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Rev. Anal. Numér. Théor. Approx., vol. 38 (2009) no. 2, pp. 170–176
ictp.acad.ro/jnaat

KOROVKIN-TYPE CONVERGENCE RESULTS

FOR MULTIVARIATE SHEPARD FORMULAE
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Abstract. We present a new convergence proof for classic multivariate Shepard
formulae within the context of Korovkin-type convergence results for positive
operators on spaces of continuous real valued functions.
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1. INTRODUCTION

In his work on ‘A two-dimensional interpolation function for irregularly-
spaced data’ [10], Shepard introduced a new two-dimensional interpolation
technique for scattered data. In the last decades, there were introduced many
multivariate generalizations by various authors, as for instance moving least
squares interpolation due to Lancaster and Šalkauskas [6]. Farwig provides in
[4] a general treatment of the ‘Rate of Convergence of Shepard’s Global Inter-
polation Formula’, even in a multivariate setting. In his work he avoids the
use of the fact that interpolation operators of Shepard-type are positive. Op-
erators of that kind are liable to the famous convergence results as introduced
by Bohman [2] and Korovkin [5] in the early 1950s. In this work we prove the
convergence of the multivariate Shepard interpolants within the positive op-
erator context. However, we do not intend to improve existing error estimates
for multivariate Shepard formulae as given by Farwig and other authors.

2. MULTIVARIATE SHEPARD FORMULAE

One of the keynotes for multivariate Shepard formulae is the construction
of arbitrarily smooth interpolating functions for a given set of multivariate
scattered data, where it is assumed that the data depend on certain function
values. Within this paper we consider the following setting: let f ∈ C(X;R)
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be a continuous function mapping the compact subset X ⊂ Rd into the set of
real numbers and consider a set

Bn = {x1, x2, . . . , xc(n)−1, xc(n)} ⊂ X,

where c(n) = cardBn, which is said to be an interpolation node distribution.
For even α > 1 let us denote wα : Rd\{0} → R>0 the function defined by

wα(x) = ||x||−α
2
,

and for an arbitrary index i ∈ {1, . . . , c(n)} let ϕ
(i)
α : Rd → R be given by

ϕ(i)
α (x) = wα(x−xi)

c(n)∑
j=1

wα(x− xj)
.(1)

This definition implies the following properties:

Proposition 1. The (cardinal basis) functions ϕ
(1)
α , . . . , ϕ

(c(n))
α as intro-

duced in equation (1) are arbitrarily smooth, i.e. ϕ
(i)
α ∈ C∞(X;R), and enjoy

the properties

(a) ϕ
(i)
α (xj) = δij , i, j = 1, . . . , c(n),

(b) 0 ≤ ϕ(i)
α (x) ≤ 1 for every x ∈ X,

(c) ϕ
(i)
α (x) = 0 if and only if x = xj, i 6= j,

(d)
∑c(n)

i=1 ϕ
(i)
α (x) = 1 for every x ∈ X,

(e) Dµϕ
(i)
α (x)

∣∣
x=xj

= 0 for 1 ≤ j ≤ c(n) and multi-indices |µ| = 1.

Proof. Consider Lancaster and Šalkauskas [6], as well as Sonar [11] for (e)
within a univariate treatment, respectively. �

The functions introduced in (1) allow the construction of an interpolant to
f with cardinal basis representation.

Definition 2. Let α > 1 be fixed and let Bn ⊂ X be an interpolation node
distribution. The function SαBn

f : C(X;R)→ C∞(X;R) defined by

SαBn
f(x) =

c(n)∑
i=1

f(xi)ϕ
(i)
α (x), x ∈ X,

is called multivariate Shepard interpolant to f . The functions ϕ
(i)
α are given

by equation (1).

Note that for fixed x ∈ X the value SαBn
f(x) can be interpreted as the

minimizer of the weighted least squares problem

c(n)∑
j=1

(
a(x)− f(xj)

)2
wα(x− xj)→ min!,
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consider [9] for details. Furthermore, with regard to (a) in Proposition 1, SαBn
f

is equipped with the desired interpolation property

SαBn
f(xi) = f(xi), 1 ≤ i ≤ c(n),

and it is stable in the sense

min
1≤i≤c(n)

f(xi) ≤ SαBn
f(x) ≤ max

1≤i≤c(n)
f(xi), x ∈ X.

The smoothness of SαBn
f is inherited from the functions ϕ

(i)
α .

At this point, we have to bring up the question under which conditions SαBn
f

converges uniformly to f as n→∞, where this limit has to be interpreted in
a sense corresponding to the following definition.

