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ON THE COMPOSITE BERNSTEIN TYPE QUADRATURE FORMULA

DAN BĂRBOSU∗ and DAN MICLĂUŞ∗

Abstract. Considering a given function f ∈ C[0, 1], the interval [0, 1] is divided
in m equally spaced subintervals

[
k−1
m

, k
m

]
, k = 1,m. On each of such type

of interval the Bernstein approximation formula is applied and a corresponding
Bernstein type quadrature formula is obtained. Making the sum of mentioned
quadrature formulas, the composite Bernstein type quadrature formula is ob-
tained.
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1. PRELIMINARIES

Let N be the set of positive integers and N0 = N ∪ {0}.
The operators Bn : C([0, 1])→ C([0, 1]) given by

(1.1) (Bnf)(x) =
n∑

j=0

pn,j(x)f
(

j
n

)
,

where pn,j are the fundamental Bernstein’s polynomials defined by

(1.2) pn,j(x) =
(
n
j

)
xj(1− x)n−j ,

for any x ∈ [0, 1], any j ∈ {0, 1, . . . , n} and any n ∈ N, are called Bernstein
operators and were first introduced in [3]. The approximation properties of
the Bernstein operator were intensively studied in [1], [4], [5].

For any f ∈ C[0, 1], any x ∈ [0, 1] and any n ∈ N, the following equality

(1.3) f(x) = (Bnf)(x) + (Rnf)(x)

is called the Bernstein approximation formula, where Rn is the remainder
operator associated to the Bernstein operator Bn, i.e. Rnf is the remainder
term of the approximation formula (1.3). Regarding the remainder term of
(1.3), Tiberiu Popoviciu [4] established the following:
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Theorem 1.1. For any f ∈ C[0, 1] there exist the distinct points ξ1, ξ2, ξ3 ∈
[0, 1] such that, for any x ∈ [0, 1], the remainder term of (1.3) can be repre-
sented under the form

(1.4) (Rnf)(x) = −x(1−x)
n [ξ1, ξ2, ξ3; f ].

In (1.4) the brackets denote the divided difference of function f with respect
the distinct knots ξ1, ξ2, ξ3. It is well known the following estimation of the
remainder term of (1.3), (see [7]).

Theorem 1.2. Suppose that f ∈ C2[0, 1]. The following inequality

(1.5) |(Rnf)(x)| ≤ x(1−x)
2n M2[f ]

holds, where

(1.6) M2[f ] = max
x∈[0,1]

|f ′′(x)|.

The inequality (1.5) follows directly from (1.4), applying the mean value
theorem for divided differences and it is attributed to D. D. Stancu.

In the following we suppose that f ∈ C2[0, 1]. Starting with the Bernstein
approximation formula (1.3), in [7] the following Bernstein quadrature formula

(1.7)

∫ 1

0
f(x)dx =

n∑
j=0

Ajf
(

j
n

)
+Rn[f ]

is obtained, where

(1.8) Aj = 1
n+1 , (∀) j = 0, n

and

(1.9) |Rn[f ]| ≤ 1
12nM2[f ].

The focus of the present paper is to construct the composite Bernstein type
quadrature formula. For this aim, the interval [0, 1] will be divided in m
equally spaced subintervals

[
k−1
m , k

m

]
, k = 1,m. On each of such type of

interval, the Bernstein quadrature formula (1.7) will be applied. Next, adding
the mentioned quadrature formulas, the desired Bernstein type quadrature
formula on [0, 1] will be obtained.

2. MAIN RESULTS

We start with two auxiliary results.

Lemma 2.1. Suppose that a, b ∈ R, a < b and f ∈ C[a, b]. Then, the
Bernstein polynomial associated to the function f is defined by

(2.1) (Bnf)(x) = 1
(b−a)n

n∑
j=0

(
n
j

)
(x− a)j(b− x)n−jf

(
a+ j b−an

)
.
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Proof. It is easy to observe that the correspondence t→ x−a
b−a transform the

interval [a, b] in the interval [0, 1]. Taking (1.1), (1.2) and the above remark
into account, yields (2.1). �

Lemma 2.2. Suppose that a, b ∈ R, a < b and f ∈ C2[a, b]. Then, the
remainder term of the Bernstein approximation formula on [a, b] verifies the
inequality

(2.2) |(Rnf)(x)| ≤ (x−a)(b−x)
2n(b−a)2

M2[f ],

where M2[f ] is defined at (1.6).

