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EXTENDING THE COLLAGE THEOREM

TO CONTRACTIVE LIKE OPERATORS
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Abstract. We generalize the classical “collage” theorem, due to Barnsley, to
contractive like operators.
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1. INTRODUCTION

Let X be a real Banach space, T : X → X be an operator. The following
result of Barnsley, see [1], becomes “a classic”.

Theorem 1. (Collage Theorem) Let x ∈ X be given and T : X → X a
contraction with contraction factor L ∈ (0, 1) , (i.e. ‖Tx− Ty‖ ≤ L ‖x− y‖ ,
∀ x, y ∈ X), and fixed point x∗. Then

‖x− x∗‖ ≤ 1
1−L ‖x− Tx‖ .

In fractal-based applications, T produces a union of shrunken copies of x,
i.e. “a collage” of itself. The term ‖x− Tx‖ is referred as “collage distance”.
Such “collages” are sufficient to be taken in finite number, in order to have a
good approximation of an denoised image; fact which is very useful in Image
Compression (both Analysis and Synthesis of an image). Kunze et all., see
[5], [6], [7], were able to apply the Collage Theorem to inverse problems in
ODE , that is to reconstruct the field of an ODE, from a given “target”
(trajectory). Our aim is to generalize the above Collage result for a larger
operatorial class than contractions. Recently, similar results were introduced
for other operatorial classes, see [11] and [12].

The following operatorial class, satisfying (1) , was introduced in [4]. Since
they failed to named it, we shall do so here. It is just a convention.

Definition 2. The operator T is contractive-like, or CL for short, if there
exist a constant q ∈ (0, 1) and a monotone increasing and continuous function
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ψ : [0,∞)→ [0,∞) with ψ (0) = 0 such that for each x, y ∈ X,

(1) ‖Tx− Ty‖ ≤ q ‖x− y‖+ ψ(‖x− Tx‖).

Let F (T ) denote the fixed point set with respect to X for the map T. Sup-
pose that x∗ ∈ F (T ). The following operators are called Zamfirescu operators,
see [13] or [10].

Definition 3. [13] The operator T : X → X satisfies condition Z (or is a
quasi-contraction) if and only if there exist the real numbers a, b, c satisfying
0 < a < 1, 0 < b < 1/2, 0 < c < 1/2 such that for each pair x, y in X, at least
one condition is true

(z1) ‖Tx− Ty‖ ≤ a ‖x− y‖ ,
(z2) ‖Tx− Ty‖ ≤ b (‖x− Tx‖+ ‖y − Ty‖) ,
(z3) ‖Tx− Ty‖ ≤ c (‖x− Ty‖+ ‖y − Tx‖) .

It has been shown in [2] (see also [3]) that conditions (z1)− (z3) lead to

(2) ‖Tx− Ty‖ ≤ δ ‖x− y‖+ 2δ ‖x− Tx‖ , ∀x, y ∈ D,

where

δ := max
{
a, b

1−b ,
c

1−c

}
.

Set

q := δ, ψ (a) := 2δa

to obtain (1) . Thus, relation (1) generalizes (2) . In [4] was introduced this
more general class of operators satisfying (1).

Remark 4. Set ψ (t) = 2t to see that a CL operators need not have a fixed
point, as pointed in [8] or [9]. Therefore, we shall suppose implicitly throughout
this paper that all CL operators involved have a fixed point. �

A typical inverse problem is the following:

Problem 5. For given ε > 0 and a “target” x̄, find Tε ∈ CL such that∥∥x̄− x∗Tε∥∥ < ε, where x∗Tε = Tε
(
x∗Tε
)

is the unique fixed point of the CL
mapping Tε.

Randomly selecting various maps in CL, finding their fixed points and com-
puting the distance from our target is an extremely tedious procedure. Con-
sider now the following problem which we shall fit in our framework and which
is very useful for practitioners, see [5].

Problem 6. Let x̄ ∈ X be a target and let δ > 0 be given. Find Tδ ∈ CL,
such that ‖x̄− Tδx̄‖ < δ.

In other words, instead of searching for CL maps whose fixed points lie
close to target x̄, we search for CL maps that send x̄ close to itself.
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2. MAIN RESULTS

We shall give a lower bound to approximation error in terms of the collage
error.

