1/2}\).
2. EXTENSIONS OF d-SEMI-HÖLDER FUNCTIONS

Let (X, d) be a quasi–metric space, $Y \subset X$ and $f \in \Lambda_\alpha(Y)$. A function $F \in \Lambda_\alpha(X)$ is called an extension of f (preserving the semi-Hölder constant $L(f, Y)$ if

\[(2.1) \quad F|_Y = f \text{ and } L(F, X) = L(f, Y)\]

The existence of extension in $\Lambda_\alpha(X)$ for each $f \in \Lambda_\alpha(X)$ is assured by the following theorem.

Theorem 2. Let (X, d) be a quasi–metric space, $Y \subset X$ and $f \in \Lambda_\alpha(Y)$ with d-semi-Hölder constant $L(f, Y)$. Then there exist $F \in \Lambda_\alpha(X)$ such that $F|_Y = f$ and $L(F, X) = L(f, Y)$.

Proof. Let $G : X \to \mathbb{R}$ defined by

\[(2.2) \quad G(x) = \sup_{y \in Y} \{f(y) - L(f, Y) \cdot d^\alpha(y, x)\}, \quad x \in X.\]

Let $y_0 \in Y$ be a fixed element, and $x \in X$. For every $y \in Y$,

\[
f(y) - L(f, Y) \cdot d^\alpha(y, x) = f(y) - f(y_0) - L(f, Y) \cdot d^\alpha(y, x) + f(y_0) \\
\leq L(f, Y)[d^\alpha(y, y_0) - L(f, Y) \cdot d^\alpha(y, x)] + f(y_0) \\
= f(y_0) + L(f, Y)[d^\alpha(y, y_0) - d^\alpha(y, x)] \\
\leq f(y_0) + L(f, Y) \cdot d^\alpha(x, y_0).
\]

Then it follows that the set

\[
\{f(y) - L(f, Y) \cdot d^\alpha(y, x) : y \in Y\}
\]

is bounded from above, and $G(x)$ exists for every $x \in X$. By the definition of $G(x)$, for every $y \in Y$

\[
G(x) \geq f(y) - L(f, Y) \cdot d^\alpha(y, x), \quad x \in X,
\]

and for $x = y$ one obtains

\[
G(y) \geq f(y).
\]

On the other hand, for $y \in Y$ and every $y' \in Y$,

\[
f(y') - f(y) \leq L(f, Y) \cdot d^\alpha(y', y).
\]

It follows

\[
f(y') - L(f, Y) \cdot d^\alpha(y', y) \leq f(y),
\]

and taking the supremum with respect to $y' \in Y$ one obtains

\[
G(y) \leq f(y), \quad y \in Y.
\]

Consequently $G|_Y = f$.

Now, let $u, v \in X$ and $\varepsilon > 0$. Choosing $y \in Y$ such that

\[
G(u) \leq f(y) - L(f, Y) \cdot d^\alpha(y, u) + \varepsilon,
\]

and
it follows
\[G(u) - G(v) \leq f(y) - L(f, Y) d^a(y, u) + \varepsilon - f(y) + L(f, Y) d^a(y, v) \]
\[= L(f, Y) [d^a(y, v) - d^a(y, u)] + \varepsilon \]
\[\leq L(f, Y) d^a(u, v) + \varepsilon. \]
Because \(\varepsilon > 0 \) is arbitrarily chosen, one obtains:
\[G(u) - G(v) \leq L(f, Y) d^a(u, v), \]
for \(u, v \in X \), i.e. \(G \in \Lambda_\alpha(X) \). Moreover \(L(G, X) \leq L(f, Y) \). Because \(G|_Y = f \) one obtains also
\[L(f, Y) = L(G|_Y, Y) \leq L(G, X) \]
and consequently, \(L(f, Y) = L(G, X) \). \(\square \)

Remark 3. Observe that the function
\[
F(x) = \inf_{y \in Y} \{ f(y) + L(f, Y) d^a(x, y) \}, \ x \in X.
\]
is another extension of \(f \in \Lambda_\alpha(f, Y) \).
Moreover, if \(H \) is any extension of \(f \), i.e. \(H|_Y = f \) and \(L(H, X) = L(f, Y) \) then
\[
G(x) \leq H(x) \leq F(x), \ x \in X
\]
where \(G \) is defined by (2.2) and \(F \) is defined by (2.3).
From (2.4) it follows that \(G \) is the minimal extension of \(f \), and \(F \) is the maximal extension of \(f \). \(\square \)

Indeed let \(H \) an extension of \(f \in \Lambda_\alpha(Y) \). Then, for arbitrary \(x \in X \) and \(y \in Y \) we have
\[H(x) - H(y) \leq L(f, Y) d^a(x, y) \]
implying
\[H(x) \leq H(y) + L(f, Y) d^a(x, y) \]
\[= f(y) + L(f, y) d^a(x, y) \]
Taking the infimum with respect to \(y \in Y \) one obtain
\[H(x) \leq F(x), \ x \in X \]
Analogously,
\[H(y) - H(x) \leq L(f, Y) d^a(y, x) \]
implies
\[f(y) - L(f, Y) d^a(y, x) \geq H(x), \]
and taking the supremum with respect to \(y \in Y \) one obtain
\[G(x) \geq H(x), \ x \in X. \]
It follows (2.4).
Remark 4. For $f \in \Lambda_\alpha(Y)$ denote by $\mathcal{E}(f)$ the (non-empty) set of all extensions of f i.e.

$$\mathcal{E}(f) := \{H \in \Lambda_\alpha(X) : H|_Y = f \text{ and } L(H, X) = L(f, Y)\}$$

Obviously, $\mathcal{E}(f)$ is a convex subset of the cone $\Lambda_\alpha(X)$.

