Rev. Anal. Numér. Théor. Approx., vol. 39 (2010) no. 1, pp. 8-20

ictp.acad.ro/jnaat

THE KANTOROVICH FORM OF SOME EXTENSIONS FOR SZÁSZ-MIRAKJAN OPERATORS

DAN BĂRBOSU* ${ }^{*}$ OVIDIU T. POP ${ }^{\dagger}$ and DAN MICLĂUŞ*

Abstract

Recently, C. Mortici defined a class of linear and positive operators depending on a certain function φ. These operators generalize the well known Szász-Mirakjan operators. A convergence theorem for the defined sequence by the mentioned operators was given. Other interesting approximation properties of these generalized Szász-Mirakjan operators and also their bivariate form were obtained by D. Bărbosu, O. T. Pop and D. Miclăuş. In the present paper we are dealing with the Kantorovich form of the generalized Szász-Mirakjan operators. We construct the Kantorovich associated operators and then we establish a convergence theorem for the defined operators. The degree of approximation is expressed in terms of the modulus of continuity. Next, we construct the bivariate and respectively the GBS corresponding operators and we establish some of their approximation properties.

MSC 2000. 41A10, 41A25, 41A36.
Keywords. Szász-Mirakjan operators, Kantorovich operators, BohmanKorovkin theorem, modulus of continuity, Shisha-Mond theorem, degree of approximation, parametric extension, Korovkin theorem for the bivariate case, bivariate modulus of continuity, Bögel continuity, Korovkin theorem for Bcontinuous functions, mixed modulus of smoothness, Shisha-Mond theorem for the B-continuous functions.

1. INTRODUCTION

Let \mathbb{N} be the set of positive integers and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.
Considering an analytic function $\varphi: \mathbb{R} \rightarrow] 0,+\infty[$, C. Mortici [19] defined the operators

$$
\varphi S_{n}: C^{2}\left(\left[0,+\infty[) \rightarrow C^{\infty}([0,+\infty[),\right.\right.
$$

given by

$$
\begin{equation*}
\left(\varphi S_{n} f\right)(x)=\frac{1}{\varphi(n x)} \sum_{k=0}^{\infty} \frac{\varphi^{(k)}(0)}{k!}(n x)^{k} f\left(\frac{k}{n}\right), \tag{1.1}
\end{equation*}
$$

[^0]for any $x \in[0,+\infty[$ and any $n \in \mathbb{N}$.
The operators (1.1) are called the φ-Szász-Mirakjan operators, because in the case when $\varphi(y)=\mathrm{e}^{y}$, they become the classical Mirakjan-Favard-Szász operators [2], [14], [18], [23], [25]. Some nice and interesting approximation properties of operators (1.1) were obtained by C. Mortici [19] and by D. Bărbosu, O. T. Pop and D. Miclăuş [8], [20].

Remark 1.1. Similar generalization of this type are the operators defined and studied by Jakimovski and Leviatan [15] or the operators defined by Baskakov in 1957 (see, e.g., the book [2], subsection 5.3.11, p. 344, where they are attributed to Mastroianni).

Remark 1.2. The classical Mirakjan-Favard-Szász operators S_{n} : $C_{2}([0,+\infty[) \rightarrow C([0,+\infty[)$ are defined by

$$
\left(S_{n} f\right)(x)=e^{-n x} \sum_{k=0}^{\infty} \frac{(n x)^{k}}{k!} f\left(\frac{k}{n}\right)
$$

where

$$
C_{2}\left(\left[0,+\infty[):=\left\{f \in C \left(\left[0,+\infty[): \lim _{x \rightarrow \infty} \frac{f(x)}{1+x^{2}} \text { exists and is finite }\right\} .\right.\right.\right.\right.
$$

In what follows, we shall use the classical definition of Mirakjan-Favard-Szász operators, i.e. $f \in C_{2}([0,+\infty[)$.

The main goal of the present paper is to construct the Kantorovich type operators, associated to the φ-Szász-Mirakjan operators (1.1).

Using the method of parametric extensions [7], [12], the bivariate $\varphi_{1} \varphi_{2}{ }^{-}$ Szász-Mirakjan-Katorovich operators are constructed and some of their approximation properties are established. The last section is devoted to the construction of the associated GBS $\varphi_{1} \varphi_{2}$-Szász-Mirakjan-Kantorovich operators and to study some of their approximation properties.

2. φ-SZÁSZ-MIRAKJAN-KATOROVICH OPERATORS

Let $\varphi: \mathbb{R} \rightarrow] 0,+\infty[$ be an analytic function. Following the idea of L. V. Kantorovich [16] we define the operators

$$
\varphi K_{n}: C_{2}([0,+\infty[) \rightarrow C([0,+\infty[),
$$

given by

$$
\begin{equation*}
\left(\varphi K_{n} f\right)(x)=\frac{n}{\varphi(n x)} \sum_{k=0}^{\infty} \frac{\varphi^{(k)}(0)}{k!}(n x)^{k} \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(t) \mathrm{d} t, \tag{2.1}
\end{equation*}
$$

for any $x \in[0,+\infty[$ and $n \in \mathbb{N}$.
The operators (2.1) will be called the φ-Szász-Mirakjan-Kantorovich operators, because in the case when $\varphi(y)=\mathrm{e}^{y}$, they reduce to the classical Szász-Mirakajan-Kantorovich operators [1], [17].

Remark 2.1. The operators (2.1) are linear and positive.
In order to obtain the convergence of the sequence $\left(\varphi K_{n}\right)_{n \in \mathbb{N}}$ we need the following:

Lemma 2.2. Let $e_{j}(x)=x^{j}, j=0,1,2$ be the test functions. The φ-Szász-Mirakjan-Kantorovich operators satisfy the following relations:
i) $\left(\varphi K_{n} e_{0}\right)(x)=1$,
ii) $\left(\varphi K_{n} e_{1}\right)(x)=\frac{\varphi^{(1)}(n x)}{\varphi(n x)} x+\frac{1}{2 n}$,
iii) $\left(\varphi K_{n} e_{2}\right)(x)=\frac{\varphi^{(2)}(n x)}{\varphi(n x)} x^{2}+\frac{2}{n} \frac{\varphi^{(1)}(n x)}{\varphi(n x)} x+\frac{1}{3 n^{2}}$.