Definition 3. Let n0 ∈ N and let Bn0 = {x1, . . . , xc(n0)} ⊂ K ⊂ Rd be
an interpolation node distribution. Then, the sequence (Bn)n≥n0 is said to be
a monotone sequence of interpolation node distributions in X, provided that
there exists η : N→ R such that lim

n→∞
η(n) = 0 and

(a) Bn ⊂ Bn+1 ⊂ K for all n ≥ n0,

(b) c(n) r(Bn)d+1 ≤ η(n) for n ≥ n0, where

r(Bn) = inf
{
δ > 0

∣∣∣ ∀x ∈ X : card(Bδ(x) ∩Bn) ≥ 1
}
,

holds true with Bδ(x) = {y ∈ X | ||x− y||2 < δ}.

Below we give an example for a monotone sequence of interpolation node
distributions according to the last definition.

Example 4. Let X =
{

(x1, . . . , xd)
T ∈ Rd

∣∣ 0 ≤ xi ≤ 1 for 1 ≤ i ≤ d
}

and
assume that Bn is defined by

Bn = X ∩
{ z
n
∈ Qd

∣∣∣ z ∈ Zd
}
, n = 2k, k ≥ 0.

Then, we have c(n) = cardBn = (n+ 1)d and

r(Bn) = cd
1
n ,(2)

where cd :=
√
d/2, that means

r(Bn)d+1c(n) = (cd)
d+1 1

nd+1 (n+ 1)d = (cd)
d+1 1

n

(
1 + 1

n

)d ≤ (cd)
d+1 2d

n︸ ︷︷ ︸
=:η(n)

,

i.e. (Bn)n≥1 is a monotone sequence of interpolation node distributions in X.
The identity (2) follows from some reflections on basic geometry since the
Euclidean norm ν of Xn’s center of mass, where

Xn =
{

(x1, . . . , xd)
T ∈ Rd

∣∣ 0 ≤ xi ≤ 1/n for 1 ≤ i ≤ d
}
,

is ν =
√
d

2n . �
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In the subsequent considerations we will show that the convergence question
can be answered with the concept of monotone sequences of interpolation node
distributions and, moreover, it suffices to prove the uniform convergence of
SαBn

for the 2d+ 1 monomial functions

eji : x 7→ x(i)j , 1 ≤ i ≤ d, 0 ≤ j ≤ 2,(3)

where we use the notation x =
(
x(1), . . . , x(d)

)T ∈ Rd. Note that e0
k = e0

l for
1 ≤ k, l ≤ d.

This fact can be concluded directly from a multivariate extension of some
famous results due to Bohman and Korovkin.

Theorem 5 (Bohman, Korovkin). Let (Pn)n≥n0 be a sequence of positive
and linear operators mapping C(X;R) into itself, such that

lim
n→∞

||Pneji − e
j
i ||∞ = 0, 1 ≤ i ≤ d, 0 ≤ j ≤ 2,(4)

where eji denotes the monomial function as given in equation (3). Then,

lim
n→∞

||Pnf − f ||∞ = 0

holds true for arbitrary f ∈ C(X;R). Moreover, for fixed n ∈ N, one has

|Pnf(x)− f(x)| ≤ |f(x)| |e0(x)− Pne0(x)|

+
(
Pne0(x) +

√
Pne0(x)

)
ω
(
f, γn(x)

)
,

where γ2
n(x) = Pn

(∑d
i=1(· − x(i))2

)
(x) and ω(f, ·) denotes the usual smooth-

ness module

ω(f, h) = sup
0≤||t||2≤h

sup
x∈X
||f(x+ t)− f(x)||2 .

Proof. Korovkin [5], Lorentz [7], DeVore [3], Altomare and Campiti [1]. �

In this setting the positivity of an operator P : C(X;R)→ C(X;R) means
that f ≥ 0 implies Pf ≥ 0, while monotonicity means that f ≤ g implies
Pf ≤ Pg. Positivity and monotonicity are equivalent notions in the case
of linear operators. Moreover, it is quite easy to realize that the Shepard
interpolation operator SαBn

is positive and linear. Therefore it suffices to prove

the uniform convergence of SαBn
for the 2d+1 monomial functions eji , 1 ≤ i ≤ d,

0 ≤ j ≤ 2, in order to prove the convergence for arbitrary continuous f , under
consideration of Theorem 5.

