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Abstract. In this paper, we obtain new results concerning the generalizations
of additive and multiplicative majorizations by means of exponential convex-
ity. We prove positive semi-definiteness of matrices generated by differences
deduced from majorization type results which implies exponential convexity and
log-convexity of these differences and also obtain Lyapunov’s and Dresher’s in-
equalities for these differences. We give some applications of additive and multi-
plicative majorizations. In addition, we introduce new means of Cauchy’s type
and establish their monotonicity.
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1. INTRODUCTION AND PRELIMINARIES

For fixed n ≥ 2 let

x = (x1, ..., xn), y = (y1, ..., yn)

denote two n-tuples. Let

x[1] ≥ x[2] ≥ ... ≥ x[n], y[1] ≥ y[2] ≥ ... ≥ y[n],

x(1) ≤ x(2) ≤ ... ≤ x(n), y(1) ≤ y(2) ≤ ... ≤ y(n)

be their ordered components.

Definition 1.1. (cf. [10], p. 319) y is said to majorize x (or x is said to
be majorized by y), in symbol, y � x, if

(1.1)
m∑
i=1

x[i] ≤
m∑
i=1

y[i]
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holds for m = 1, 2, ..., n− 1 and

(1.2)
n∑
i=1

xi =
n∑
i=1

yi.

Note that (1.1) is equivalent to
n∑

i=n−m+1

x(i) ≤
n∑

i=n−m+1

y(i)

for m = 1, 2, ..., n− 1.

Parallel to the concept of additive majorization is the notion of multiplica-
tive majorization (also termed log-majorization).

Definition 1.2. Let x, y be two positive n-tuples, y is said to be multi-
plicatively majorized by x, denoted by x ≺× y if

(1.3)

m∏
i=1

x[i] ≤
m∏
i=1

y[i]

holds for m = 1, 2, ..., n− 1 and

(1.4)
n∏
i=1

xi =
n∏
i=1

yi.

Note that (1.3) is equivalent to
n∏

i=n−m+1

x(i) ≤
n∏

i=n−m+1

y(i)

holds for m = 1, 2, ..., n− 1.

To differentiate the two types of majorization, we sometimes use the symbol
≺+ rather than ≺ to denote (additive) majorization.

The following theorem is well-known as the majorization theorem and a
convenient reference for its proof is in the book of Marshall and Olkin (1979)
([6], p.11) (see [10], p.320):

Theorem 1.3. Let I be an interval in R and x, y be two n-tuples such that
xi, yi ∈ I (i = 1, ..., n). Then

(1.5)

n∑
i=1

φ(xi) ≤
n∑
i=1

φ(yi)

holds for every continuous convex function φ : I → R iff y �x holds.

Remark 1.4. [5] If φ(x) is a strictly convex function then equality in (1.5)
is valid iff x[i] = y[i], i = 1, ..., n. �

The following theorem can be regarded as a generalization of the majoriza-
tion theorem and is proved by Fuchs (1947) in [4] (see [10], p. 323):
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Theorem 1.5. Let x, y be two decreasing n-tuples and p = (p1, ..., pn) be a
real n-tuple such that

(1.6)
k∑
i=1

pi xi ≤
k∑
i=1

pi yi for k = 1, ..., n− 1;

and

(1.7)
n∑
i=1

pi xi =
n∑
i=1

pi yi.

Then for every continuous convex function φ : I → R, we have

(1.8)

n∑
i=1

pi φ(xi) ≤
n∑
i=1

pi φ(yi).

Let x(τ), y(τ) be two real-valued functions defined on an interval [a, b] such
that

∫ s
a x(τ)dτ ,

∫ s
a y(τ)dτ both exist for all s ∈ [a, b].

Definition 1.6. (cf. [10], p. 324) y(τ) is said to majorize x(τ), in symbol,
y(τ) � x(τ), for τ ∈ [a, b] if they are decreasing in τ ∈ [a, b] and

(1.9)

∫ s

a
x(τ) dτ ≤

∫ s

a
y(τ) dτ for s ∈ [a, b],

and equality in (1.9) holds for s = b.

The following theorem can be regarded as majorization theorem in integral
case (see [10], p. 325):

Theorem 1.7. y(τ) � x(τ) for τ ∈ [a, b] iff they are decreasing in [a, b] and

(1.10)

∫ b

a
φ(x(τ)) dτ ≤

∫ b

a
φ(y(τ)) dτ

holds for every φ that is continuous and convex in [a, b] such that the integrals
exist.

The following theorem is a simple consequence of Theorem 12.14 in [11] (see
[10], p. 328):

Theorem 1.8. Let x(τ), y(τ) : [a, b] → R, x(τ) and y(τ) are continuous
and increasing and let G : [a, b]→ R be a function of bounded variation.