Proof. Taking that the function φ is analytic into account, it follows

$$
\sum_{k=0}^{\infty} \frac{\varphi^{(k)}(0)}{k!} y^{k}=\varphi(y)
$$

and next, by differentiation

$$
\sum_{k=1}^{\infty} \frac{\varphi^{(k)}(0)}{(k-1)!} y^{k-1}=\varphi^{(1)}(y), \quad \sum_{k=2}^{\infty} \frac{\varphi^{(k)}(0)}{(k-2)!} y^{k-2}=\varphi^{(2)}(y) .
$$

For the test functions e_{0}, e_{1}, e_{2}, the following identities

$$
\int_{\frac{k}{n}}^{\frac{k+1}{n}} e_{0}(t) \mathrm{d} t=\frac{1}{n}, \quad \int_{\frac{k}{n}}^{\frac{k+1}{n}} e_{1}(t) \mathrm{d} t=\frac{2 k+1}{2 n^{2}}, \quad \int_{\frac{k}{n}}^{\frac{k+1}{n}} e_{2}(t) \mathrm{d} t=\frac{3 k^{2}+3 k+1}{3 n^{3}}
$$

hold.
Recall that, the images of test functions by the operators φ-Szász-Mirakjan [19] are

$$
\begin{align*}
& \left(\varphi S_{n} e_{0}\right)(x)=1 \\
& \left(\varphi S_{n} e_{1}\right)(x)=\frac{\varphi^{(1)}(n x)}{\varphi(n x)} x \tag{2.2}\\
& \left(\varphi S_{n} e_{2}\right)(x)=\frac{\varphi^{(2)}(n x)}{\varphi(n x)} x^{2}+\frac{1}{n} \frac{\varphi^{(1)}(n x)}{\varphi(n x)} x,
\end{align*}
$$

then

$$
\begin{aligned}
\left(\varphi K_{n} e_{0}\right)(x) & =\frac{n}{\varphi(n x)} \sum_{k=0}^{\infty} \frac{\varphi^{(k)}(0)}{k!}(n x)^{k} \int_{\frac{k}{n}}^{\frac{k+1}{n}} e_{0}(t) \mathrm{d} t \\
& =\frac{n}{\varphi(n x)} \sum_{k=0}^{\infty} \frac{\varphi^{(k)}(0)}{k!}(n x)^{k} \frac{1}{n} \\
& =\frac{1}{\varphi(n x)} \sum_{k=0}^{\infty} \frac{\varphi^{(k)}(0)}{k!}(n x)^{k} \\
& =\left(\varphi S_{n} e_{0}\right)(x)=1 .
\end{aligned}
$$

$$
\begin{aligned}
&\left(\varphi K_{n} e_{1}\right)(x)= \frac{n}{\varphi(n x)} \sum_{k=0}^{\infty} \frac{\varphi^{(k)}(0)}{k!}(n x)^{k} \int_{\frac{k}{n}}^{\frac{k+1}{n}} e_{1}(t) \mathrm{d} t \\
&= \frac{n}{\varphi(n x)} \sum_{k=0}^{\infty} \frac{\varphi^{(k)}(0)}{k!}(n x)^{k} \frac{2 k+1}{2 n^{2}} \\
&= \frac{1}{\varphi(n x)} \sum_{k=0}^{\infty} \frac{\varphi^{(k)}(0)}{k!}(n x)^{k} \frac{k}{n}+\frac{1}{2 n} \frac{1}{\varphi(n x)} \sum_{k=0}^{\infty} \frac{\varphi^{(k)}(0)}{k!}(n x)^{k} \\
&=\left(\varphi S_{n} e_{1}\right)(x)+\frac{1}{2 n}\left(\varphi S_{n} e_{0}\right)(x) \\
&=\frac{\varphi^{(1)}(n x)}{\varphi(n x)} x+\frac{1}{2 n} \cdot \\
&\left(\varphi K_{n} e_{2}\right)(x)= \frac{n}{\varphi(n x)} \sum_{k=0}^{\infty} \frac{\varphi^{(k)}(0)}{k!}(n x)^{k} \int_{\frac{k}{n}}^{\frac{k+1}{n}} e_{2}(t) \mathrm{d} t \\
&= \frac{1}{n^{2}} \frac{1}{\varphi(n x)} \sum_{k=0}^{\infty} \frac{\varphi^{(k)}(0)}{k!}(n x)^{k}\left(k^{2}+k+\frac{1}{3}\right) \\
&= \frac{1}{n^{2}}\left(\frac{n^{2}}{\varphi(n x)} \sum_{k=0}^{\infty} \frac{\varphi^{(k)}(0)}{k!}(n x)^{k} \frac{k^{2}}{n^{2}}\right. \\
&=\left.\quad+\frac{n}{\varphi(n x)} \sum_{k=0}^{\infty} \frac{\varphi^{(2)}(n x)}{\varphi(n x)} x^{2}+\frac{2}{n} \frac{\varphi^{(1)}(n x)}{\varphi(n x)} x+\frac{1}{3 n^{2}}(n x)^{k} \frac{k}{n}+\frac{1}{3 \varphi(n x)} \sum_{k=0}^{\infty} \frac{\varphi^{(k)}(0)}{k!}(n x)^{k}\right)
\end{aligned}
$$

Applying Lemma 2.2. we shall prove the following:
THEOREM 2.3. Let $\varphi: \mathbb{R} \rightarrow] 0,+\infty[$ be an analytic function having the properties

$$
\begin{equation*}
\lim _{y \rightarrow \infty} \frac{\varphi^{(1)}(y)}{\varphi(y)}=1, \quad \lim _{y \rightarrow \infty} \frac{\varphi^{(2)}(y)}{\varphi(y)}=1 \tag{2.3}
\end{equation*}
$$

Then, for any function $f \in C_{2}([0,+\infty[)$ and any $x \in[a, b]$, it holds

$$
\lim _{n \rightarrow \infty}\left(\varphi K_{n} f\right)(x)=f(x)
$$

uniformly on $[a, b]$, where $[a, b] \subset[0,+\infty[$ is a compact interval.
Proof. Applying the Lemma 2.2. and the hypothesis (2.3), it follows

$$
\lim _{n \rightarrow \infty}\left(\varphi K_{n} e_{1}\right)(x)=\lim _{n \rightarrow \infty}\left(\frac{\varphi^{(1)}(n x)}{\varphi(n x)} x+\frac{1}{2 n}\right)=x
$$

and

$$
\lim _{n \rightarrow \infty}\left(\varphi K_{n} e_{2}\right)(x)=\lim _{n \rightarrow \infty}\left(\frac{\varphi^{(2)}(n x)}{\varphi(n x)} x^{2}+\frac{2}{n} \frac{\varphi^{(1)}(n x)}{\varphi(n x)} x+\frac{1}{3 n^{2}}\right)=x^{2}
$$

uniformly on any compact interval $[a, b] \subset[0,+\infty[$.
Next, from the well known Bohman-Korovkin Theorem one arrives to the desired result.

