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Abstract. In this paper, we obtain new results concerning the generalizations
of additive and multiplicative majorizations by means of exponential convex-
ity. We prove positive semi-definiteness of matrices generated by differences
deduced from majorization type results which implies exponential convexity and
log-convexity of these differences and also obtain Lyapunov’s and Dresher’s in-
equalities for these differences. We give some applications of additive and multi-
plicative majorizations. In addition, we introduce new means of Cauchy’s type
and establish their monotonicity.

MSC 2000. 39B62, 26A51, 26B25.

Keywords. Convex function, additive majorization, multiplicative majoriza-
tion, applications of majorization, positive semi-definite matrix, exponential-
convexity, log-convexity, Lyapunov’s inequality, Dresher’s inequality, means of
Cauchy’s type.

1. INTRODUCTION AND PRELIMINARIES
For fixed n > 2 let

X=(T1,Zn), ¥ = (Y1y--esYn)
denote two n-tuples. Let

Vv

T 2 Xjg) 2 - 2 Tl Y] = Y2 2 - 2 Yol

1) S x) <o S Ty, YY) S Y S-S Y

be their ordered components.

DEFINITION 1.1. (cf. [I0], p. 319) y is said to majorize x (or x is said to
be magjorized by y), in symbol, y > x, if

(1.1) Do < Dy
=1 =1
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holds for m=1,2,....,n—1 and

(1.2) ZJ}Z = Zyz
=1 i=1

Note that (1.1)) is equivalent to

g
3
A
N
S

form=1,2..n—1.

Parallel to the concept of additive majorization is the notion of multiplica-
tive majorization (also termed log-majorization).

DEFINITION 1.2. Let x, y be two positive n-tuples, y s said to be multi-
plicatively majorized by x, denoted by x <x Yy if

(1.3) [T=a < ITwu
=1 =1

holds form=1,2,....n—1 and

=1 =1

Note that (1.3)) is equivalent to

n n

H L(4)

i=n—m+1 i=n—m+1

holds form =1,2,....n — 1.

IA
—
<

To differentiate the two types of majorization, we sometimes use the symbol
=<4 rather than < to denote (additive) majorization.

The following theorem is well-known as the majorization theorem and a
convenient reference for its proof is in the book of Marshall and Olkin (1979)
([6], p-11) (see [10], p.320):

THEOREM 1.3. Let I be an interval in R and x, y be two n-tuples such that
zi,yi €I (i=1,..,n). Then

(1.5) D ) <> dw)
i=1 i=1
holds for every continuous convex function ¢ : I — R iff y >=a holds.

REMARK 1.4. [5] If ¢(z) is a strictly convex function then equality in (|1.5))
is valid iff Tl = Y[)» 1= 1, ey N O

The following theorem can be regarded as a generalization of the majoriza-
tion theorem and is proved by Fuchs (1947) in [4] (see [10], p. 323):
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THEOREM 1.5. Let @, y be two decreasing n-tuples and p = (p1,...,pn) be a
real n-tuple such that

k k

(1.6) Zpixi < Zp,;yi for k=1,...,n—
i=1 i=1

and

n n
(1.7) > pizi = pivie
i=1 =1

Then for every continuous convex function ¢ : I — R, we have

(1.8) D pid(x) <D pidwi).
i=1 i=1
Let x(7), y(7) be two real-valued functions defined on an interval [a, b] such
that [ x(7)dr, [7y(7)dr both exist for all s € [a, b].

DEFINITION 1.6. (cf. [10], p. 324) y(7) is said to majorize x(T), in symbol,
y(1) = (1), for T € [a,b] if they are decreasing in T € [a,b] and

(1.9) / x(7) dTS/ y(t)dr  for s € [a,b],
and equality in (1.9) holds for s =b.

The following theorem can be regarded as majorization theorem in integral
case (see [10], p. 325):

THEOREM 1.7. y(7) > x(7) for T € [a,b] iff they are decreasing in [a,b] and

(1.10) /¢ ) dr < / by

holds for every ¢ that is continuous and convez in [a,b] such that the integrals
exist.

The following theorem is a simple consequence of Theorem 12.14 in [I1] (see
[10], p. 328):

THEOREM 1.8. Let z(7), y(7) : [a,b] = R, x(7) and y(7) are continuous
and increasing and let G : [a,b] — R be a function of bounded variation.