(a) If

(1.11)

∫ b

ν
x(τ) dG(τ) ≤

∫ b

ν
y(τ) dG(τ) for all ν ∈ [a, b],

and

(1.12)

∫ b

a
x(τ) dG(τ) =

∫ b

a
y(τ) dG(τ)
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hold then for every continuous convex function f , we have

(1.13)

∫ b

a
f(x(τ)) dG(τ) ≤

∫ b

a
f(y(τ)) dG(τ).

(b) If (1.11) holds then (1.13) holds for every continuous increasing convex
function f .

Let F (τ), G(τ) be two continuous and increasing functions for τ ≥ 0 such
that F (0) = G(0) = 0 and define

(1.14) F (τ) = 1− F (τ), G(τ) = 1−G(τ) for τ ≥ 0.

Definition 1.9. (cf. [10], p. 330) F (τ) is said to majorize G(τ), in symbol,
F (τ) � G(τ), for τ ∈ [0,+∞) if

(1.15)

∫ s

0
G(τ) dτ ≤

∫ s

0
F (τ) dτ for all s > 0,

and

(1.16)

∫ ∞
0

G(τ) dτ =

∫ ∞
0

F (τ) dτ < ∞.

The following result was obtained by Boland and Proschan (1986) [3] (see
[10], p. 331):

Theorem 1.10. F (τ) � G(τ) for τ ∈ [0,+∞) holds iff

(1.17)

∫ ∞
0

φ(τ) dF (τ) ≤
∫ ∞

0
φ(τ) dG(τ)

holds for all convex functions φ, provided the integrals are finite.

Definition 1.11. A function h : (a, b)→ R is exponentially convex function
if it is continuous and

n∑
i,j=1

ξiξj h (xi + xj) ≥ 0

for all n ∈ N and all choices ξi ∈ R and xi ∈ (a, b), i = 1, ..., n such that
xi + xj ∈ (a, b), 1 ≤ i, j ≤ n.

The following proposition is given in [2]:

Proposition 1.12. Let h : (a, b) → R. The following propositions are
equivalent.

(i) h is exponentially convex.
(ii) h is continuous and

n∑
i,j=1

ξiξj h
(
xi +xj

2

)
≥ 0,

for every n ∈ N, every ξi ∈ R and every xi, xj ∈ (a, b), 1 ≤ i, j ≤ n.
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Corollary 1.13. If h is exponentially convex then

det
[
h
(
xi +xj

2

)]n
i,j=1

≥ 0,

for every n ∈ N and every xi ∈ (a, b), i = 1, ..., n.

Corollary 1.14. If h : (a, b) → R+ is exponentially convex function then
h is a log-convex function.

The following lemma is equivalent to definition of convex function (see [10],
p. 2):

Lemma 1.15. If f is convex on an interval I ⊆ R, then

f(s1)(s3 − s2) + f(s2)(s1 − s3) + f(s3)(s2 − s1) ≥ 0,

holds for every s1 < s2 < s3, s1, s2, s3 ∈ I.

In [1], the following result is proved:

Theorem 1.16. Let x and y be two positive n-tuples, y � x,

Λt = Λt(x;y) :=
n∑
i=1

ϕt (yi) −
n∑
i=1

ϕt (xi) ,

and all x[i]’s and y[i]’s are not equal.
Then the following statements are valid:

(a) For every n ∈ N and s1, ..., sn ∈ R, the matrix

[
Λ si+sj

2

]n
i,j=1

is a

positive semi-definite matrix. Particularly

(1.18) det

[
Λ si + sj

2

]k
i,j=1

≥ 0

for k = 1, ..., n.
(b) The function s→ Λs is exponentially convex.
(c) The function s→ Λs is a log-convex on R and the following inequality

holds for −∞ < r < s < t < ∞ :

(1.19) Λt−rs ≤ Λt−sr Λs−rt .

Similar results and corresponding Cauchy means are proved in [1] with a
stronger condition that x and y are positive n-tuples.

In this paper we give results for generalizations of additive majorization
as in [1] and multiplicative majorization. Moreover, several applications of
majorization are obtained by using following important example( n∑

i=1

xi, 0, ..., 0
)
� (x1, ..., xn).

We also give some applications of additive and multiplicative majorizations.
In this connection, the following remark in [7] is important:
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“majorization theory is the underlying mathematical theory on which the
framework hings. It allows the transformation of the originally complicated
matrix-valued non-convex problem into a simple scalar problem.”

It was shown in [7] that additive majorization relation plays a key role in the
design of linear MIMO transceivers, whereas the multiplicative majorization
relation is the basis for nonlinear decision-feedback MIMO transceivers.

