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ON THE COMPOSITE BERNSTEIN TYPE QUADRATURE FORMULA

DAN BARBOSU* and DAN MICLAUS*

Abstract. Considering a given function f € C[0, 1], the interval [0, 1] is divided

in m equally spaced subintervals [% ﬁ], k = 1,m. On each of such type

’m
of interval the Bernstein approximation formula is applied and a corresponding

Bernstein type quadrature formula is obtained. Making the sum of mentioned
quadrature formulas, the composite Bernstein type quadrature formula is ob-
tained.
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1. PRELIMINARIES

Let N be the set of positive integers and No = N U {0}.
The operators By, : C([0,1]) — C(]0, 1]) given by

(L1) (Bu)@) = 3 pns(a)f (2).
j=0

where p,, ; are the fundamental Bernstein’s polynomials defined by
(1.2) Pj(x) = (§)2? (1 —2)",

for any = € [0,1], any j € {0,1,...,n} and any n € N, are called Bernstein
operators and were first introduced in [3]. The approximation properties of
the Bernstein operator were intensively studied in [1], [4], [5].

For any f € C[0,1], any x € [0,1] and any n € N, the following equality

(1.3) f(z) = (Buf)(x) + (Ruf)(x)

is called the Bernstein approximation formula, where R, is the remainder
operator associated to the Bernstein operator B,,, i.e. R, f is the remainder
term of the approximation formula . Regarding the remainder term of
(L.3), Tiberiu Popoviciu [4] established the following:
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THEOREM 1.1. For any f € C[0, 1] there exist the distinct points &1,&2,&3 €
[0,1] such that, for any x € [0,1], the remainder term of (L.3)) can be repre-
sented under the form

(1.4) (Ruf)(z) = =2 [e) &5, €3; f].

In ([L.4)) the brackets denote the divided difference of function f with respect
the distinct knots &1, &9,&3. It is well known the following estimation of the
remainder term of (1.3), (see [7]).

THEOREM 1.2. Suppose that f € C2[0,1]. The following inequality

(1.5) |(Bnf)(@)] < 252 My [ f]
holds, where
(1.6) My[f] = Joax | ()]

The inequality follows directly from , applying the mean value
theorem for divided differences and it is attributed to D. D. Stancu.

In the following we suppose that f € C?[0,1]. Starting with the Bernstein
approximation formula , in [7] the following Bernstein quadrature formula

1 n .
(17) | raar = > st (4) + ols

is obtained, where

(1.8) Aj=—g, (V)j=0,n
and
(1.9) |Rulf]] < 135 Malf].

The focus of the present paper is to construct the composite Bernstein type
quadrature formula. For this aim, the interval [0,1] will be divided in m
equally spaced subintervals [%, %}, k = 1,m. On each of such type of
interval, the Bernstein quadrature formula will be applied. Next, adding
the mentioned quadrature formulas, the desired Bernstein type quadrature

formula on [0, 1] will be obtained.

2. MAIN RESULTS
We start with two auxiliary results.

LEMMA 2.1. Suppose that a,b € R, a < b and f € Cla,b]. Then, the
Bernstein polynomial associated to the function f is defined by

n

(21)  (Buf)@) = glgm (D@ —a) (b—2)" I f (a+5%52) .
§=0
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Proof. 1t is easy to observe that the correspondence ¢t — 7= transform the
interval [a,b] in the interval [0,1]. Taking (1.1]), (1.2) and the above remark
into account, yields ({2.1]). O

LEMMA 2.2. Suppose that a,b € R, a < b and f € C?[a,b]. Then, the
remainder term of the Bernstein approzimation formula on [a,b] verifies the
nequality

(2.2) (B f)(@)] < St M ),
where Ms[f] is defined at (1.6).

Proof. One applies in a way similar to the case of relation ([1.5]), taking the

transformation ¢t — ﬁ into account. O

In what follows, let us to consider the interval [0, 1] divided in the equally

spaced subintervals [% —] k = 1,m. In each interval [ = ] k=1,m,

’m
one considers the distinct knots z; = &2 m"“ i=0,n. Applymg Lemma 2.1.,
yields the following Bernstein type polynomial

n

(23)  Buxh)(@)=m" Y (1) (x— EL) (& —a)" f (Ruont)

1=0

The corresponding Bernstein type approximation formula on the interval

[%, E] k =1, m, becomes

(2.4) f(@) = (Burf)(@) + (Bnif) ().

If f € C?[0,1], the remainder term of verifies the inequality
_EelN(E

2.5) (Rapn) @) < Em) =) g

THEOREM 2.3. If f € C?[0,1], the following Bernstein type quadrature for-
mula

k

(2.6) et " f dm—ZAmf (Anontt) 4 Ryf]

holds, for any k =1, m, where

(2.7) A= sy, (V) i=0.n
and
(2.8) |Ri[f]] < 1o Ma[f]-
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Proof. Integrating (2.4) on [%,%], k = 1,m, and taking (2.3) into ac-
count, yields

A= () [ o= 50 (5= o) da

=1(m /1 t'(1 —¢)""dt.
0

The last integral is the Euler function of first kind B(i + 1,n — i + 1). Using
the well known properties of Euler function of first kind, it follows

A = % (?)B(l +tln—itl)= %i!(gii)! Z('g-_ll))" = m(nl—l-l)'

For the remainder term, taking (2.5)) into account, we get

k
(2.9 R <L [0 (=50 (5 - 0) do
Because . "
Jo o=t (5 - ) do = s
and from one arriVZs to the desired inequality . O

THEOREM 2.4. For any f € C?[0,1], the following composite Bernstein type
quadrature formula

1 m
(2.10) /0 f(x)dz = m(n1+1) Z : f (%) + Ra[f]

holds, where
(2.11) |Ralf]] < 5, Mo[f].

Proof. Adding the Bernstein type quadrature formulas (2.6 for & = 1, m,
we get the following composite Bernstein type quadrature formula

1 m o n m
01 [ e = ot 35307 () + S i)
k=1

k=1 i=0

m
Denoting R,[f] = > Ri[f] and taking (2.8) into account, yields
k=1

IA

(2.13) |R[A1] < D IRKIA € o Malf] - m = 735 Mo f].
k=1
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REMARK 2.5. It is easy to see that we get the same result for the remain-
der term of the composite Bernstein type quadrature formula as the result
obtained by D. D. Stancu in [7], for the Bernstein quadrature formula. O

COROLLARY 2.6. For any f € C?[0,1] and any m € N, the following equality

n—oo

m n 1
(2.14) lim mZZf(%) :/0 f(x)dz

k=1 i=0
holds.
Proof. From (12.11]) follows nlg]go R,[f] = 0 and then, taking (2.10) into
account one arrives to (2.14)). O
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