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Abstract. The aim of this note is that by using the so-called max-product
method, to associate to the Hermite-Fejér polynomials based on the Chebyshev
knots of first kind, a new interpolation operator for which a Jackson-type ap-
proximation order in terms of ω1(f ; 1/n) is obtained.
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1. INTRODUCTION

Based on the Open Problem 5.5.4, pp. 324–326 in [8], in a series of recent
papers [1, 2, 3, 4, 5], we have introduced and studied the so-called max-product
operators attached to the Bernstein polynomials and to other linear Bernstein-
type operators, like those of Favard-Szász-Mirakjan operators (truncated and
nontruncated case), Baskakov operators (truncated and nontruncated case)
and Bleimann-Butzer-Hahn operators.

This idea applied, for example, to the linear Bernstein operators Bn(f)(x) =∑n
k=0 pn,k(x)f(k/n), where pn,k(x) =

(
n
k

)
xk(1−x)n−k, works as follows. Writ-

ing in the equivalent form Bn(f)(x) =
∑n

k=0 pn,k(x)f(k/n)∑n
k=0 pn,k(x)

and then replac-

ing everywhere the sum operator Σ by the maximum operator
∨

(that is∑n
k=0 pn,k(x)f(k/n) is replaced by the maximum max{k=0,..,n}{pn,k(x)f(k/n)}
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and
∑n

k=0 pn,k(x) by max{k=0,...,n}{pn,k(x)}), one obtains the nonlinear Bern-
stein operator of max-product kind

B(M)
n (f)(x) =

n∨
k=0

pn,k(x)f
(
k
n

)
n∨
k=0

pn,k(x)

,

for which, surprisingly nice approximation and shape preserving properties
were found.

For example, it is proved that for some classes of functions (like those of
monotonous concave functions), the order of approximation given by the max-
product Bernstein operators, are essentially better than the approximation
order of their linear counterparts.

The aim of the present paper is to use the same idea to interpolation poly-
nomials. In the case of the Hermite-Fejér kind polynomials based on the
Chebyshev nodes of first kind, for example, we will obtain that in the class
of Lipschitz functions with positive values, the new obtained interpolation op-
erator has essentially better approximation property than the Hermite-Fejér
polynomials.

Thus, let f : [−1, 1] → R and xn,k = cos
(

2(n−k)+1
2(n+1) π

)
∈ (−1, 1), k ∈

{0, ..., n}, −1 < xn,0 < xn,1 < ... < xn,n < 1, be the roots of the first kind
Chebyshev polynomial Tn+1(x) = cos[(n+1)arccos(x)]. Consider the Hermite-
Fejér interpolation polynomial of degree ≤ 2n + 1 attached to f and to the
nodes (xn,k)k,

H2n+1(f)(x) =
n∑
k=0

hn,k(x)f(xn,k),

with

hn,k(x) = (1− xxn,k) ·
(

Tn+1(x)
(n+1)(x−xn,k)

)2
.

It is well known that
∑n

k=0 hn,k(x) = 1 for all x ∈ R (and that hn,k(x) ≥ 0 for
all x ∈ [−1, 1] and k = 0, ..., n), which allows us to write

H2n+1(f)(x) =
∑n

k=0 hn,k(x)f(xn,k)∑n
k=0 hn,k(x)

, for all x ∈ R.

Therefore, applying the max-product method as in the above case of Bern-
stein polynomials, the corresponding max-product Hermite-Fejér interpolation
operator will be given by

H
(M)
2n+1(f)(x) =

n∨
k=0

hn,k(x)f(xn,k)

n∨
k=0

hn,k(x)

.
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Remark 1.1. Firstly, it is clear that H
(M)
2n+1(f)(x) is a nonlinear (more

exactly sublinear on the space of positive functions) operator, well-defined
for all x ∈ R and a continuous, piecewise rational function on R. Indeed,
by
∑n

k=0 hn,k(x) = 1, for all x ∈ R, for any x there exists an index k ∈
{0, ..., n} such that hn,k(x) > 0, which implies that

∨n
k=0 hn,k(x) > 0. Indeed,

contrariwise would follow that hn,k(x) ≤ 0 for all k and therefore we would
obtain the contradiction

∑n
k=0 hn,k(x) ≤ 0. The continuity of the numerator

and denominator of H
(M)
2n+1(f)(x) as maximum of finite number of continuous

functions is immediate, which implies the continuity of H
(M)
2n+1(f)(x) on R.