2. THE CASE OF NON-NEGATIVE SEQUENCES AND FUNCTIONS

Lemma 2.1. Define the function

(2.1) ϕs(x) :=

{ xs

s(s−1) , s 6= 1;

x log x, s = 1,

where s ∈ R+.
Then ϕ′′s(x) = xs−2, that is, ϕs(x) is convex for x > 0.

In our results we use the notation 0 log 0 = 0.

Theorem 2.2. Let x and y be two non-negative n-tuples, y � x ,

Λt = Λt(x; y) :=
n∑
i=1

ϕt(yi)−
n∑
i=1

ϕt(xi),

and all x[i]’s and y[i]’s are not equal
Then the following statements are valid:

(a) For every n ∈ N and s1, ..., sn ∈ R+, the matrix

[
Λ si+sj

2

]n
i,j=1

is a

positive semi-definite matrix. Particularly

(2.2) det

[
Λ si + sj

2

]k
i,j=1

≥ 0

for k = 1, ..., n.
(b) The function s→ Λs is exponentially convex.
(c) The function s→ Λs is a log-convex on R+ and the following inequality

holds for 0 < r < s < t < ∞ :

(2.3)
(
Λs
)t−r ≤ (Λr)t−s (Λt)s−r .

Proof. (a) Consider the function

µ(x) =
k∑
i,j

uiuj ϕsij (x)

for k = 1, ..., n, x > 0, ui ∈ R, sij ∈ R+, where sij =
si + sj

2 and ϕsij is defined
in (2.1).
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We have

µ′′(x) =

k∑
i,j

uiuj x
sij − 2 =

=

(
k∑
i

ui x
si
2 − 1

)2

≥ 0, x ≥ 0.

This shows that µ is a convex function for x ≥ 0.
Using Theorem 1.3,

n∑
m=1

µ (ym) −
n∑

m=1

µ (xm) ≥ 0.

This implies

n∑
m=1

 k∑
i,j

uiuj ϕsij (ym)

 − n∑
m=1

 k∑
i,j

uiuj ϕsij (xm)

 ≥ 0,

or equivalently

k∑
i,j

uiuj Λsij ≥ 0.

From last inequality, it follows that the matrix

[
Λ si+sj

2

]n
i,j=1

is a positive

semi-definite matrix, that is, (2.2) is valid.
(b) Note that Λs is continuous for s ∈ R+. Then by using Proposition 1.12,
we get exponentially convexity of the function s→ Λs.
(c) Since ϕt(x) is continuous and strictly convex function for x > 0 and all
x[i]’s and y[i]’s are not equal, therefore by Theorem 1.3 with φ = ϕt, we have

n∑
i=1

ϕt (yi) >
n∑
i=1

ϕt (xi) .

This implies

Λt = Λt(x;y) =
n∑
i=1

ϕt (yi) −
n∑
i=1

ϕt (xi) > 0,

that is, Λt is positive-valued function.
A simple consequence of Corollary 1.14 is that Λs is log-convex, then by

definition

log
(
Λs
)t−r ≤ log

(
Λr
)t−s

+ log
(
Λt
)s−r

,

which is equivalent to (2.3). �
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As in [1], we define the following means of Cauchy type.

Mt,s =
(

Λt
Λs

) 1
t−s

, t, s ∈ R+, s 6= t.(2.4)

Ms,s = exp
(∑n

i=1 yi
s log yi−

∑n
i=1 xi

s log xi∑n
i=1 yi

s−
∑n
i=1 xi

s − 2s−1
s(s−1)

)
, s 6= 1.

M1,1 = exp
(∑n

i=1 yi (log yi)
2−

∑n
i=1 xi (log xi)

2

2
(∑n

i=1 yi log yi−
∑n
i=1 xi log xi

) − 1
)
.

Theorem 2.3. Let t, s, u, v ∈ R+ such that t ≤ u, s ≤ v, then the following
inequality is valid

(2.5) Mt,s ≤ Mu,v.

Proof. Since Λt is log-convex, therefore by (2.4) we get (2.5). �

Theorem 2.4. Let x and y be two non-negative decreasing n-tuples, p =
(p1, ..., pn) be a real n-tuple and let

λt = λt(x,y;p) :=
n∑
i=1

pi ϕt(yi)−
n∑
i=1

pi ϕt(xi),

such that conditions (1.6) and (1.7) are satisfied and λt is positive. Then the
following statements are valid:

(a) For every n ∈ N and s1, ..., sn ∈ R+, the matrix

[
λ si+sj

2

]n
i,j=1

is a

positive semi-definite matrix. Particularly

(2.6) det

[
λ si + sj

2

]k
i,j=1

≥ 0

for k = 1, ..., n.
(b) The function s→ λs is exponentially convex.
(c) The function s→ λs is a log-convex on R+ and the following inequality

holds for 0 < r < s < t < ∞ :

(2.7)
(
λs
)t−r ≤ (λr)t−s (λt)s−r .