Remark 5. Let $f \in \Lambda_\alpha(Y)$ and let $\|f\|_{\alpha,Y}$ be the smallest d-semi-Hölder constant for f on Y (see (2.5)). Then the functions G and F defined by (2.2) and (2.3), where $L(f, Y) = \|f\|_{\alpha,Y}$ are extensions for f, preserving the constant $\|f\|_{\alpha,Y}$.

Consider a fixed element $y_0 \in Y$, and let

$$\Lambda_{\alpha,0}(Y) := \{f \in \Lambda_\alpha(Y) : f(y_0) = 0\}.$$ \hspace{1cm} (2.6)

Then the functional $\|\cdot\|_{\alpha,Y} : \Lambda_{\alpha,0}(Y) \to [0, \infty)$ defined by

$$\|f\|_{\alpha,Y} = \sup\{\frac{|f(x)-f(y)|}{d(x, y)} : d(x, y) > 0; x, y \in Y\}$$ \hspace{1cm} (2.7)

is a quasi-norm on $\Lambda_{\alpha,0}(Y)$, i.e. the following properties hold:

a) $\|f\|_{\alpha,Y} \geq 0$; $f = 0$ iff $f \in \Lambda_{\alpha,0}(Y)$ and $\|f\|_{\alpha,Y} = \|\!-\!f\|_{\alpha,Y} = 0$, $f \in \Lambda_{\alpha,0}(Y)$;

b) $\|af\|_{\alpha,Y} = a \|f\|_{\alpha,Y}$ for every $f \in \Lambda_{\alpha,0}(Y)$ and $a \geq 0$;

c) $\|f + g\|_{\alpha,Y} \leq \|f\|_{\alpha,Y} + \|g\|_{\alpha,Y}$ for all $f, g \in \Lambda_{\alpha,0}(Y)$.

Remark 6. Let $f \in \Lambda_\alpha(X)$ and $Y_1 \subset Y_2 \subset X$. Suppose that $q \geq \|f\|_{\alpha,X}$ and let

$$G_1(x) = \sup\{f(y) - q d^\alpha(y, x)\}, \quad x \in X,$$

$$G_2(x) = \sup\{f(y) - q d^\alpha(x, y)\}, \quad x \in X$$

Then $G_1(x) \leq G_2(x) \leq f(x)$, for all $x \in X$ and $G_1|_{Y_1} = G_2|_{Y_1} = f|_{Y_1}$.

Also, if

$$F_1(x) = \inf\{f(y) + q d^\alpha(y, x)\}, \quad x \in X$$

and

$$F_2(x) = \inf\{f(y) + q d^\alpha(x, y)\}, \quad x \in X$$

then

$$F_1(x) \geq F_2(x) \geq f(x), \text{ for all } x \in X$$

and

$$F_1|_{Y_1} = F_2|_{Y_1} = f|_{Y_1}.$$ \hspace{1cm} (2.8)

Consequently, if $(Y_n)_{n \geq 1}$ is a sequence in 2^X such that $Y_1 \subset Y_2 \subset \ldots \subset Y_n \subset \ldots$, $f \in \Lambda_{\alpha,0}(X)$ and $q \geq \|f\|_{\alpha,X}$ then the sequences $(G_n)_{n \geq 1}$ and $(F_n)_{n \geq 1}$, where

$$G_n(x) = \sup\{f(y) - q d^\alpha(y, x)\}, \quad x \in X$$

and

$$F_n(x) = \inf\{f(y) + q d^\alpha(y, x)\}, \quad x \in X$$

for all $n \geq 1$. \hspace{1cm} (2.8)
and
\[F_n(x) = \inf_{y \in Y_n} \{ f(y) + qd^\alpha(x, y) \}, \quad x \in X \]
are monotonically increasing, respectively decreasing, \(G_n, F_n \in \Lambda_\alpha(X) \),
\(n = 1, 2, \ldots, \) and \(G_n(x) \leq f(x) \leq F_n(x) \), for all \(x \in X \).

Because, for every \(y \in Y_n \)
\[f(y) - qd^\alpha(y, x) \leq G_n(x) \leq F_n(x) \leq f(y) + qd^\alpha(x, y) \]
it follows that,
\[F_n(x) - G_n(x) \leq q \inf_{y \in Y_n} [d^\alpha(x, y) + d^\alpha(y, x)]. \]
Taking the infimum with respect to \(y \in Y_n \) one obtains:
\begin{equation}
(2.8) \quad F_n(x) - G_n(x) \leq q \inf_{y \in Y_n} [d^\alpha(x, y) + d^\alpha(y, x)].
\end{equation}
for every \(x \in X \).

If \(Y_n \) is \(d^s \)-dense in \(X \), where \(d^s(x, y) = d(x, y) \lor d(y, x) \) for every \(x, y \in X \) then, by (2.8) it follows that \(F_n(x) = G_n(x), \quad x \in X \). Consequently, a function \(f \in \Lambda_\alpha(Y) \) where \(Y \) is \(d^s \)-dense in \(X \) has an unique extension \(F \in \Lambda_\alpha(X) \).

REFERENCES