In order to obtain the degree of approximation of $f \in C_{2}([0,+\infty[)$, by means of the φ-Szász-Mirakjan-Kantorovich operators, let us to recalling some known results, concerning the modulus of continuity.

Let $I \subset \mathbb{R}$ be an interval, $C(I)$ be the set of real-valued functions continuous on $I, B(I)$ be the set of real-valued functions bounded on I and $C_{B}(I)$ be the set of real-valued functions continuous, bounded on I.

Definition 2.4. Let $f \in C_{B}(I)$ be given. The function $\omega_{1}:[0,+\infty[\rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\omega_{1}(f ; \delta):=\sup \{|f(x+h)-f(x)|: x, x+h \in I, 0<h \leq \delta\} \tag{2.4}
\end{equation*}
$$

is called the modulus of continuity (the first modulus of smoothness) of the function f.

Remark 2.5. Its properties can be found in the monograph [1].
In 1968, O. Shisha and B. Mond [21] established the following:
Theorem 2.6. [1] Let $L: C(I) \rightarrow B(I)$ be a linear positive operator and let the function φ be defined by

$$
\varphi_{x}(t)=|t-x|, \quad(x, t) \in I \times I .
$$

If $f \in C_{B}(I)$, then for any $x \in I$ and $\delta>0$ the following

$$
\begin{align*}
|(L f)(x)-f(x)| \leq & |f(x)|\left|\left(L e_{0}\right)(x)-1\right| \tag{2.5}\\
& +\left(\left(L e_{0}\right)(x)+\delta^{-1} \sqrt{\left(L e_{0}\right)(x)\left(L \varphi_{x}^{2}\right)(x)}\right) \omega_{1}(f ; \delta)
\end{align*}
$$

holds.
For obtaining the degree of approximation of $f \in C_{2}([0,+\infty[)$, on any compact interval $[a, b] \subset[0,+\infty[$, by means of the φ-Szász-Mirakjan-Kantorovich operators we need the following:

Lemma 2.7. Let the function φ_{x} be defined by $\varphi_{x}=|t-x|,(x, t) \in[a, b] \times$ $[a, b]$. The operators (2.1) verify the relation

$$
\begin{equation*}
\left(\varphi K_{n} \varphi_{x}^{2}\right)(x)=\left(\frac{\varphi^{(2)}(n x)}{\varphi(n x)}-2 \frac{\varphi^{(1)}(n x)}{\varphi(n x)}+1\right) x^{2}+\frac{1}{n}\left(2 \frac{\varphi^{(1)}(n x)}{\varphi(n x)}-1\right) x+\frac{1}{3 n^{2}} . \tag{2.6}
\end{equation*}
$$

Proof. Because the operators φ-Szász-Mirakjan-Kantorovich are linear, then taking the definition of φ_{x} into account, we get

$$
\left(\varphi K_{n} \varphi_{x}\right)(x)=\left(\varphi K_{n} e_{2}\right)(x)-2 x\left(\varphi K_{n} e_{1}\right)(x)+x^{2}\left(\varphi K_{n} e_{0}\right)(x) .
$$

Next, one applies Lemma 2.2.

In the following, we suppose that the analytic function $\varphi: \mathbb{R} \rightarrow] 0,+\infty[$ satisfy the conditions (2.3) and taking these conditions into account, it results

$$
\lim _{n \rightarrow \infty}\left(\frac{\varphi^{(2)}(n x)}{\varphi(n x)}-2 \frac{\varphi^{(1)}(n x)}{\varphi(n x)}+1\right)=0 .
$$

Then we suppose that, there exists $0<\gamma \leq 1$, so that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{\gamma}\left(\frac{\varphi^{(2)}(n x)}{\varphi(n x)}-2 \frac{\varphi^{(1)}(n x)}{\varphi(n x)}+1\right)=\beta_{2}(x), \tag{2.7}
\end{equation*}
$$

for any $x \in\left[0,+\infty\left[\right.\right.$ and where β_{2} is a function, $\beta_{2}:[0,+\infty[\rightarrow \mathbb{R}$.
Theorem 2.8. For any function $f \in C_{2}([0,+\infty[)$, any compact interval $[a, b] \subset[0,+\infty[$, any $x \in[a, b]$ and any $\delta>0$, the φ-Szász-MirakjanKantorovich operators verify the inequality

$$
\begin{equation*}
\left|\left(\varphi K_{n} f\right)(x)-f(x)\right| \leq K \omega_{1}\left(f ; \frac{b-a}{\sqrt{n^{\gamma}}}\right) \tag{2.8}
\end{equation*}
$$

where

$$
m_{2}([a, b]):=\sup _{x \in[a, b]}\left|\beta_{2}(x)\right|
$$

and

$$
K=1+\frac{1}{b-a} \sqrt{\left(m_{2}([a, b])+1\right) b^{2}+2 b+\frac{1}{3}} .
$$

Proof. The relation (2.8) yields from 2.5), if we choose $\delta=\frac{b-a}{\sqrt{n^{\gamma}}}$ and if we take the definition of limit and relation (2.7) into account.