(a) If
b b
(1.11) / z(7)dG(1) < / y(1)dG(T) for all v € [a,b],

and

b b
(1.12) / 2(r)dG(r) = / y(7)dG(7)
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hold then for every continuous convez function f, we have

b b
(1.13) / f(a(r)) dG(r) < / f(y()) dG (7).
(b

) If (L.11)) holds then (1.13)) holds for every continuous increasing convex
function f.

Let F(7), G(7) be two continuous and increasing functions for 7 > 0 such
that F'(0) = G(0) = 0 and define

(1.14) F(r) = 1-F(7), G(r) =1-G(r) for T >0.
DEFINITION 1.9. (cf. [10], p. 330) F(7) is said to majorize G(1), in symbol,
F(1) = G(1), for T € [0, +00) if

(1.15) /SG(T) dr < /SF(T) dr  forall s > 0,
and : :
(1.16) /OOOG(T) dr = /OOOF(T) dr < oo.
The following result was obtained by Boland and Proschan (1986) [3] (see
[10], p. 331):
THEOREM 1.10. F(7) = G(7) for T € [0, +00) holds iff

(1.17) /¢> )dF(r /¢ )dG(r

holds for all convex functions ¢, provided the integrals are finite.

DEFINITION 1.11. A function h : (a,b) — R is exponentially convexr function
if it is continuous and

Z glgj mz + l'j) >0

,j=1
for all n € N and all choices & € R and x; € (a,b), i = 1,...,n such that
zi+zj € (a,b), 1<i,j<n.
The following proposition is given in [2]:
PropOSITION 1.12. Let h : (a,b) — R. The following propositions are
equivalent.

(i) h is exponentially convex.
(ii) h is continuous and

S an (52 = 0

1,j=1
for every n € N, every & € R and every x;,x; € (a,b), 1 <i,j < n.
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COROLLARY 1.13. If h is exponentially convex then

(=52 20

for every n € N and every z; € (a,b), i =1,...,n.

COROLLARY 1.14. If h : (a,b) — R™ is exponentially convex function then
h s a log-convex function.

The following lemma is equivalent to definition of convex function (see [10],
p. 2):
LEMMA 1.15. If f is convex on an interval I C R, then

f(s1)(s3 — s2) + f(s2)(s1 — s3) + f(s3)(s52 — 51) = 0,
holds for every s; < so < s3, S1,89,83 € I.

In [1], the following result is proved:

THEOREM 1.16. Let x and y be two positive n-tuples, y > X,
n n
A= M(sy) == (i) — Y (@),
i=1 i=1

and all x;)’s and yj; ’s are not equal.
Then the following statements are valid:

n
(a) For every n € N and s1,...,8, € R, the matrix [Asi+sj] s a
2 lij=1
positive semi-definite matriz. Particularly

k
2

ij=1
fork=1,..n.

(b) The function s — As is exponentially convex.

(¢) The function s — As is a log-convex on R and the following inequality
holds for —oco < r < s <t < oco:

1.19 AT < AETSASTT
S T t

Similar results and corresponding Cauchy means are proved in [I] with a
stronger condition that x and y are positive n-tuples.

In this paper we give results for generalizations of additive majorization
as in [I] and multiplicative majorization. Moreover, several applications of
majorization are obtained by using following important example

(in, 0,..., O) = (X1, ey Tp)-
i=1

We also give some applications of additive and multiplicative majorizations.
In this connection, the following remark in [7] is important:
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“majorization theory is the underlying mathematical theory on which the
framework hings. It allows the transformation of the originally complicated
matrix-valued non-convex problem into a simple scalar problem.”

It was shown in [7] that additive majorization relation plays a key role in the
design of linear MIMO transceivers, whereas the multiplicative majorization
relation is the basis for nonlinear decision-feedback MIMO transceivers.

2. THE CASE OF NON-NEGATIVE SEQUENCES AND FUNCTIONS

LEMMA 2.1. Define the function

(2.1) By(c) = { ey SE DL

zlogx, s=1,

where s € RT.
Then @"(z) = 2572, that is, p,(z) is convex for x > 0.

In our results we use the notation 0log0 = 0.