Proof. As in the proof of Theorem 2.2, we use Theorem 1.5 instead of Theo-
rem 1.3. �

As in [1], we define the following means of Cauchy type.

M̃t,s =
(
λt
λs

) 1
t−s

, t, s ∈ R+, s 6= t.(2.8)

M̃s,s = exp
(∑n

i=1 pi yi
s log yi−

∑n
i=1 pi xi

s log xi∑n
i=1 pi yi

s−
∑n
i=1 pi xi

s − 2s−1
s(s−1)

)
, s 6= 1.

M̃1,1 = exp
(∑n

i=1 pi yi (log yi)
2−

∑n
i=1 pi xi (log xi)

2

2
(∑n

i=1 pi yi log yi−
∑n
i=1 pi xi log xi

) − 1
)
.
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Theorem 2.5. Let t, s, u, v ∈ R+ such that t ≤ u, s ≤ v, then the following
inequality is valid

(2.9) M̃t,s ≤ M̃u,v.

Proof. Since λt is log-convex, therefore by (2.8) we get (2.9). �

Corollary 2.6. Let x be non-negative n-tuple and

zt = zt(x) := ϕt

( n∑
i=1

xi

)
−

n∑
i=1

ϕt(xi),

Then the following statements are valid:

(a) For every n ∈ N and s1, ..., sn ∈ R+, the matrix

[
z si+sj

2

]n
i,j=1

is a

positive semi-definite matrix. Particularly

(2.10) det

[
z si + sj

2

]k
i,j=1

≥ 0

for k = 1, ..., n.
(b) The function s→ zs is exponentially convex.
(c) The function s→ zs is a log-convex on R+ and the following inequality

holds for 0 < r < s < t < ∞ :

(2.11) zt−r
s ≤ zt−s

r zs−r
t .

Proof. Set y =
(∑n

i=1 xi, 0, ..., 0
)

and x = (x1, ..., xn) in Theorem 2.2, we
get our required results. �

We define the following means of Cauchy type.

∆t,r(x) =
(

zt(x)
zr(x)

) 1
t−r

, t, r ∈ R+, r 6= t.

(2.12)

∆r,r(x) = exp
((∑n

i=1 xi

)r
log
(∑n

i=1 xi

)
−
∑n
i=1 xi

r log xi(∑n
i=1 xi

)r
−
∑n
i=1 xi

r
− 2r−1

r(r−1)

)
, r 6= 1.

∆1,1(x) = exp
(

(
∑n
i=1 xi) (log(

∑n
i=1 xi))

2−
∑n
i=1 xi (log xi)

2

2
(

(
∑n
i=1 xi) (log(

∑n
i=1 xi))−

∑n
i=1 xi log xi

) − 1
)
.

Corollary 2.7. Let t, r, u, v ∈ R+ such that t ≤ u, r ≤ v, then the follow-
ing inequality is valid

(2.13) ∆t,r(x) ≤ ∆u,v(x).

Proof. Since zt(x) is log-convex, therefore by (2.12) we get (2.13). �
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We define the following Cauchy means, which are similar to [9] for pi = 1,
i = 1, ..., n.

(2.14) Υs
t,r(x) =

(
r(r−s)
t(t−s) .

(∑n
i=1 x

s
i

) t
s−

∑n
i=1 x

t
i(∑n

i=1 x
s
i

) r
s−

∑n
i=1 x

r
i

) 1
t−r

,

t, r, s ∈ R+, t 6= r, t 6= s, r 6= s.

Υs
s,r(x) =

(
r(r−s)
s2

.
∑n
i=1 x

s
i log

(∑n
i=1 x

s
i

)
−s

∑n
i=1 x

s
i log xi(∑n

i=1 x
s
i

) r
s−

∑n
i=1 x

r
i

) 1
s−r

, r 6= s.

Υs
r,r(x) = exp

((∑n
i=1 x

s
i

) r
s log

(∑n
i=1 x

s
i

)
−s

∑n
i=1 xi

r log xi

s

((∑n
i=1 x

s
i

) r
s−

∑n
i=1 xi

r

) − 2r−s
r(r−s)

)
,

r 6= s.

Υs
s,s(x) = exp

((∑n
i=1 x

s
i

)(
log
(∑n

i=1 x
s
i

))2
−s2

∑n
i=1 xi

s (log xi)
2

2s

((∑n
i=1 x

s
i

)
log
(∑n

i=1 x
s
i

)
−s

∑n
i=1 xi

s log xi

) − 1
s

)
.