3. THE BIVARIATE $\varphi_{1} \varphi_{2}$-SZÁSZ-MIRAKJAN-KANTOROVICH OPERATORS

Suppose that $\left.\varphi_{1}, \varphi_{2}: \mathbb{R} \rightarrow\right] 0,+\infty[$ are analytic functions. The operators

$$
\begin{aligned}
& \varphi_{1} K_{m}^{x}: C_{2,2}([0,+\infty[\times[0,+\infty[) \rightarrow C([0,+\infty[\times[0,+\infty[), \\
& \varphi_{1} K_{n}^{y}: C_{2,2}([0,+\infty[\times[0,+\infty[) \rightarrow C([0,+\infty[\times[0,+\infty[),
\end{aligned}
$$

given by

$$
\begin{align*}
& \left(\varphi_{1} K_{m}^{x} f\right)(x, y)=\frac{m}{\varphi_{1}(m x)} \sum_{k=0}^{\infty} \frac{\varphi_{1}^{(k)}(0)}{k!}(m x)^{k} \int_{\frac{k}{m}}^{\frac{k+1}{m}} f(t, y) \mathrm{d} t, \tag{3.1}\\
& \left(\varphi_{1} K_{n}^{y} f\right)(x, y)=\frac{n}{\varphi_{2}(n y)} \sum_{j=0}^{\infty} \frac{\varphi_{2}^{(j)}(0)}{j!}(n y)^{j} \int_{\frac{j}{n}}^{\frac{j+1}{n}} f(x, s) \mathrm{d} s \tag{3.2}
\end{align*}
$$

are called the parametric extensions of the φ-Szász-Mirakjan-Kantorovich operators; (for the notion of "parametric extensions" see [7], [12]).

It is immediately the result contained in the following:

Lemma 3.1. The parametric extension of the φ-Szász-Mirakjan-Kantorovich operators defined at (3.1) and (3.2) are linear and positive. They commute on $C_{2,2}\left(\left[0,+\infty\left[\times\left[0,+\infty[)\right.\right.\right.\right.$ and their product are the bivariate $\varphi_{1} \varphi_{2}$-Szász-Mirak-jan-Kantorovich operators

$$
\varphi_{1} \varphi_{2} K_{m, n}: C_{2,2}([0,+\infty[\times[0,+\infty[) \rightarrow C([0,+\infty[\times[0,+\infty[)
$$

defined by

$$
\begin{align*}
& \left(\varphi_{1} \varphi_{2} K_{m, n} f\right)(x, y)= \tag{3.3}\\
& =\frac{m}{\varphi_{1}(m x)} \frac{n}{\varphi_{2}(n y)} \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{\varphi_{1}^{(k)}(0)}{k!} \frac{\varphi_{2}^{(j)}(0)}{j!}(m x)^{k}(n y)^{j} \int_{\frac{k}{m}}^{\frac{k+1}{m}} \int_{\frac{j}{n}}^{\frac{j+1}{n}} f(t, s) \mathrm{d} t \mathrm{~d} s
\end{align*}
$$

for any $x, y \in[0,+\infty[$ and $m, n \in \mathbb{N}$.
Lemma 3.2. Let $e_{i j}(x, y)=x^{i} y^{j}, i, j \in \mathbb{N}_{0}, i+j \leq 2$ be the test functions.
The operators (3.3) verify the following identities:
i) $\left(\varphi_{1} \varphi_{2} K_{m, n} e_{0,0}\right)(x, y)=1$,
ii) $\left(\varphi_{1} \varphi_{2} K_{m, n} e_{1,0}\right)(x, y)=\frac{\varphi_{1}^{(1)}(m x)}{\varphi_{1}(m x)} x+\frac{1}{2 m}$,
iii) $\left(\varphi_{1} \varphi_{2} K_{m, n} e_{0,1}\right)(x, y)=\frac{\varphi_{2}^{(1)}(n y)}{\varphi_{2}(n y)} y+\frac{1}{2 n}$,
iv) $\left(\varphi_{1} \varphi_{2} K_{m, n} e_{2,0}\right)(x, y)=\frac{\varphi_{1}^{(2)}(m x)}{\varphi_{1}(m x)} x^{2}+\frac{2}{m} \frac{\varphi_{1}^{(1)}(m x)}{\varphi_{1}(m x)} x+\frac{1}{3 m^{2}}$,
v) $\left(\varphi_{1} \varphi_{2} K_{m, n} e_{0,2}\right)(x, y)=\frac{\varphi_{2}^{(2)}(n y)}{\varphi_{2}(n y)} y^{2}+\frac{2}{n} \frac{\varphi_{2}^{(1)}(n y)}{\varphi_{2}(n y)} y+\frac{1}{3 n^{2}}$.

Proof. One applies relation (3.3) and takes Lemma 2.2. into account.
Lemma 3.3. Let $\varphi_{x}, \varphi_{y}:[0,+\infty[\times[0,+\infty[\rightarrow \mathbb{R}$ be defined by

$$
\varphi_{x}(s, t)=|s-x|, \quad \varphi_{y}(s, t)=|t-y| .
$$

The operators (3.3) satisfy

$$
\begin{align*}
& \left(\varphi_{1} \varphi_{2} K_{m, n} \varphi_{x}^{2}\right)(x, y)= \tag{3.4}\\
& =\left(\frac{\varphi_{1}^{(2)}(m x)}{\varphi_{1}(m x)}-2 \frac{\varphi_{1}^{(1)}(m x)}{\varphi_{1}(m x)}+1\right) x^{2}+\frac{1}{m}\left(2 \frac{\varphi_{1}^{(1)}(m x)}{\varphi_{1}(m x)}-1\right) x+\frac{1}{3 m^{2}}
\end{align*}
$$

and

$$
\begin{align*}
& \left(\varphi_{1} \varphi_{2} K_{m, n} \varphi_{y}^{2}\right)(x, y)= \tag{3.5}\\
& =\left(\frac{\varphi_{2}^{(2)}(n y)}{\varphi_{2}(n y)}-2 \frac{\varphi_{2}^{(1)}(n y)}{\varphi_{2}(n y)}+1\right) y^{2}+\frac{1}{n}\left(2 \frac{\varphi_{2}^{(1)}(n y)}{\varphi_{2}(n y)}-1\right) y+\frac{1}{3 n^{2}}
\end{align*}
$$

Proof. Taking the linearity of operator (3.3) and the definitions of the functions φ_{x}, φ_{y} into account, one obtains

$$
\begin{aligned}
\left(\varphi_{1} \varphi_{2} K_{m, n} \varphi_{x}^{2}\right)(x, y)= & \left(\varphi_{1} \varphi_{2} K_{m, n} e_{2,0}\right)(x, y)-2 x\left(\varphi_{1} \varphi_{2} K_{m, n} e_{1,0}\right)(x, y) \\
& +x^{2}\left(\varphi_{1} \varphi_{2} K_{m, n} e_{0,0}\right)(x, y)
\end{aligned}
$$

$$
\begin{aligned}
\left(\varphi_{1} \varphi_{2} K_{m, n} \varphi_{y}^{2}\right)(x, y)= & \left(\varphi_{1} \varphi_{2} K_{m, n} e_{0,2}\right)(x, y)-2 y\left(\varphi_{1} \varphi_{2} K_{m, n} e_{0,1}\right)(x, y) \\
& +y^{2}\left(\varphi_{1} \varphi_{2} K_{m, n} e_{0,0}\right)(x, y)
\end{aligned}
$$

Next, applying Lemma 3.2. one arrives to (3.4) and (3.5).
Suppose now that $a_{1}, b_{1}, a_{2}, b_{2} \in \mathbb{R}$ such that $a_{1}<b_{1}, a_{2}<b_{2}$ and let $f:\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \rightarrow \mathbb{R}$ be a bounded function.