The sublinearity follows from the property of the maximum operator
∨

.
Also, by the property hn,k(xn,j) = 1 if k = j and hn,k(xn,j) = 0 if k 6= j, we

immediately obtain the interpolation property H
(M)
2n+1(f)(xn,j) = f(xn,j), for

all j ∈ {0, ..., n}. �

The plan of the paper goes as follows: in Section 2 we present some auxiliary
results, in Section 3 we prove the main approximation result while in Section
4 we compare the approximation result in Section 3 with those for the linear
Hermite-Fejér interpolation polynomials based on the Chebyshev knots of first
kind.

2. AUXILIARY RESULTS

In all what follows, f will be considered continuous and with positive values,
that is

f ∈ C+[−1, 1] = {f : [−1, 1]→ R+; f is continuous on [−1, 1]}.
Firstly, we present a general type approximation result, which in fact is

valid for all the max-product type operators (including those of Bernstein
type proved in [1]).

Theorem 2.1. For all f ∈ C+[−1, 1], n ∈ N, δ > 0 and x ∈ [−1, 1] we have

|f(x)−H(M)
2n+1(f)(x)| ≤

[
1 + 1

δH
(M)
2n+1(ϕx)(x)

]
ω1(f ; δ),

where ϕx(t) = |t − x| for all t, x ∈ [−1, 1], and ω1(f ; δ) = max{|f(x) −
f(y)|;x, y ∈ [−1, 1], |x− y| ≤ δ}.

Proof. First it is easy to check that as a consequence of the properties

of the operator
∨

, f ≤ g implies H
(M)
2n+1(f) ≤ H

(M)
2n+1(g) and also we have

H
(M)
2n+1(f + g) ≤ H(M)

2n+1(f) +H2n+1(g), for all f, g ∈ C+[−1, 1].
Further, we have f = f−g+g ≤ |f−g|+g, which by the above two properties

successively implies H
(M)
2n+1(f)(x) ≤ H

(M)
2n+1(|f − g|)(x) + H

(M)
2n+1(g)(x), that is

H
(M)
2n+1(f)(x)−H(M)

2n+1(g)(x) ≤ H(M)
2n+1(|f − g|)(x).

Writing now g = g− f + f ≤ |f − g|+ f and applying the above reasonings,

it follows H2n+1(g)(M)(x)−H(M)
2n+1(f)(x) ≤ H(M)

2n+1(|f−g|)(x), which combined
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with the above inequality gives

|H(M)
2n+1(f)(x)−H(M)

2n+1(g)(x)| ≤ H(M)
2n+1(|f − g|)(x).

Also, it is immediate that H
(M)
2n+1(f) is positive homogenous, that is

H
(M)
2n+1(λf) = λH

(M)
2n+1(f) for all λ ≥ 0.

Now, since it is clear that H
(M)
2n+1(e0) = e0, where e0(x) = 1 for all x, from

the identity (for a fixed x ∈ [−1, 1])

H
(M)
2n+1(f)(x)− f(x) = H

(M)
2n+1(f(t))(x)−H(M)

2n+1(f(x))(x)

and from the above proved properties of H
(M)
2n+1(f), it easily follows

|f(x)−H(M)
2n+1(f)(x)| ≤ H(M)

2n+1(|f(t)− f(x)|)(x).

Since for all t, x ∈ [−1, 1] we have

|f(t)− f(x)| ≤ ω1(f ; |t− x|) ≤
[

1
δ |t− x|+ 1

]
ω1(f ; δ),

replacing above we immediately obtain the estimate in the statement. �

As in case of the Bernstein type max-product operators, first it will be
useful to exactly calculate

∨n
k=0 hn,k(x) for x ∈ [−1, 1]. In this sense we have

the following result.