3. PROOF OF CONVERGENCE

As in the foregoing section, let eji denote the monomial function as given
by (3) and consider f ∈ C(X;R). As from now, we will use the abbreviation
|x| = ||x||2 for x ∈ Rd. The proof of convergence is divided into three steps.
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(I) The Shepard interpolation operator reproduces the functions e0
i ≡ 1

exactly, that means
SαBn

e0
i = e0

i

holds true for 1 ≤ i ≤ d and arbitrary underlying interpolation node
distribution Bn under consideration of Proposition 1.

(II) Suppose an interpolation node distribution Bn = {x1, . . . , xc(n)} and
consider the case j = 1. Then, for arbitrary 1 ≤ i ≤ d, we have∣∣SαBn

e1
i (x)− e1

i (x)
∣∣ ≤

≤
c(n)∑
j=1

|xj(i)− x(i)| |x−xj |−α∑c(n)
l=1 |x−xl|−α

≤
c(n)∑
j=1

|xj − x| |x−xj |−α∑c(n)
l=1 |x−xl|−α

=
∑
j

|x−xj |<r(Bn)d+1

|xj − x| |x−xj |−α∑c(n)
l=1 |x−xl|−α

+
∑
j

|x−xj |≥r(Bn)d+1

|xj − x| |x−xj |−α∑c(n)
l=1 |x−xl|−α

≤ r(Bn)d+1 +
∑
j

|x−xj |≥r(Bn)d+1

|xj − x| |x−xj |−α∑c(n)
l=1 |x−xl|−α

= r(Bn)d+1 + c(n)O
(
r(Bn)d+1

)
= O

(
r(Bn)d+1

)
+O

(
η(n)

)
,

in view of

|x− xj |−α+1 = O
(
r(Bn)(−α+1)(d+1)

)
and
c(n)∑
l=1

|x− xl|−α ≥
∑
l

|x−xl|<r(Bn)d+1

|x− xl|−α ≥ r(Bn)−α(d+1).

(III) Finally, let denote M = max
x∈K
|x| and consider the case j = 2. Then,

for arbitrary 1 ≤ i ≤ d, we conclude∣∣SαBn
e2
i (x)− e2

i (x)
∣∣ ≤ c(n)∑

j=1

∣∣(xj(i))2 − x(i)2
∣∣ |x−xj |−α∑c(n)

l=1 |x−xl|−α

≤ 2M

c(n)∑
j=1

|xj − x| |x−xj |−α∑c(n)
l=1 |x−xl|−α

= O
(
r(Bn)d+1

)
+O

(
η(n)

)
,
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in agreement with (II).

Consequently, the uniform convergence of SαBn
f towards f as n → ∞ fol-

lows from Theorem 5 by setting Pn = SαBn
. The required convergence (4) is

established by virtue of

sup
x∈X

∣∣eji (x)− SαBn
eji (x)

∣∣ = O
(
r(Bn)d+1

)
+O

(
η(n)

)
−→ 0,

as n→∞.
We conclude this section with a brief summary of the results given above.

Theorem 6. Let f ∈ C(X;R) and denote SαBn
f , n ≥ n0, the appropriate

Shepard interpolant as given in Definition 2 corresponding to a monotone se-
quence of interpolation node distributions (Bn)n≥n0 as introduced in Definition
3. Then, SαBn

f converges uniformly to f as n→∞,

lim
n→∞

||SαBn
− f ||∞ = 0,

and

|SαBn
f(x)− f(x)| ≤ 2ω(f, γn(x))

for arbitrary x ∈ X, where γ2
n(x) = SαBn

(∑d
i=1(· − x(i))2

)
(x). �

4. CONCLUDING REMARKS

This work presents a new convergence proof for multivariate Shepard for-
mulae which rests upon a classical convergence statement for positive oper-
ators on spaces of continuous functions due to Bohman and Korovkin. The
achieved results extend quantitative and qualitative convergence statements
due to Farwig [4] for multivariate Shepard formulae within the case α < d,
which couldn’t be handled with the methods of Farwig’s approach. To the
authors knowledge there is no comparable convergence proof for multivariate
Shepard formulae within this positive operator context.

Shepard interpolation suffers from the flat spot phenomenon, that means
DµSαBn

f(xi) = 0 for 1 ≤ i ≤ c(n) and multi-indices |µ| = 1. That is why
it is not the right choice in a context of derivative approximations. However,
generalized multivariate interpolation concepts, such as moving least squares
interpolation, which is applicable also for derivative approximations, can be
analyzed theoretically, even within the context of simultaneous approximation,
with methods in the style of this paper. We encourage to consider [8].
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