THEOREM 2.2. Let x and y be two non-negative n-tuples, y > x ,
n n
A = M(xyy) o= Z (yi) — Z (i),
i=1 i=1

and all T(;’s and yj;)’s are not equal
Then the following statements are valid:

n
(a) For every n € N and s1,...,s, € RT, the matrix [Asi+sj] s a
2 lij=1
positive semi-definite matriz. Particularly

k
(2.2) det {Asﬁsj] >0
2 lij=1
fork=1,...,n.
(b) The function s — A4 is exponentially convex.
(c) The function s — Ag is alog-conver on RY and the following inequality

holds for0 < r < s <t < o0:
(23> (E)t—T S (E)t—s (E)S_T.

Proof. (a) Consider the function

k
p(x) = Z UiUj Ps;; (z)
,J

S; +8;5

for k=1,..,n, x>0, u; € R, s;; € RY, where s;; = =5~ and ¢, is defined

in (21).




56 Naveed Latif and Josip Pecarié¢ 7

We have

k
/,L”(ﬂj‘) — Z ui 251 -2 _
i,J

k 2
Z CA
7

This shows that p is a convex function for = > 0.
Using Theorem

> uym) = > nlwm) > 0.

This implies

n k n k
m=1 \ ij m=1 \ ij

or equivalently
k
Z uiuj Asij Z 0.
i?j

n
From last inequality, it follows that the matrix |:Asi+5]~:| is a positive
2

ij=1

semi-definite matrix, that is, is valid. !

(b) Note that Ay is continuous for s € RT. Then by using Proposition m
we get exponentially convexity of the function s — A,.

(c) Since @,(z) is continuous and strictly convex function for z > 0 and all
zp)’s and yp;’s are not equal, therefore by Theorem with ¢ =p,, we have

Z Py (yi) > Z @ (i) -
=1 =1

This implies
Ao=R(xy) = % W) — Y B (w) >0,
=1

=1

that is, A; is positive-valued function. -
A simple consequence of Corollary is that A is log-convex, then by
definition

log (E)t—r S log (E)t—s + log (E)S—T7
which is equivalent to (2.3]). O
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As in [1], we define the following means of Cauchy type.
1

(2.4) M s = <%>g7 t,s € R, s#£t.

_ i1 yi® logyi—> 0 xi® logx; 2s—1
M s = exp ( TS S S ) S # 1.

M1 = exp (Z?:l yi (logy:)?—>"1 | @ (log i) 1).
’ 2(2?:1 yi logy;—3 ;" @i log 171)

THEOREM 2.3. Let t,s,u,v € RT such that t < u, s < v, then the following
iequality is valid

(25) Mt7s < Mu,v-
Proof. Since A; is log-convex, therefore by (2.4) we get (2.5). O

THEOREM 2.4. Let x and y be two non-negative decreasing n-tuples, p =
(p1, ..., Pn) be a real n-tuple and let

n
X = M(x,y:p) sz 2u(yi) = D> pidy(wi),

such that conditions (1.6) and (1.7) are satisfied and N; is positive. Then the
following statements are valid:

n
(a) For every n € N and s1,...,8, € RY, the matriz |:>\5i+5j:| 5 a
2 lij=1
positive semi-definite matriz. Particularly

k
(2.6) det [Asi Hj} >0
2 i,j=1

fork=1,..n

(b) The function s — A is exponentially convez.

(c) The function s — A is a log-convex on R and the following inequality
holds for0 < r < s <t < oo:

(2.7) )= ()T T
Proof. As in the proof of Theorem we use Theorem [I.5|instead of Theo-
rem [T.3] O

As in [I], we define the following means of Cauchy type.
1

(2.8) ]/\Zt,s = (it)t . t,scRY, s#£t.

1 Piyi® logyi—3 1 piai® loga 251
M — X Zl_lpzyz 7 i=1FPi L i S 1
5,8 eXp Dol PiYiS = iy Pi Tt s(s—1) )’ s #

— n s (1 N2_\n (1 )2
Ml 1 = exp (21:151 yz(Ogyz) Zzilpz 731(051'1) o 1)
2(21-:1 Piyi logyi—> 11 pix; 10g90¢)
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THEOREM 2.5. Let t,s,u,v € RT such thatt < u, s < v, then the following
nequality is valid

(2.9) Mys < My
Proof. Since ); is log-convex, therefore by (2.8) we get (2.9). O

COROLLARY 2.6. Let x be non-negative n-tuple and

Fi=Fx) = ¢t<z ) Z%Ot ;)

=1

Then the following statements are valid:

n
(a) For every n € N and s1,...,8, € RT, the matriz [Fsi_;_sj] s a
2 lij=1
positive semi-definite matriz. Particularly

k
(2.10) det {Fsﬁsj] > 0
2 Jig=1

fork=1,...n

(b) The function s — F s is exponentially convez.