Corollary 2.8. Let t, r, u, v ∈ R+ such that t ≤ u, r ≤ v, then the follow-
ing inequality is valid

(2.15) Υs
t,r(x) ≤ Υs

u,v(x)

Proof. Let

(2.16) zt(x) :=

{
1

t(t−1))

((∑n
i=1 xi

)t
−
∑n

i=1 x
t
i

)
, t 6= 1;∑n

i=1 xi log
(∑n

i=1 xi
)
−
∑n

i=1 xi log xi, t = 1.

Using corollary 2.7, we have(
r(r−1)
t(t−1) .

(∑n
i=1 xi

)t
−
∑n
i=1 x

t
i(∑n

i=1 xi

)r
−
∑n
i=1 x

r
i

) 1
t−r ≤

(
u(u−1)
v(v−1) .

(∑n
i=1 xi

)v
−
∑n
i=1 x

v
i(∑n

i=1 xi

)u
−
∑n
i=1 x

u
i

) 1
v−u

.

Since s > 0 by substituting xi = xsi , t = t
s , r = r

s , u = u
s and v = v

s in above
inequality, we get

(
r(r−s)
t(t−s) .

(∑n
i=1 x

s
i

) t
s−

∑n
i=1 x

t
i(∑n

i=1 x
s
i

) r
s−

∑n
i=1 x

r
i

) s
t−r ≤

(
u(u−s)
v(v−s) .

(∑n
i=1 x

s
i

)v
s−

∑n
i=1 x

v
i(∑n

i=1 x
s
i

)u
s −

∑n
i=1 x

u
i

) s
v−u

.

By raising power 1
s , we get (2.15). �

Remark 2.9. Let us note that in [8], the following function φt = tzt was
considered. It was proved that

(2.17) φt−rs ≤ φt−sr φs−rt .
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In [9], it was proved that this implies

zt−r
s ≤ st−r

rt−sts−r zt−s
r zs−r

t .

Since st−r

rt−sts−r < 1, we have that (2.17) is better than (2.11). �

Theorem 2.10. Let x(τ) and y(τ) be two non-negative real-valued functions
defined on an interval [a, b], decreasing in [a, b], y(τ) � x(τ) and

βt(x(τ); y(τ)) :=

∫ b

a
ϕt(y(τ)) dτ −

∫ b

a
ϕt(x(τ)) dτ,

and βt is positive.
Then the following statements are valid:

(a) For every n ∈ N and s1, ..., sn ∈ R+, the matrix

[
β si+sj

2

]n
i,j=1

is a

positive semi-definite matrix. Particularly

(2.18) det

[
β si + sj

2

]k
i,j=1

≥ 0

for k = 1, ..., n.
(b) The function s→ βs is exponentially convex.
(c) The function s→ βs is a log-convex on R+ and the following inequality

holds for 0 < r < s < t < ∞ :

(2.19)
(
βs
)t−r ≤ (βr)t−s (βt)s−r .

Proof. As in the proof of Theorem 2.2, we use Theorem 1.7 instead of Theo-
rem 1.3. �

Theorem 2.11. Let x(τ), y(τ) : [a, b]→ R, x(τ) and y(τ) are non-negative
continuous and increasing, G : [a, b] → R be a function of bounded variation
and

Γt(x(τ), y(τ); G(τ)) :=

∫ b

a
ϕt(y(τ)) dG(τ)−

∫ b

a
ϕt(x(τ)) dG(τ)

such that conditions (1.11) and (1.12) are satisfied and Γt is positive.
Then the following statements are valid:

(a) For every n ∈ N and s1, ..., sn ∈ R+, the matrix

[
Γ si+sj

2

]n
i,j=1

is a

positive semi-definite matrix. Particularly

(2.20) det

[
Γ si + sj

2

]k
i,j=1

≥ 0

for k = 1, ..., n.
(b) The function s→ Γs is exponentially convex.
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(c) The function s→ Γs is a log-convex on R+ and the following inequality
holds for 0 < r < s < t < ∞ :

(2.21)
(
Γs
)t−r ≤ (Γr)t−s (Γt)s−r .

Proof. As in the proof of Theorem 2.2, we use Theorem 1.8 instead of Theo-
rem 1.3. �

Theorem 2.12. Let F (τ) and G(τ) are non-negative continuous and in-
creasing functions defined on an interval [0,+∞) such that F (0) = G(0) = 0,
F (τ) � G(τ), F (τ) and G(τ) are defined in (1.14),

θt(τ, G(τ); F (τ)) :=

∫ ∞
0

ϕt(τ) dG(τ)−
∫ ∞

0
ϕt(τ) dF (τ),

and θt is positive.
Then the following statements are valid:

(a) For every n ∈ N and s1, ..., sn ∈ R+, the matrix

[
θ si+sj

2

]n
i,j=1

is a

positive semi-definite matrix. Particularly

(2.22) det

[
θ si + sj

2

]k
i,j=1

≥ 0

for k = 1, ..., n.
(b) The function s→ θs is exponentially convex.
(c) The function s→ θs is a log-convex on R+ and the following inequality

holds for 0 < r < s < t < ∞ :

(2.23) θt−rs ≤ θt−sr θs−rt .