Lemma 2.2. For each j ∈ {0, ..., n − 1}, there exists a unique point yn,j ∈
(xn,j , xn,j+1), such that we have

n∨
k=0

hn,k(x) = hn,j+1(x), for all x ∈ [yn,j , yn,j+1] , j ∈ {0, ..., n− 2}.

In addition,
n∨
k=0

hn,k(x) = hn,0(x), for all x ∈ [−1, yn,0] ,

and
n∨
k=0

hn,k(x) = hn,n(x), for all x ∈ [yn,n−1, 1] .

Proof. First we show that for fixed n ∈ N and 0 ≤ k < k + 1 ≤ n, there
exists a unique point yn,k ∈ (xn,k, xn,k+1) such that we have

0 ≤ hn,k+1(x) ≤ hn,k(x),

(2.1) if and only if x ∈ [0, yn,k]
⋃
{xn,j ; j ∈ {0, 1, ..., n}, j 6= k + 1}.

Indeed, the inequality hn,k+1(x) ≤ hn,k(x), x ∈ [−1, 1] is equivalent to

0 ≤ T 2
n+1(x)

(n+1)2(x−xn,k)2(x−xn,k+1)2
(xn,k+1 − xn,k) · Pn,k(x), x ∈ [−1, 1],
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with Pn,k(x) = x3 − x[2 + xn,k · xn,k+1] + (xn,k + xn,k+1). Therefore, the
inequality hn,k+1(x) ≤ hn,k(x), x ∈ [−1, 1] is equivalent to the condition that
x ∈ {x ∈ [−1, 1];Pn,k(x) ≥ 0}

⋃
{xn,j ; j ∈ {0, 1, ..., n}, j 6= k + 1}.

But, since Pn,k(−1) = (1 + xn,k)(1 + xn,k+1) > 0, Pn,k(1) = (xn,k − 1)(1 −
xn,k+1) < 0 and P ′n,k(x) = 0 has the two solutions

z1 = −
√

2+xn,k·xn,k+1

3 , z2 =

√
2+xn,k·xn,k+1

3 ∈ (−1, 1),

it easily follows that Pn,k(x) has at z1 a maximum point, at z2 a minimum
point, the equation Pn,k(x) = 0 has a unique solution yn,k ∈ (z1, z2) and that
Pn,k(x) ≥ 0 on [−1, 1] if and only if x ∈ [0, yn,k].

Now we will prove that in fact yn,k ∈ (xn,k, xn,k+1). Indeed, this is immedi-
ate from the following simple calculation

Pn,k(xn,k) · Pn,k+1(xn,k+1)

= (x3
n,k − x2

n,k · xn,k+1 − xn,k + xn,k+1)(x3
n,k+1 − xn,k · x2

n,k+1 + xn,k − xn,k+1)

= (xn,k − xn,k+1)2(x2
n,k − 1)(1− xn,k+1) < 0.

Therefore, as a first conclusion it follows (2.1).
By taking k = 0, 1, .., n− 1 in the inequality (2.1), we get

hn,1(x) ≤ hn,0(x), if and only if x ∈ [−1, yn,0]
⋃
{xn,j ; j 6= 1},

hn,2(x) ≤ hn,1(x), if and only if x ∈ [−1, yn,1]
⋃
{xn,j ; j 6= 2},

hn,3(x) ≤ hn,2(x), if and only if x ∈ [−1, yn,2]
⋃
{xn,j ; j 6= 3},

so on,

hn,k+1(x) ≤ hn,k(x), if and only if x ∈ [−1, yn,k]
⋃
{xn,j ; j 6= k + 1},

so on,

hn,n−2(x) ≤ hn,n−3(x), if and only if x ∈ [−1, yn,n−3]
⋃
{xn,j ; j 6= 1},

hn,n−1(x) ≤ hn,n−2(x), if and only if x ∈ [−1, yn,n−2]
⋃
{xn,j ; j 6= n− 1},

hn,n(x) ≤ hn,n−1(x), if and only if x ∈ [−1, yn,n−1]
⋃
{xn,j ; j 6= n}.