The function $\omega_{f}:[0,+\infty[\times[0,+\infty[\rightarrow \mathbb{R}$ defined by

$$
\begin{align*}
\omega_{f}\left(\delta_{1}, \delta_{2}\right)= & \sup \left\{\left|f\left(x^{\prime}, y^{\prime}\right)-f\left(x^{\prime \prime}, y^{\prime \prime}\right)\right|:\left(x^{\prime}, y^{\prime}\right),\left(x^{\prime \prime}, y^{\prime \prime}\right) \in\right. \tag{3.6}\\
& {\left.\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right],\left|x^{\prime}-x^{\prime \prime}\right| \leq \delta_{1},\left|y^{\prime}-y^{\prime \prime}\right| \leq \delta_{2}\right\} }
\end{align*}
$$

is called modulus of continuity of the bivariate function f.
Its properties are similar with the properties of the modulus of continuity for univariate functions $[3],[7]$.

It is known from [7], [24] the following analogous of Shisha-Mond Theorem for the bivariate case:

THEOREM 3.4. Let $L: C\left(\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]\right) \rightarrow B\left(\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]\right)$ be a linear positive operator. For any $f \in C\left(\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]\right)$, any $(x, y) \in\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]$ and $\delta_{1}>0, \delta_{2}>0$ the following inequality

$$
\begin{align*}
& |(L f)(x, y)-f(x, y)| \leq|f(x, y)|\left|\left(L e_{00}\right)(x, y)-1\right|+ \tag{3.7}\\
& +\left(\left(L e_{00}\right)(x, y)+\delta_{1}^{-1} \sqrt{\left(L e_{00}\right)(x, y)\left(L \varphi_{x}^{2}\right)(x, y)}+\delta_{2}^{-1} \sqrt{\left(L e_{00}\right)(x, y)\left(L \varphi_{y}^{2}\right)(x, y)}\right. \\
& +\delta_{1}^{-1} \delta_{2}^{-1} \sqrt{\left.\left(L e_{00}\right)(x, y)\left(L \varphi_{x}^{2}\right)(x, y)\left(L \varphi_{y}^{2}\right)(x, y)\right)} \omega_{f}\left(\delta_{1}, \delta_{2}\right)
\end{align*}
$$

holds.
Suppose that the analytic functions $\left.\varphi_{1}, \varphi_{2}: \mathbb{R} \rightarrow\right] 0,+\infty[$ satisfy the conditions

$$
\begin{equation*}
\lim _{y \rightarrow \infty} \frac{\varphi_{k}^{(1)}(y)}{\varphi_{k}(y)}=\lim _{y \rightarrow \infty} \frac{\varphi_{k}^{(2)}(y)}{\varphi_{k}(y)}=1 \tag{3.8}
\end{equation*}
$$

and taking relation (3.8) into account, it follows

$$
\lim _{n \rightarrow \infty}\left(\frac{\varphi_{k}^{(2)}(n x)}{\varphi_{k}(n x)}-2 \frac{\varphi_{k}^{(1)}(n x)}{\varphi_{k}(n x)}+1\right)=0
$$

for $k \in\{1,2\}$.
Then we suppose that, there exists $0<\gamma_{k} \leq 1$, so that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{\gamma_{k}}\left(\frac{\varphi_{k}^{(2)}(n x)}{\varphi_{k}(n x)}-2 \frac{\varphi_{k}^{(1)}(n x)}{\varphi_{k}(n x)}+1\right)=\beta_{2, k} \tag{3.9}
\end{equation*}
$$

for any $x \in\left[0,+\infty\left[\right.\right.$ and where $\beta_{2, k}$ are functions, $\beta_{2, k}:[0,+\infty[\rightarrow \mathbb{R}$, with $k \in\{1,2\}$.

Theorem 3.5. For any function $f \in C_{2,2}([0,+\infty[\times[0,+\infty[)$, any bivariate compact interval $\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \subset\left[0,+\infty\left[\times\left[0,+\infty\left[\right.\right.\right.\right.$, any $(x, y) \in\left[a_{1}, b_{1}\right] \times$ $\left[a_{2}, b_{2}\right]$ and $\delta_{1}>0, \delta_{2}>0$, the operators (3.3) satisfy the following inequality

$$
\begin{equation*}
\left|\left(\varphi_{1} \varphi_{2} K_{m, n} f\right)(x, y)-f(x, y)\right| \leq K \omega_{f}\left(\frac{b_{1}-a_{1}}{\sqrt{\gamma_{1}}} \frac{b_{2}-a_{2}}{\sqrt{n^{\gamma_{2}}}}\right) \tag{3.10}
\end{equation*}
$$

where

$$
\begin{equation*}
m_{2, k}\left(\left[a_{k}, b_{k}\right]\right):=\sup _{x \in\left[a_{k}, b_{k}\right]}\left|\beta_{2, k}(x)\right|, \tag{3.11}
\end{equation*}
$$

for $k \in\{1,2\}$ and

$$
\begin{align*}
K= & \left(1+\frac{1}{b_{1}-a_{1}} \sqrt{\left(m_{2,1}\left(\left[a_{1}, b_{1}\right]\right)+1\right) b_{1}^{2}+2 b_{1}+\frac{1}{3}}\right) \tag{3.12}\\
& \cdot\left(1+\frac{1}{b_{2}-a_{2}} \sqrt{\left(m_{2,2}\left(\left[a_{2}, b_{2}\right]\right)+1\right) b_{2}^{2}+2 b_{2}+\frac{1}{3}}\right) .
\end{align*}
$$

Proof. In the Theorem 3.4. one replaces L by $\varphi_{1} \varphi_{2} K_{m, n}$ and next, one takes the proof of Theorem 2.8. into account.