(c) The function s — F s is alog-convex on R™ and the following inequality
holds for0 < r < s <t < o0:

(2.11) FOm < FTETT
Proof. Set y = (Z?:l xi,O,...,O) and x = (x1,...,2,) in Theorem 2.2 we

get our required results. O

We define the following means of Cauchy type.
(2.12)

L
Atr():(ﬁjg))t . LrERY, rAL

. — 1331 log(Z:?_1 xi)—z?:l z;" log z; 21 )
= eXp( S )T—E?ZI " r(r—1) >’ r 7é 1.
Apq(x) = exp< = 1xl)(log L L 1).
1 124) IOg(Zz 1%4))— 21 1% lngEz)

COROLLARY 2.7. Let t,r,u,v € R" such that t < u, r < v, then the follow-
g tnequality is valid

(2.13) Apr(z) < Ayy().
Proof. Since F ¢(x) is log-convex, therefore by (2.12) we get (2.13). O
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We define the following Cauchy means, which are similar to [9] for p; = 1,
1=1,..,n

)

3% w e

n L
721 1 l)t

(2.14) T, (x) = (r(r—s)'(Z?—le)
>, T

t(t—s)
(Z?:NC:)
t,r,s R, t#£r, t#s, r#s.

1
T;T(£) _ (r(?“—s) Doy % log(zZ 1x1) —s> 0 logm,) _,,’ T;ﬁs,

s2 r

(27:1 xf) R DHE

17 (2) = exp<( Loy i) g ?%nxl) $2.imy @i logwi 27“—5)
) 8((2Lﬂf)g— ?1331) r(r—s)
r#s.

5s(x) = exp ((Ef va7) (log (S0 07)) =52 S0 0° (loga)? — l).
) 23((2? 1 Z) log(zl 111) sy 1xﬁlog:1:1>

S

COROLLARY 2.8. Let t,r,u,v € R™ such that t < u, r < v, then the follow-
ing inequality is valid
(2.15) TE,(x) < 15, ()

Proof. Let

wol(Sh) )
(2.16) Fi(z) := t—1)) i=1Ti i=1%; )5 ;
Z?:l x; log (Z?:l CL‘Z) — Z:‘L:l xX; log Zi, t=1.

Using corollary we have
1

t v 1
(5= (Siy ) —¥r, o ) < ( ) (She) -5, a )
#=1) (Z?:1 xz) e ( Z) iy
Since s > 0 by substituting z; =z, t = ¢, r = {, u = ¢ and v = { in above
inequality, we get
13 v s
(7‘(’!‘—8) (22;1 9513) Y ) t T« (u(u—s) (Z?:l xf) S a)\ v—u
t(t—s) " r = \v(v—s)" u :
(E?:l xf) D (Z?:l :ch) DD

By raising power %, we get (2 ]

REMARK 2.9. Let us note that in [§], the following function ¢; = ¢ F ¢ was
considered. It was proved that

(2.17) ¢ "< oo
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In [9], it was proved that this implies

st—r

t—r t—s s—r
Fs = m=pm=Fr Fi -

Since thi% < 1, we have that 1' is better than 1) O

THEOREM 2.10. Let z(7) and y(T) be two non-negative real-valued functions
defined on an interval [a,b], decreasing in [a,b], y(T) = x(T) and

b
m@mwmwz/

a

b
¢mwmh‘/%@mmn

and B, is positive.
Then the following statements are valid:

n
(a) For every n € N and s1,...,8, € RT, the matriz [Bsﬁsj] s a
2 lij=1
positive semi-definite matriz. Particularly

k
(2.18) det [ﬁsmj] >0
2 dig=1
fork=1,....n.
(b) The function s — B, is exponentially conver.
(c) The function s — f, is alog-convex on RT and the following inequality
holds for0 < r < s <t < o0o:

(2.19) (B) " < (B) " (B)
Proof. As in the proof of Theorem we use Theorem [I.7]instead of Theo-
rem [T.3] O

THEOREM 2.11. Let z(7), y(7) : [a,b] = R, (1) and y(7) are non-negative
continuous and increasing, G : [a,b] — R be a function of bounded variation
and

b b
Tia(r), u(r): G(r) = [ Bla(r) a6 ~ [ pilalr)dc(r)
such that conditions and are satisfied and Ty is positive.