From all these inequalities, reasoning by recurrence we easily obtain:

if x ∈ [−1, yn,0] then hn,k(x) ≤ hn,0(x), for all k = 0, 1, ..., n,

if x ∈ [yn,0, yn,1] then hn,k(x) ≤ hn,1(x), for all k = 0, 1, ..., n,

and so on finally

if x ∈ [yn,n−2, yn,n−1] then hn,k(x) ≤ hn,n−1(x), for all k = 0, 1, ..., n,

if x ∈ [yn,n−1, 1] then hn,k(x) ≤ hn,n(x), for all k = 0, 1, ..., n,

which proves the lemma. �
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For the proof of the main results we need some notations and auxiliary
results, as follows.

Let us denote yn,−1 = −1 and yn,n = 1. Then, for all k, j ∈ {0, 1, ..., n}, and
for each x ∈ [yn,j−1, yn,j ], we denote

mk,n,j(x) =
hn,k(x)
hn,j(x) , Mk,n,j(x) = mk,n,j(x) |xn,k − x| .

We observe that for k ≥ j+1 we have xn,k−x ≥ xn,j+1−yn,j ≥ 0 and it follows
that Mk,n,j(x) = mk,n,j(x)(xn,k−x). Also for j ≥ 1 and k ≤ j−1 we have x−
xn,k ≥ yn,j−1 − xn,j−1 ≥ 0 and it follows that Mk,n,j(x) = mk,n,j(x)(x− xn,k).

Lemma 2.3. For all k , j ∈ {0 , 1 , ...,n}, and for each x ∈ [yn,j−1 , yn,j ], we
have

mk ,n,j (x ) ≤ 1 .

Proof. By Lemma 2.2 it immediately follows that

hn,0(x) ≤ hn,1(x) ≤ ... ≤ hn,j(x) ≥ hn,j+1(x) ≥ ...hn,n(x)

for all x ∈ [yn,j−1, yn,j ]. Multiplying the above inequalities with 1/hn,j(x) we
get

m0,n,j(x) ≤ m1,n,j(x) ≤ ... ≤ mj,n,j(x) ≥ mj+1,n,j(x) ≥ ... ≥ mn,n,j(x).

Since mj,n,j(x) = 1 we immediately obtain the desired conclusion. �

Lemma 2.4. Let k , j ∈ {0 , 1 , ...,n} and let x ∈ [yn,j−1 , yn,j ].

(i) If k ∈ {j + 1 , j + 2 , ...,n − 1}, then Mk ,n,j (x ) ≥ M k+1 ,n,j (x ).

(ii) If j ≥ 1 and k ∈ {0 , 1 , ..., j − 1}, then Mk ,n,j (x ) ≥ M k−1 ,n,j (x ).

Proof. (i) We observe that for all k ≥ j + 1 we get

Mk,n,j(x)
Mk+1,n,j(x) =

hn,k(x)
hn,k+1(x) ·

xn,k−x
xn,k+1−x =

1−xxn,k

1−xxn,k+1
· xn,k−x
xn,k+1−x ·

(
x−xn,k+1

x−xn,k

)2
=

=
1−xxn,k

1−xxn,k+1
· xn,k+1−x

xn,k−x ≥ 1

which proves (i).
(ii) For all k ≤ j − 1 we get

Mk,n,j(x)
Mk−1,n,j(x) =

hn,k(x)
hn,k−1(x) ·

x−xn,k

x−xn,k−1
=

1−xxn,k

1−xxn,k−1
· x−xn,k

x−xn,k−1
·
(
x−xn,k−1

x−xn,k

)2
=

=
1−xxn,k

1−xxn,k−1
· x−xn,k−1

x−xn,k
≥ 1,

which proves (ii). �

Remark 2.5. It is of interest to find good estimates for each yn,j . For this
purpose we take into account that from xn,j < yn,j < yn,j+1, we immediately
obtain the following estimates for yn,j :