It is known from [7], [24] the following analogous of Bohman-Korovkin Theorem for the bivariate case:

Theorem 3.6. Let $\left(L_{m, n}\right)_{m, n \in \mathbb{N}}$ be a sequence of linear positive operators, $L_{m, n}: C\left(\left[a_{1}, b_{1}\left[\times\left[a_{2}, b_{2}[) \rightarrow C\left(\left[a_{1}, b_{1}\left[\times\left[a_{2}, b_{2}[)\right.\right.\right.\right.\right.\right.\right.\right.$ and let $e_{i j}(x, y)=x^{i} y^{j}, i, j \in$ $\mathbb{N}_{0}, i+j \leq 2$ be the test functions.

Suppose that the following relations
i) $\left(L_{m, n} e_{00}\right)(x, y)=1$,
ii) $\left(L_{m, n} e_{10}\right)(x, y)=x+u_{m, n}(x, y)$,
iii) $\left(L_{m, n} e_{01}\right)(x, y)=y+v_{m, n}(x, y)$,
iv) $\left(L_{m, n}\left(e_{20}+e_{02}\right)\right)(x, y)=x^{2}+y^{2}+w_{m, n}(x, y)$
hold, for any $(x, y) \in\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]$.
If the sequence $\left(u_{m, n}\right),\left(v_{m, n}\right)$ and $\left(w_{m, n}\right), m, n \in \mathbb{N}$ converge to zero uniformly on $\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]$, then $L_{m, n} f$ converges to f uniformly on $\left[a_{1}, b_{1}\right] \times$ $\left[a_{2}, b_{2}\right]$, for any $f \in C\left(\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]\right)$.

Theorem 3.7. Suppose that the analytic functions $\left.\varphi_{1}, \varphi_{2}: \mathbb{R} \rightarrow\right] 0,+\infty[$ satisfy the conditions (3.8).

Then, for every function $f \in C_{2,2}([0,+\infty[\times[0,+\infty[)$ it holds

$$
\lim _{m, n \rightarrow \infty}\left(\varphi_{1} \varphi_{2} K_{m, n} f\right)(x, y)=f(x, y)
$$

uniformly on any bivariate compact interval $\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \subset[0,+\infty[\times[0,+\infty[$.
Proof. Applying Lemma 3.2. and the hypothesis (3.8), it follows

$$
\begin{aligned}
& \lim _{m, n \rightarrow \infty}\left(\varphi_{1} \varphi_{2} K_{m, n} e_{10}\right)(x, y)=x, \\
& \lim _{m, n \rightarrow \infty}\left(\varphi_{1} \varphi_{2} K_{m, n} e_{01}\right)(x, y)=y
\end{aligned}
$$

and

$$
\lim _{m, n \rightarrow \infty}\left(\varphi_{1} \varphi_{2} K_{m, n}\left(e_{20}+e_{02}\right)\right)(x, y)=x^{2}+y^{2}
$$

uniformly on any bivariate compact interval $\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \subset[0,+\infty[\times[0,+\infty[$.
Next, using Theorem 3.6. one arrives to the desired result.

4. THE GBS $\varphi_{1} \varphi_{2}$-SZÁSZ-MIRAKJAN-KANTOROVICH OPERATOR

In this section we shall construct the $\varphi_{1} \varphi_{2}$-Szász-Mirakjan-Kantorovich operator associated to a B-continuous function.

A function $f: I \times J \rightarrow \mathbb{R}$ is called B-continuous function in $\left(x_{0}, y_{0}\right) \in I \times J$, if

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \Delta f\left[(x, y),\left(x_{0}, y_{0}\right)\right]=0,
$$

where

$$
\begin{equation*}
\Delta f\left[(x, y),\left(x_{0}, y_{0}\right)\right]=f(x, y)-f\left(x_{0}, y\right)-f\left(x, y_{0}\right)+f\left(x_{0}, y_{0}\right) \tag{4.1}
\end{equation*}
$$

denotes a so-called mixed difference of function f. A function $f: I \times J \rightarrow \mathbb{R}$ is called B-continuous function on $I \times J$, if it is B-continuous at any point of $I \times J$. The definition of B-continuity was introduced by K. Bögel in [10]. The function $f: I \times J \rightarrow \mathbb{R}$ is B-bounded on $I \times J$, if there exists $k>0$ so that

$$
|\Delta f[(x, y),(s, t)]| \leq k, \text { for any }((x, y),(s, t)) \in I \times J .
$$

We shall use the function sets:
$B(I \times J)=\{f \mid f: I \times J \rightarrow \mathbb{R}, f$ is bounded on $I \times J\}$, with the usual sup-norm $\|\cdot\|_{\infty}$, $B_{b}(I \times J)=\{f \mid f: I \times J \rightarrow \mathbb{R}, f$ is B-bounded on $I \times J\}$, $C_{b}(I \times J)=\{f \mid f: I \times J \rightarrow \mathbb{R}, f$ is B-continuous on $I \times J\}$.
Let $f \in B_{b}(I \times J)$. The function $\omega_{\text {mixed }}(f ; *, *):[0,+\infty[\times[0,+\infty[\rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\omega_{\text {mixed }}\left(f ; \delta_{1}, \delta_{2}\right):=\sup \left\{|\Delta f[(x, y),(s, t)]|:|x-s| \leq \delta_{1},|y-t| \leq \delta_{2}\right\} \tag{4.2}
\end{equation*}
$$

for any $\left(\delta_{1}, \delta_{2}\right) \in[0,+\infty[\times[0,+\infty[$ is called the mixed modulus of smoothness. The notion of mixed modulus of smoothness was introduced by I. Badea in [3] and then studied by I. Badea, C. Badea, C. Cottin and H. H. Gonska [4], [6].