Proof. As in the proof of Theorem 2.2, we use Theorem 1.10 instead of
Theorem 1.3. �

As in [1], we define the following means of Cauchy type.

θt,s =
(
θt
θs

) 1
t−s

, t, s ∈ R+, s 6= t.(2.24)

θs,s = exp
(∫∞

0 τs log τ dG(τ)−
∫∞
0 τs log τ dF (τ)∫∞

0 τs dG(τ)−
∫∞
0 τs dF (τ)

− 2s−1
s(s−1)

)
, s 6= 1.

θ1,1 = exp
( ∫∞

0 τ log2 τ dG(τ)−
∫∞
0 τ log2 τ dF (τ)

2

( ∫∞
0 τ log τ dG(τ)−

∫∞
0 τ log τ dF (τ)

) − 1
)
.

Theorem 2.13. Let t, s, u, v ∈ R+ such that t ≤ u, s ≤ v, then the following
inequality is valid

(2.25) θt,s ≤ θu,v.

Proof. Since θt is log-convex, therefore by (2.24) we get (2.25). �
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Remark 2.14. As in [1], we can use Theorem 2.2, Theorem 2.4, Corollary
2.6, Theorem 2.10, Theorem 2.11 and Theorem 2.12 to obtain corresponding
Cauchy means. �

3. MULTIPLICATIVE MAJORIZATION

Lemma 3.1. Given t ∈ R, define the function

(3.1) ψt(x) :=


1
t2

etx, t 6= 0;

1
2 x

2, t = 0,

Then ψ′′t (x) = etx, that is, ψt(x) is convex for x ∈ R.

Theorem 3.2. Let x and y be two real n-tuples, y � x ,

ξt = ξt(x; y) :=

n∑
i=1

ψt(yi)−
n∑
i=1

ψt(xi),

and all x[i]’s and y[i]’s are not equal.
Then the following statements are valid:

(a) For every n ∈ N and s1, ..., sn ∈ R, the matrix

[
ξ si+sj

2

]n
i,j=1

is a

positive semi-definite matrix. Particularly

(3.2) det

[
ξ si + sj

2

]k
i,j=1

≥ 0

for k = 1, ..., n.
(b) The function s→ ξs is exponentially convex.
(c) The function s→ ξs is a log-convex on R and the following inequality

holds for −∞ < r < s < t < ∞ :

(3.3) ξt−rs ≤ ξt−sr ξs−rt .

Proof. As in the proof of Theorem 2.2, we use ψt instead of ϕt. �

As in [1], we define the following means of Cauchy type.

Θt,s =
(
ξt
ξs

) 1
t−s

, t, s ∈ R, s 6= t.(3.4)

Θs,s = exp
(∑n

i=1 yi esyi−
∑n
i=1 xi esxi∑n

i=1 esyi−
∑n
i=1 esyi

− 2
s

)
, s 6= 0.

Θ0,0 = exp
( ∑n

i=1 y
3
i−

∑n
i=1 x

3
i

3
(∑n

i=1 y
2
i−

∑n
i=1 x

2
i

)).
Theorem 3.3. Let t, s, u, v ∈ R such that t ≤ u, s ≤ v, then the following

inequality is valid

(3.5) Θt,s ≤ Θu,v.

Proof. Since ξt is log-convex, therefore by (3.4) we get (3.5). �
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Theorem 3.4. Let x and y be two decreasing real n-tuples, p = (p1, ..., pn)
be a real n-tuple and let

ξt = ξt(x, y; p) :=
n∑
i=1

pi ψt(yi)−
n∑
i=1

pi ψt(xi),

such that conditions (1.6) and (1.7) are satisfied and ξt is positive.
Then the following statements are valid:

(a) For every n ∈ N and s1, ..., sn ∈ R, the matrix

[
ξ si+sj

2

]n
i,j=1

is a

positive semi-definite matrix. Particularly

(3.6) det

[
ξ si + sj

2

]k
i,j=1

≥ 0

for k = 1, ..., n.
(b) The function s→ ξs is exponentially convex.
(c) The function s→ ξs is a log-convex on R and the following inequality

holds for −∞ < r < s < t < ∞ :

(3.7)
(
ξs
)t−r ≤ (ξr)t−s (ξt)s−r .

Proof. As in the proof of Theorem 2.2, we use Theorem 1.5 instead of The-
orem 1.3 and ψt instead of ϕt. �

As in [1], we define the following means of Cauchy type.