min{|xn,j |, |xn,j+1|} ≤ |yn,j | ≤ max{|xn,j |, |xn,j+1|}, if xn,j · xn,j+1 ≥ 0,

and yn,j = 0, if xn,j · xn,j+1 < 0. Indeed, in this last case we necessarily
have xn,j + xn,j+1 = 0 (the roots of the Chebyshev polynomial Tn+1(x) are
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symmetric with respect to the origin), which replaced in the proof of Lemma
2.2 immediately implies yn,j = 0. But by the formula cos(α) = sin(π/2 − α),
we get

xn,j = cos
(

2(n−j)+1
2(n+1) π

)
= sin

(
π
2 ·

2j−n
n+1

)
, j = 0, 1, ..., n− 1

and by the well-known double inequality (see e.g. [10], p. 57) (2/π)u ≤
sin(u) ≤ u, for all u ∈ [0, π/2], we immediately get

|2j−n|
n+1 ≤ |xn,j | ≤

|2j−n|
n+1 ·

π
2 , for all j = 0, 1, ..., n.

�

Remark 2.6. Note that due to the symmetry of the nodes xn,j , the “inter-
mediate” nodes yn,j ∈ (xn,j , xn,j+1), j ∈ {0, ..., n − 1} in Lemma 2.2 also are
symmetric with respect the origin. Indeed, since each yn,j satisfies the equation
y3
n,j−yn,j [2+xn,j ·xn,j+1]+(xn,j+xn,j+1) = 0 and since xn,j = −xn,n−j , we get

y3
n,n−j−yn,n−j [2+xn,n−j ·xn,n−(j+1)]+(xn,n−j+xn,n−(j+1)) = 0. Adding these

two relationships we obtain y3
n,j + y3

n,n−j − [2 +xn,j ·xn,j+1](yn,j + yn,n−j) = 0,
that is

(yn,j + yn,n−j)(y
2
n,j − yn,j · yn,j+1 + y2

n,j+1 − 2− xn,j · xn,j+1) = 0.

Because it easily follows that the second term above is always < 0, we get
yn,j + yn,n−j = 0, which proves the desired assertion. �

Remark 2.7. Since H
(M)
n (f)(xn,j) − f(xn,j) = 0 for all n ∈ N and j =

0, 1, ..., n, we note that in the next notations, proofs and statements of the all
approximation results, in fact we always may suppose that x ∈ [−1, 1] and x 6=
xn,j , for all j = 0, 1, ..., n. �

3. APPROXIMATION RESULTS

The main result is the following Jackson-type estimate.

Theorem 3.1. Let f : [−1 , 1 ]→R+ be continuous on [−1 , 1 ]. Then we have
the estimate

|H(M)
2n+1(f)(x)− f(x)| ≤ 14ω1

(
f, 1

n+1

)
, for all n ∈ N, x ∈ [−1, 1].

Proof. By Theorem 2.1 we have

(3.1) |H(M)
2n+1(f)(x)− f(x)| ≤

(
1 + 1

δn
H

(M)
2n+1(ϕx)(x)

)
ω1(f, δn),

where ϕx(t) = |t− x|. So, it is enough to estimate

En(x) := H
(M)
2n+1(ϕx)(x) =

n∨
k=0

hn,k(x)|xn,k−x|
n∨

k=0

hn,k(x)
, x ∈ [−1, 1].
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Let x ∈ [yn,j−1, yn,j ], where j ∈ {0, 1, ..., n} is fixed arbitrary. By Lemma 2.2
we easily obtain

En(x) = max
k=0,1,...,n

{Mk,n,j(x)}, x ∈ [yn,j−1, yn,j ].