Definition 4.1. [4] Let $I, J \subset \mathbb{R}$ be compact intervals and let $L: C_{b}(I \times$ $J) \rightarrow B(I \times J)$ be a linear positive operator. Suppose that $f(\cdot, *) \in C_{b}(I \times J)$. The operator $U: C_{b}(I \times J) \rightarrow B(I \times J)$ defined for any $f \in C_{b}(I \times J)$ and $(x, y) \in I \times J$ by

$$
\begin{equation*}
(U f)(x, y)=L(f(\cdot, y)+f(x, *)-f(\cdot, *))(x, y) \tag{4.3}
\end{equation*}
$$

is called the GBS (Generalized Boolean Sum) operator associated to L.
Remark 4.2. The notion of GBS operator was introduced by C. Badea and C. Cottin [4].

Remark 4.3. The most natural way to construct the GBS operator U is the following:

- one considers the univariate operators

$$
L_{1}^{x}: C_{b}(I) \rightarrow B(I), \quad L_{2}^{y}: C_{b}(J) \rightarrow B(J) ;
$$

- if
$L_{1}^{x}, L_{2}^{y}: C_{b}(I \times J) \rightarrow B(I \times J)$ are their parametric extensions [7], [12], then

$$
\begin{equation*}
U=L_{1}^{x}+L_{2}^{y}-L_{1}^{x} L_{2}^{y} \tag{4.4}
\end{equation*}
$$

Lemma 4.4. The GBS operator associated to the bivariate $\varphi_{1} \varphi_{2}$-Szász-Mirakjan-Kantorovich operators is defined for any $f:[0,+\infty[\times[0,+\infty[\rightarrow \mathbb{R}$ and $(x, y) \in[0,+\infty[\times[0,+\infty[$ by

$$
\begin{align*}
& \left(\varphi_{1} \varphi_{2} U_{m, n} f\right)(x, y)=\frac{m}{\varphi_{1}(m x)} \frac{n}{\varphi_{2}(n y)} \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{\varphi_{1}^{(k)}(0)}{k!} \frac{\varphi_{2}^{(j)}(0)}{j!} \tag{4.5}\\
& \quad \cdot(m x)^{k}(n y)^{j} \int_{\frac{k}{m}}^{\frac{k+1}{m}} \int_{\frac{j}{n}}^{\frac{j+1}{n}}\left(f\left(\frac{k}{m}, t\right)+f\left(s, \frac{j}{n}\right)-f\left(\frac{k}{m}, \frac{j}{n}\right)\right) \mathrm{d} s \mathrm{~d} t .
\end{align*}
$$

Proof. One applies relation (4.4) with $L_{1}^{x}:=\varphi_{1} S_{m}^{x}, L_{2}^{y}:=\varphi_{2} S_{n}^{y}$ and one takes Lemma 3.1. into account.

The analogous of Shisha-Mond Theorem in terms of mixed modulus of smoothness is the following:

Theorem 4.5. [4] Let $L: C_{b}(I \times J) \rightarrow B(I \times J)$ be an linear and positive operator reproducing constants and let $U: C_{b}(I \times J) \rightarrow B(I \times J)$ be the $G B S$ associated operator.

For any $(x, y) \in I \times J$ and $\left.\left(\delta_{1}, \delta_{2}\right) \in\right] 0,+\infty[\times] 0,+\infty[$ the following inequality:

$$
\begin{align*}
|f(x, y)-(U f)(x, y)| \leq & \left(1+\delta_{1}^{-1} \sqrt{\left(L \varphi_{x}^{2}\right)(x, y)}+\delta_{2}^{-1} \sqrt{\left(L \varphi_{y}^{2}\right)(x, y)}\right. \tag{4.6}\\
& \left.+\delta_{1}^{-1} \delta_{2}^{-1} \sqrt{\left(L \varphi_{x}^{2}\right)(x, y)\left(L \varphi_{y}^{2}\right)(x, y)}\right) \omega_{\text {mixed }}\left(f ; \delta_{1}, \delta_{2}\right)
\end{align*}
$$

holds.
For the GBS operator associated to the $\varphi_{1} \varphi_{2}$-Szász-Mirakjan-Kantorovich operator we have the following:

Theorem 4.6. For any function $f \in C_{b}([0,+\infty[\times[0,+\infty[)$, any bivariate interval $\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \subset\left[0,+\infty\left[\times\left[0,+\infty\left[\right.\right.\right.\right.$ and $(x, y) \in\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]$, the GBS operator (4.5) satisfies the following inequality

$$
\begin{equation*}
\left|f(x, y)-\left(\varphi_{1} \varphi_{2} U_{m, n} f\right)(x, y)\right| \leq K \omega_{\text {mixed }}\left(f ; \frac{b_{1}-a_{1}}{\sqrt{m^{\gamma}}}, \frac{b_{2}-a_{2}}{\sqrt{n^{\gamma 2}}}\right), \tag{4.7}
\end{equation*}
$$

where K is defined at (3.11) and (3.12).

Proof. One applies the Theorem 4.5. with $L:=\varphi_{1} \varphi_{2} K_{m, n}$, respectively with $U:=\varphi_{1} \varphi_{2} U_{m, n}$.

Next we recall the Korovkin type theorem for B-continuous functions due to C. Badea, I. Badea and H. H. Gonska in [5].

Theorem 4.7. [5] Let $\left(L_{m, n}\right)_{m, n \in \mathbb{N}}$ be a sequence of linear positive operators, $L_{m, n}: C_{b}(I \times J) \rightarrow B(I \times J)$. If
i) $\left(L_{m, n} e_{00}\right)(x, y)=1$,
ii) $\left(L_{m, n} e_{10}\right)(x, y)=x+u_{m, n}(x, y)$,
iii) $\left(L_{m, n} e_{01}\right)(x, y)=y+v_{m, n}(x, y)$,
iv) $\left(L_{m, n}\left(e_{20}+e_{02}\right)\right)(x, y)=x^{2}+y^{2}+w_{m, n}(x, y)$,
v) $\lim _{m, n \rightarrow \infty} u_{m, n}(x, y)=\lim _{m, n \rightarrow \infty} v_{m, n}(x, y)=\lim _{m, n \rightarrow \infty} w_{m, n}(x, y)=0$ uniformly on $I \times J$,
then for any $f \in C_{b}(I \times J)$, any $(x, y) \in I \times J$, the sequence $\left(U_{m, n}\right)_{m, n \in \mathbb{N}}$ converges to f uniformly on $I \times J$, where the operator $U_{m, n}, m, n \in \mathbb{N}$ is defined by

$$
\begin{equation*}
\left(U_{m, n} f\right)(x, y)=L_{m, n}(f(\cdot, y)+f(x, *)-f(\cdot, *))(x, y) \tag{4.8}
\end{equation*}
$$