Θt,s =
(
ξt
ξs

) 1
t−s

, t, s ∈ R, s 6= t.(3.8)

Θs,s = exp
(∑n

i=1 pi yi esyi−
∑n
i=1 pi xi eesxi∑n

i=1 pi esyi−
∑n
i=1 pi esxi

− 2
s

)
, s 6= 0.

Θ0,0 = exp
( ∑n

i=1 pi y
3
i−

∑n
i=1 pi x

3
i

3
(∑n

i=1 pi y
2
i−

∑n
i=1 pi x

2
i

)).
Theorem 3.5. Let t, s, u, v ∈ R such that t ≤ u, s ≤ v, then the following

inequality is valid

(3.9) Θt,s ≤ Θu,v.

Proof. Since ξt is log-convex, therefore by (3.8) we get (3.9). �

Corollary 3.6. Let x and y be two positive n-tuples, x ≺× y ,

Ωt(log x; log y) = ξt(x; y) :=


1
t2

(∑n
i=1 y

t
i −

∑n
i=1 x

t
i

)
, t 6= 0;

1
2

(∑n
i=1 log2yi −

∑n
i=1 log2xi

)
, t = 0,

and all x[i]’s and y[i]’s are not equal.
Then the following statements are valid:



64 Naveed Latif and Josip Pečarić 15

(a) For every n ∈ N and s1, ..., sn ∈ R, the matrix

[
Ω si+sj

2

]n
i,j=1

is a

positive semi-definite matrix. Particularly

(3.10) det

[
Ω si + sj

2

]k
i,j=1

≥ 0

for k = 1, ..., n.
(b) The function s→ Ωs is exponentially convex.
(c) The function s→ Ωs is a log-convex on R and the following inequality

holds for −∞ < r < s < t < ∞ :

(3.11) Ωt−r
s ≤ Ωt−s

r Ωs−r
t .

Proof. As in the proof of Theorem 2.2, we use Theorem 1.3 for x = logx
and y = logy and using ψt instead of ϕt. �

As in [1], we define the following means of Cauchy type.

Ψt,s =
(

Ωt
Ωs

) 1
t−s

, t, s ∈ R, s 6= t.(3.12)

Ψs,s = exp
(∑n

i=1 y
s
i log yi−

∑n
i=1 x

s
i log xi∑n

i=1 y
s
i−

∑n
i=1 x

s
i

− 2
s

)
, s 6= 0.

Ψ0,0 = exp
( ∑n

i=1 log3 yi−
∑n
i=1 log3 xi

3
(∑n

i=1 log2 yi−
∑n
i=1 log2 xi

)).
Corollary 3.7. Let t, s, u, v ∈ R such that t ≤ u, s ≤ v, then the following

inequality is valid

(3.13) Ψt,s ≤ Ψu,v.

Proof. Since Ωt is log-convex, therefore by (3.12) we get (3.13). �

Corollary 3.8. Let x and y be two positive decreasing n-tuples, p =
(p1, ..., pn) be a real n-tuple and let

Ωt(x,y;p) =

= ξt(log x, log y; p) :=


1
t2

(∑n
i=1 pi y

t
i −

∑n
i=1 pi x

t
i

)
, t 6= 0;

1
2

(∑n
i=1 pi log2yi −

∑n
i=1 pi log2xi

)
, t = 0,

such that conditions (1.6) and (1.7) are satisfied and Ωt is positive.
Then the following statements are valid:

(a) For every n ∈ N and s1, ..., sn ∈ R, the matrix

[
Ω si+sj

2

]n
i,j=1

is a

positive semi-definite matrix. Particularly

(3.14) det

[
Ω si + sj

2

]k
i,j=1

≥ 0
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for k = 1, ..., n.
(b) The function s→ Ωs is exponentially convex.
(c) The function s→ Ωs is a log-convex on R and the following inequality

holds for −∞ < r < s < t < ∞ :

(3.15)
(
Ωs

)t−r ≤ (Ωr

)t−s (
Ωt

)s−r
.

Proof. As in the proof of Theorem 2.2, we use Theorem 1.5 for x = logx
and y = logy and using ψt instead of ϕt. �

As in [1], we define the following means of Cauchy type.

Ψt,s =
(

Ωt
Ωs

) 1
t−s

, t, s ∈ R, s 6= t.(3.16)

Ψs,s = exp
(∑n

i=1 pi y
s
i log yi−

∑n
i=1 pi x

s
i log xi∑n

i=1 pi y
s
i−

∑n
i=1 pi x

s
i

− 2
s

)
, s 6= 0.

Ψ0,0 = exp
( ∑n

i=1 pi log3 yi−
∑n
i=1 pi log3 xi

3
(∑n

i=1 pi log2 yi−
∑n
i=1 pi log2 xi

)).
Corollary 3.9. Let t, s, u, v ∈ R such that t ≤ u, s ≤ v, then the following

inequality is valid

(3.17) Ψt,s ≤ Ψu,v.