It remains to obtain an upper estimate for each Mk,n,j(x) when j ∈ {0, 1, ..., n}
is fixed, x ∈ [yn,j−1, yn,j ] and k ∈ {0, 1, ..., n}. In fact we will prove that

Mk,n,j(x) ≤ 2π
n+1 , for all x ∈ [yn,j−1, yn,j ], k = 0, 1, ..., n,

which immediately will imply that

(3.2) En(x) ≤ 2π
n+1 , for all x ∈ [−1, 1], n ∈ N,

and taking δn = 2π
n+1 in (3.1), since [2π] = 6, from the property ω1(f ;λδ) ≤

([λ] + 1)ω1(f ; δ) we immediately obtain the estimate in the statement.
In order to prove (3.2), we distinguish the following cases:
1) j = 0 ; 2) j = n and 3) j ∈ {1, 2, ..., n− 1}.
Case 1) By Lemma 2.4, (i), it follows that En(x) = max

k=0,1
{Mk,n,0(x)} for all

x ∈ [−1, yn,0].
If k = 0 then M0,n,0(x) = |xn,0 − x| . Since x ∈ [−1, yn,0] ⊆ [−1, xn,1], we

obtain

|xn,0 − x| ≤ xn,1 + 1 = cos
(

2(n−1)+1
2(n+1) π

)
+ 1

= 2 cos2
(

2(n−1)+1
4(n+1) π

)
= 2 sin2

(
π
2 −

2(n−1)+1
4(n+1) π

)
= 2 sin2

(
3π

4(n+1)

)
≤ 9π2

8(n+1)2
.

If k = 1 then M1,n,0(x) = m1,n,0(x) |xn,1 − x| . By Lemma 2.3, it follows that
m1,n,0 ≤ 1 and we obtain

M1,n,0(x) ≤ |xn,1 − x| = xn,1 − x ≤ xn,1 + 1 ≤ 9π2

8(n+1)2
.

In conclusion we obtain En(x) ≤ 9π2

8(n+1)2
for all x ∈ [−1, yn,0].

Case 2) By Lemma 2.4, (ii), it follows that En(x) = max
k=n−1,n

{Mk,n,n(x)} for

all x ∈ [yn,n−1, 1].
If k = n then Mn,n,n(x) = |xn,n − x| . Since x ∈ [yn,n−1, 1] ⊆ [xn,n−1, 1], we

obtain
|xn,n − x| ≤ 1− xn,n−1 ≤ 9π2

8(n+1)2

where we used the obvious equality 1− xn,n−1 = xn,1 + 1.
If k = n − 1 then Mn−1,n,n(x) = mn−1,n,n(x) |xn,n−1 − x| ≤ |xn,n−1 − x| =

x− xn,n−1 ≤ 1− xn,n−1 ≤ 9π2

8(n+1)2
.

In conclusion, we obtain En(x) ≤ 9π2

8(n+1)2
for all x ∈ [yn,n−1, 1].

Case 3) By Lemma 2.4 it follows that En(x) = max
k=j−1,j,j+1

{Mk,n,j(x)} for

all x ∈ [yn,j−1, yn,j ].
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If k = j then Mj,n,j(x) = |xn,j − x| . For x ∈ [yn,j−1, yn,j ] ⊆ [xn,j−1, xn,j+1],
we obtain

|xn,j − x| ≤ xn,j+1 − xn,j−1 = 2 sin
(

π
n+1

)
sin
(

2n−2j+1
2(n+1) π

)
≤ 2 sin

(
π
n+1

)
≤ 2π

n+1 .

If k = j + 1 then Mj+1,n,j(x) = mj+1,n,j(x) |xn,j+1 − x| ≤ xn,j+1 − x. Since
x ∈ [yn,j−1, yn,j ] ⊆ [xn,j−1, xn,j+1] it follows that

xn,j+1 − x ≤ xn,j+1 − xn,j−1 ≤ 2π
n+1 .