For the GBS operator associated to the $\varphi_{1} \varphi_{2}$-Szász-Mirakjan-Kantorovich operator we have the following:

THEOREM 4.8. Suppose that the analytic functions $\left.\varphi_{1}, \varphi_{2}: \mathbb{R} \rightarrow\right] 0,+\infty[$ satisfy the conditions (3.8). Then, for any function $f \in C_{b}([0,+\infty[\times[0,+\infty[)$ and any $(x, y) \in\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]$, it holds

$$
\lim _{m, n \rightarrow \infty}\left(\varphi_{1} \varphi_{2} U_{m, n} f\right)(x, y)=f(x, y)
$$

uniformly on any bivariate compact interval $\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \subset[0,+\infty[\times[0,+\infty[$.
Proof. One applies Theorem 4.7. with $L_{m, n}:=\varphi_{1} \varphi_{2} K_{m, n}$, respectively with $U_{m, n}:=\varphi_{1} \varphi_{2} U_{m, n}$.

REFERENCES

[1] Agratinı, O., Approximation by linear operators, Presa Universitară Clujeană, ClujNapoca, 2000 (in Romanian).
[2] Altomare, F. and Campiti, M., Korovkin-type Approximation Theory and Its Applications, de Gruyter Series in Mathematics, 17, Walter de Gruyter \& Co., Berlin, New York, 1994.
[3] Badea, I., Modulus of continuity in the Bögel sense and some applications in approximation by an operator of Bernstein type, Studia Univ. "Babeş-Bolyai", Ser. Math. Mech., 4 (2), pp. 69-78, 1973 (in Romanian).
[4] Badea, C. and Cottin, C., Korovkin-type Theorems for Generalized Boolean Sum Operators, Colloquia Mathematica Societatis "Janos Bolyai", Approximation Theory, Kecskemét (Hungary), 58, pp. 51-67, 1990.
[5] Badea, C., Badea, I. and Gonska, H. H., A test function theorem and approximation by pseudopolynomials, Bull. Australl. Math. Soc., 34, pp. 53-64, 1986.
[6] Badea, C., Badea, I., Cottin, C. and Gonska, H. H., Notes on the degree of approximation of B-continuous and B-differentiable functions, J. Approx. Theory Appl., 4, pp. 95-108, 1988.
[7] BĂRBOSU, D., The functions approximation of more variables by boolean sums of linear interpolation type operators, Ed. Risoprint, Cluj-Napoca, 2002 (in Romanian).
[8] Bărbosu, D., Pop, O. T. and Miclăuş, D., On some extensions for the Szász-Mirakjan operators, Annals of Oradea University, to appear.
[9] Becker, M., Global approximation theorems for Szász-Mirakjan and Baskakov operators in polynomial weight spaces, Indiana Univ. Math. J., 27 (1), pp. 127-142, 1978.
[10] BögEl, K., Mehrdimensionalle Differentiation von Funktionen mehrer Verändlicher, J. R. Angew. Math., 170, pp. 197-217, 1937.
[11] Ciupa, A. and Gavrea, I., On a Favard-Szász type operator, Studia Univ. "BabeşBolyai", Mathematica, 34, pp. 39-46, 1994.
[12] Delvos, F. J. and Schempp, W., Boolean Methods in Interpolation and Approximation, Longman Scientific and Technical, 1989.
[13] Ditzian, Z. and Totik, V., Moduli of Smoothness, Springer Verlag, Berlin, 1987.
[14] Favard, J., Sur les multiplicateurs d'interpolation, Journal Pures Appl., 23 (9), pp. 219-247, 1944.
[15] Jakimovski, A. and Leviatan, D., Generalized Szász operators for the approximation in the infinite interval, Mathematica (Cluj), 34, pp. 97-103, 1969.
[16] Kantorovich, L. V., Sur certain développements suivant les polynômes de la forme de S. Bernstein, I, II, C. R. Acad. URSS, pp. 563-568, 595-600, 1930.
[17] Miclăuş, D., The Voronovskaja type theorem for the Szász-Mirakjan-Kantorovich operators, Journal of Science and Arts, 2 (13), pp. 257-260, 2010.
[18] Mirakjan, G. M., Approximation of continuous functions with the aid of polynomials, Dokl. Acad. Nauk SSSR, 31, pp. 201-205, 1941.
[19] Mortici, C., An Extension of the Szász-Mirakjan Operators, An. Şt. Univ. Ovidius Constantsa, 17 (1), pp. 137-144, 2009.
[20] Pop, O. T., BĂRbosu, D. and Miclăuş, D., The Voronovskaja type theorem for an extension of Szász-Mirakjan operators, Demonstratio Mathematica, to appear.
[21] Shisha, O. and Mond, B., The degree of convergence of linear positive operators, Proc. Nat. Acad. Sci. U.S.A., 60, pp. 1196-1200, 1968.
[22] Stancu, D. D., Approximation of function by a new class of linear polynomial operators, Rev. Roum. Math. Pures et Appl., 13, pp. 1173-1194, 1968.
[23] Stancu, D. D., Coman, Gh., Agratini, O. and Trâmbiţaş, R., Numerical Analysis and Approximation Theory, I, Presa Universitară Clujeană, Cluj-Napoca, 2001 (in Romanian).
[24] Stancu, F., On the remainder term in approximation formula by univariate and bivariate Mirakjan operators, An. Şt. Univ. "Al. I. Cuza" Iaşi, XIV, pp. 415-422, 1968 (in Romanian).
[25] SzÁsz, O., Generalization of Bernstein's polynomials to the infinite intervals, J. Res. Nat. Bur. Standards, 45, pp. 239-245, 1950.
[26] Totik, V., Uniform approximation by positive operators on infinite intervals, Analysis Mathematica, 10, pp. 163-182, 1984.

Received by the editors: September 23, 2009.

[^0]: *Department of Mathematics and Computer Science, Faculty of Sciences, North University of Baia Mare, Victoriei 76, 430122 Baia Mare, Romania, e-mail: \{barbosudan, danmiclausrz\}@yahoo.com.
 ${ }^{\dagger}$ National College "Mihai Eminescu", 5 Mihai Eminescu Street, 440014 Satu Mare, Romania, e-mail: ovidiutiberiu@yahoo.com.