Proof. One applies in a way similar to the case of relation (1.5), taking the
transformation t→ x−a

b−a into account. �

In what follows, let us to consider the interval [0, 1] divided in the equally
spaced subintervals

[
k−1
m , k

m

]
, k = 1,m. In each interval

[
k−1
m , k

m

]
, k = 1,m,

one considers the distinct knots xi = kn−n+i
mn , i = 0, n. Applying Lemma 2.1.,

yields the following Bernstein type polynomial

(2.3) (Bn,kf)(x) = mn
n∑

i=0

(
n
i

) (
x− k−1

m

)i ( k
m − x

)n−i
f
(
kn−n+i

mn

)
.

The corresponding Bernstein type approximation formula on the interval[
k−1
m , k

m

]
, k = 1,m, becomes

(2.4) f(x) = (Bn,kf)(x) + (Rn,kf)(x).

If f ∈ C2[0, 1], the remainder term of (2.4) verifies the inequality

(2.5) |(Rn,kf)(x)| ≤
(
x−k−1

m

)(
k
m−x

)
2n m2M2[f ].

Theorem 2.3. If f ∈ C2[0, 1], the following Bernstein type quadrature for-
mula

(2.6)

∫ k
m

k−1
m

f(x)dx =

n∑
i=0

Ai,kf
(
kn−n+i

mn

)
+Rk[f ]

holds, for any k = 1,m, where

(2.7) Ai,k = 1
m(n+1) , (∀) i = 0, n

and

(2.8) |Rk[f ]| ≤ 1
12mnM2[f ].
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Proof. Integrating (2.4) on
[
k−1
m , k

m

]
, k = 1,m, and taking (2.3) into ac-

count, yields

Ai,k = mn
(
n
i

) ∫ k
m

k−1
m

(
x− k−1

m

)i ( k
m − x

)n−i
dx

= mn
(
n
i

) ∫ 1

0

(
t
m

)i [ 1
m(1− t)

]n−i 1
mdt

= 1
m

(
n
i

) ∫ 1

0
ti(1− t)n−idt.

The last integral is the Euler function of first kind B(i+ 1, n− i+ 1). Using
the well known properties of Euler function of first kind, it follows

Ai,k = 1
m

(
n
i

)
B(i+ 1, n− i+ 1) = 1

m
n!

i!(n−i)!
i!(n−i)!
(n+1)! = 1

m(n+1) .

For the remainder term, taking (2.5) into account, we get

(2.9) |Rk[f ]| ≤M2[f ]m
2

2n

∫ k
m

k−1
m

(
x− k−1

m

) (
k
m − x

)
dx.

Because ∫ k
m

k−1
m

(
x− k−1

m

) (
k
m − x

)
dx = 1

6m3

and from (2.9) one arrives to the desired inequality (2.8). �

Theorem 2.4. For any f ∈ C2[0, 1], the following composite Bernstein type
quadrature formula

(2.10)

∫ 1

0
f(x)dx = 1

m(n+1)

m∑
k=1

n∑
i=0

f
(
kn−n+i

mn

)
+Rn[f ]

holds, where

(2.11) |Rn[f ]| ≤ 1
2nM2[f ].

Proof. Adding the Bernstein type quadrature formulas (2.6) for k = 1,m,
we get the following composite Bernstein type quadrature formula

(2.12)

∫ 1

0
f(x)dx = 1

m(n+1)

m∑
k=1

n∑
i=0

f
(
kn−n+i

mn

)
+

m∑
k=1

Rk[f ].

Denoting Rn[f ] =
m∑
k=1

Rk[f ] and taking (2.8) into account, yields

(2.13) |Rn[f ]| ≤
m∑
k=1

|Rk[f ]| ≤ 1
12mnM2[f ] ·m = 1

12nM2[f ].

�
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Remark 2.5. It is easy to see that we get the same result for the remain-
der term of the composite Bernstein type quadrature formula as the result
obtained by D. D. Stancu in [7], for the Bernstein quadrature formula. �

Corollary 2.6. For any f ∈ C2[0, 1] and any m ∈ N, the following equality

(2.14) lim
n→∞

1
m(n+1)

m∑
k=1

n∑
i=0

f
(
kn−n+i

mn

)
=

∫ 1

0
f(x)dx

holds.

Proof. From (2.11) follows lim
n→∞

Rn[f ] = 0 and then, taking (2.10) into

account one arrives to (2.14). �
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[2] Bărbosu, D., A Schurer-Stancu type quadrature formula, Carpathian J. Math., 23, nos.
1–2, pp. 27–31, 2007.
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