Proposition 7. Let X be a real Banach space and T a CL map with
contraction factor q ∈ (0, 1) and fixed point x∗ ∈ X. Then for any x ∈ X,

1
1+q ‖x− Tx‖ ≤ ‖x

∗ − x‖ .

Proof. For any x ∈ X satisfying x = x∗, the above inequality holds. If
x 6= x∗, ∀x ∈ X, then one obtains

‖Tx− x‖ ≤ ‖x∗ − x‖+ ‖x∗ − Tx‖
= ‖x∗ − x‖+ ‖Tx∗ − Tx‖
≤ ‖x∗ − x‖+ q ‖x∗ − x‖+ ψ (‖x∗ − Tx∗‖)
≤ (1 + q) ‖x∗ − x‖ .

From which one gets the conclusion. �

Theorem 8. (Collage theorem for contractive-like maps) Let X be a real
Banach space and T a CL map with contraction factor q ∈ (0, 1) and fixed
point x∗ ∈ X. Then for any x ∈ X,

‖x∗ − x‖ ≤ 1
1−q ‖x− Tx‖ .

Proof. The CL condition assures that the fixed point x∗ is unique. If x = x∗,
the above inequality holds. If x 6= x∗, ∀x ∈ X, then one obtains

‖x∗ − x‖ ≤ ‖Tx∗ − Tx‖+ ‖Tx− x‖
≤ q ‖x∗ − x‖+ ψ (‖x∗ − Tx∗‖) + ‖Tx− x‖
= q ‖x∗ − x‖+ ‖Tx− x‖ .

From which one gets the conclusion. �

Remark 9. To summarize, we have the following bounds
1

1+q ‖x− Tx‖ ≤ ‖x
∗ − x‖ ≤ 1

1−q ‖x− Tx‖ .
�

The above “Collage Theorem” allows us to reformulate the inverse Problem
5 in the particular and more convenient Problem 6.

Theorem 10. If Problem 6 has a solution, then Problem 5 has a solution
too.

Proof. Let ε > 0 and x̄ ∈ X be given. For δ := (1− q) ε, let Tδ ∈ CL be
such that ‖x̄− Tδx̄‖ < δ. If x∗Tδ is the unique fixed point of the CL mapping
Tδ, then, by Theorem 8,∥∥x̄− x∗Tδ∥∥ ≤ 1

1−q ‖x̄− Tδx̄‖ ≤
1

1−q δ = ε.

�
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Note that shrinking the distance between two operators, one of them from
CL, reduces the distance between their fixed points.

Proposition 11. Let X be a real Banach space and T1 ∈ CL with con-
traction factor q1 ∈ (0, 1) and T2 : X → X a map such that x∗1, x

∗
2 ∈ X are

distinct fixed points for T1 and T2. Then,

‖x∗1 − x∗2‖ ≤ 1
1−q1 sup

x∈X
‖T1x− T2x‖ .

Proof. Using (1) one obtains

‖x∗1 − x∗2‖ = ‖T1x
∗
1 − T2x

∗
2‖ ≤ ‖T1x

∗
1 − T1x

∗
2‖+ ‖T1x

∗
2 − T2x

∗
2‖

≤ q1 ‖x∗1 − x∗2‖+ ψ (‖x∗1 − T1x
∗
1‖) + sup

x∈X
‖T1x− T2x‖ ,

from which we get the conclusion. �

Theorem 12. Let X be a real Banach space, T : X → X, x̄ = T x̄ and
suppose there exists T1 ∈ CL with contraction factor q, such that

sup
x∈X
‖T1x− Tx‖ ≤ ε.

Then
‖x̄− T1x̄‖ ≤ 1+q

1−qε.

Proof. Let x∗ = T1x
∗, and by use of Proposition 11 we obtain

‖x̄− x∗‖ ≤ 1
1−q

(
sup
x∈X
‖T1x− Tx‖

)
.

Thus,

‖x̄− T1x̄‖ ≤ ‖x̄− x∗‖+ ‖x∗ − T1x̄‖
≤ ‖x̄− x∗‖+ ‖T1x

∗ − T1x̄‖
≤ ‖x̄− x∗‖+ q ‖x̄− x∗‖+ ψ (‖x∗ − T1x

∗‖)
= (1 + q) ‖x̄− x∗‖

≤ 1+q
1−q

(
sup
x∈X
‖T1x− Tx‖

)
≤ 1+q

1−qε.

�
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