If k = j − 1 then Mj−1,n,j(x) = mj−1,n,j(x) |xn,j−1 − x| ≤ x − xn,j−1 ≤
xn,j+1 − xn,j−1 ≤ 2π

n+1 .
Collecting all the estimates obtained above and taking into account that

9π2/[8(n+1)2] ≤ 2π/(n+1) for all n ∈ N, we easily get (3.2), which completes
the proof. �

Remark 3.2. The order of approximation in terms of ω1(f ; 1/(n+ 1)) ob-
tained by the proof of Theorem 3.1 cannot be improved, in the sense that the
order of maxx∈[0,1]{En(x)} is exactly 1

n+1 (here En(x) is defined in the proof

of Theorem 3.1). Indeed, for each n ∈ N we have x2n+1,n + x2n+1,n+1 = 0
which by the Remark 2.5 after the proof of Lemma 2.4 immediately implies
y2n+1,n = 0 and (since 0 ∈ [y2n+1,n, y2n+1,n+1])

Mn+1,2n+1,n+1(0) = x2n+1,n+1 ≥ 2(n+1)−(2n+1)
2n+2 = 1

2(n+1) . �

4. COMPARISON WITH THE HERMITE-FEJÉR POLYNOMIALS

Firstly we present a brief history on the order in approximation by the
Hermite-Fejér polynomials, H2n+1(f)(x). Denoting An+1(f) = ‖H2n+1 − f‖,
where ‖ · ‖ is the uniform norm on C[−1, 1], a famous result of Fejér [7] states
that limn→∞An+1(f) = 0, for all f ∈ C[−1, 1]. The first estimate of the rate

of convergence, An+1(f) = O
(
ω1

(
f ; 1√

n+1

))
, obtained by T. Popoviciu [12],

was improved by E. Moldovan to An+1(f) = O
(
ω1

(
f ; ln(n+1)

n+1

))
in [11], where

ln(n) denotes the logarithm of n. In Xie Hua Sun and Dechang Jiang [17], it
was proved that above, ω1 can be replaced by the Diztzian-Totik modulus ωϕ1 .

In a sense, the two previous results are the best possible, because for g(x) =

|x| we have |H2n+1(g)(0)− g(0)| ≥ c1
ln(n+1)
n+1 , n ∈ N, with c1 > 0 independent

of n. In fact, by R. Bojanic [6], if f ∈ Lip1 then the order O(ln(n+1)/(n+1))
cannot be improved.

On the other hand, as it was remarked in the book of J. Szabados and P.
Vértesi [14], p. 168, Theorem 5.1, the above order is not the best possible for
g(x) = |x|δ, 0 < δ < 1, the correct estimate being of order 1/nδ. This remark
also follows from the equivalence proved by Theorem 2.3 in [17],

‖H2n+1(f)− f‖ = O(1/nδ) iff En+1(f) = O(1/nδ)
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Other good estimates were obtained, for example, in R. Bojanic [6] for the
uniform approximation, and in J. Prasad [13], which generalizes the estimate
of P. Vértesi in [16] for the pointwise approximation. Also, the saturation
order 1

n , was proved by J. Szabados in [15].
Now, from Theorem 3.1, we easily get that the order of approximation

obtained by the max-product interpolation operator H
(M)
2n+1(f)(x) for the pos-

itive function f ∈ Lip1[−1, 1], is essentially better than that given by the
Hermite-Fejér interpolation polynomials, H2n+1(f)(x). Indeed, in this case

by Theorem 3.1 we get that ‖H(M)
2n+1(f) − f‖ ≤ c

n+1 , while by [6] we have

‖H2n+1(f) − f‖ ∼ ln(n+1)
n+1 . Here an ∼ bn means that there exists c1, c2 > 0

independent of n, such that c1bn ≤ an ≤ c2bn for all n ∈ N.
Finally, let us mention that in Hermann-Vértesi [9], some linear interpo-

latory rational operators are constructed, for which a Jackson-type order of
approximation is obtained and, in addition, a saturation result is obtained. It
remains an open question to prove a saturation result for the nonlinear max-
product Hermite-Fejér operator in the present paper, possibly by using some
ideas in [9].
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