Proof. Since Ωt is log-convex, therefore by (3.16) we get (3.17). �

Theorem 3.10. Let x(τ) and y(τ) be two real-valued functions defined on
an interval [a, b], decreasing in [a, b], y(τ) � x(τ) and

Φt(x(τ); y(τ)) :=

∫ b

a
ψt(y(τ)) dτ −

∫ b

a
ψt(x(τ)) dτ,

and Φt is positive.
Then the following statements are valid:

(a) For every n ∈ N and s1, ..., sn ∈ R, the matrix

[
Φ si+sj

2

]n
i,j=1

is a

positive semi-definite matrix. Particularly

(3.18) det

[
Φ si + sj

2

]k
i,j=1

≥ 0

for k = 1, ..., n.
(b) The function s→ Φs is exponentially convex.
(c) The function s→ Φs is a log-convex on R and the following inequality

holds for −∞ < r < s < t < ∞ :

(3.19) Φt−r
s ≤ Φt−s

r Φs−r
t .

Proof. As in the proof of Theorem 2.2, we use Theorem 1.7 instead of The-
orem 1.3 and ψt instead of ϕt. �
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Theorem 3.11. Let x(τ), y(τ) : [a, b] → R, x(τ) and y(τ) are continuous
and increasing, G : [a, b]→ R be a function of bounded variation and

Φt(x(τ), y(τ); G(τ)) :=

∫ b

a
ψt(y(τ)) dG(τ)−

∫ b

a
ψt(x(τ)) dG(τ)

such that conditions (1.11) and (1.12) are satisfied and Φt is positive.
Then the following statements are valid:

(a) For every n ∈ N and s1, ..., sn ∈ R, the matrix

[
Φ si+sj

2

]n
i,j=1

is a

positive semi-definite matrix. Particularly

(3.20) det

[
Φ si + sj

2

]k
i,j=1

≥ 0

for k = 1, ..., n.
(b) The function s→ Φs is exponentially convex.
(c) The function s→ Φs is a log-convex on R and the following inequality

holds for −∞ < r < s < t < ∞ :

(3.21)
(
Φs

)t−r ≤ (Φr

)t−s (
Φt

)s−r
.

Proof. As in the proof of Theorem 2.2, we use Theorem 1.8 instead of The-
orem 1.3 and ψt instead of ϕt. �

Theorem 3.12. Let F (τ) and G(τ) are real continuous and increasing func-
tions defined on an interval [0,+∞) such that F (0) = G(0) = 0, F (τ) � G(τ),
F (τ) and G(τ) are defined in (1.14),

ϑt(τ, G(τ); F (τ)) :=

∫ ∞
0

ψt(τ) dG(τ)−
∫ ∞

0
ψt(τ) dF (τ),

and ϑt is positive.
Then the following statements are valid:

(a) For every n ∈ N and s1, ..., sn ∈ R, the matrix

[
ϑ si+sj

2

]n
i,j=1

is a

positive semi-definite matrix. Particularly

(3.22) det

[
ϑ si + sj

2

]k
i,j=1

≥ 0

for k = 1, ..., n.
(b) The function s→ ϑs is exponentially convex.
(c) The function s→ ϑs is a log-convex on R and the following inequality

holds for −∞ < r < s < t < ∞ :

(3.23) ϑt−rs ≤ ϑt−sr ϑs−rt .

Proof. As in the proof of Theorem 2.2, we use Theorem 1.10 instead of
Theorem 1.3 and ψt instead of ϕt. �
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As in [1], we define the following means of Cauchy type.

ϑt,s =
(
ϑt
ϑs

) 1
t−s

, t, s ∈ R, s 6= t.(3.24)

ϑs,s = exp
(∫∞

0 τ esτ dG(τ)−
∫∞
0 τ esτ dF (τ)∫∞

0 esτ dG(τ)−
∫∞
0 esτ dF (τ)

− 2
s

)
, s 6= 0.

ϑ0,0 = exp
( ∫∞

0 τ3 dG(τ)−
∫∞
0 τ3 dF (τ)

3
( ∫∞

0 τ2 dG(τ)−
∫∞
0 τ2 dF (τ)

)).
Theorem 3.13. Let t, s, u, v ∈ R such that t ≤ u, s ≤ v, then the following

(3.25) ϑt,s ≤ ϑu,v.

Proof. Since ϑt is log-convex, therefore by (3.24) we get (3.25). �

Remark 3.14. As in [1], we can use Theorem 3.2, Theorem 3.4, Corollary
3.6, Corollary 3.8, Theorem 3.10, Theorem 3.11 and Theorem 3.12 to obtain
corresponding Cauchy means. �
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