Then the following statements are valid:

n
(a) For every n € N and s1,...,8, € R, the matriz [FSH_S]} 5 a
2 lij=1
positive semi-definite matriz. Particularly

k
2 Jig=1
fork=1,...n.

(b) The function s — T's is exponentially convez.
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(c) The function s — Ty is alog-convex on RT and the following inequality
holds for0 < r < s <t < oo:

(2.21) T < (T)™ @)
Proof. As in the proof of Theorem we use Theorem [I.§]instead of Theo-
rem [T.3] O

THEOREM 2.12. Let F(7) and G(T) are non-negative continuous and in-
creasing functions defined on an interval [0, +00) such that F(0) = G(0) = 0,
F(1) = G(1), F(1) and G(1) are defined in (1.14),

(v, G(r); F(r)) = /0 " Gu(r) dG(r) - /0 Gy (r) dF(r),

and 0; is positive.
Then the following statements are valid:

n
(a) For every n € N and si,...,s, € R, the matriz [GSH_S]} s a
2

i,j=1
positive semi-definite matriz. Particularly

k
2 lij=1
fork=1,..n.
(b) The function s — O is exponentially convex.
(c) The function s — 05 is alog-conver on Rt and the following inequality

holds for0 < r < s <t < oo:
(2.23) 0L < Qe

Proof. As in the proof of Theorem we use Theorem instead of
Theorem 0

As in [1], we define the following means of Cauchy type.
1
(2.24) O = (z—t) =5, seRY, st
— B fooo 5 lOgTdG(T)—fOOO 75 log T dF(T) 251 >
Oss = oxp ( Jo7 mdG(r) = [y~ 7 dF () ) 71
ST log? TdG(T)— [T log? r dF (1) _ 1) .
2<fO°° 7 logTdG(r)—[5° T 10gTdF(T)>

51,1 = exp(

THEOREM 2.13. Lett,s,u,v € RT such thatt < u, s < v, then the following
inequality is valid

(2.25) Ors < Ouo.

Proof. Since 6, is log-convex, therefore by (2.24]) we get (2.25)). O
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REMARK 2. 14 As in [1], we can use Theorem [2.2] Theorem [2.4] Corollary
6l Theorem [2.10, Theorem [2.11] and Theorem [2.12] to obtain corresponding

Cauchy means. O

3. MULTIPLICATIVE MAJORIZATION
LEMMA 3.1. Given t € R, define the function
mel t 0;
(3.1) Pi(x) =

%xQ, =0,
Then f (z) = e'®, that is, V() is conver for x € R.

THEOREM 3.2. Let x and y be two real n-tuples, y > x ,

& = &(x y) Zwt vi) = > i),
=1

and all x;)’s and yp;)’s are not equal.
Then the following statements are valid:

n
(a) For every n € N and si,...,8, € R, the matriz {fsﬁsj] s a
2 Jij=1
positive semi-definite matriz. Particularly

k
(32) det |:§Si+5j:| >0
2 lij=1

fork=1,...n
(b) The function s — & is exponentially conver.

(¢) The function s — &5 is a log-convex on R and the following inequality
holds for —co < r < s <t < o00:

(33) r g g

Proof. As in the proof of Theorem we use 1y instead of ;. O

As in [I], we define the following means of Cauchy type.

1
3.4 Ops = (&)F° t,seR, s#£t.
( s é’s ) ) 9
n LSy 51 5T
O.s = exp (Eliayliyi_%lx;; ~2), s#0.

n 3
@00 :eXp< Zz 1yz i=1T; )
' 3( Z;’l 1 yz i=1 3712)
THEOREM 3.3. Let t,s,u,v € R such thatt < u, s < v, then the following
inequality is valid

(35) @t,s S @u,v-
Proof. Since & is log-convex, therefore by (3.4) we get (3.5)). O
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THEOREM 3.4. Let x and y be two decreasing real n-tuples, p = (p1, ..., Pn)
be a real n-tuple and let

&= &(x,y;p) = ) pite(yi) — Y pithi(ws),
i=1 i=1

such that conditions (1.6) and (1.7) are satisfied and &, is positive.
Then the following statements are valid:

n
(a) For every n € N and si,...,s, € R, the matriz [fsi+sj] is a
2 lij=1

positive semi-definite matriz. Particularly

k
(3.6) det |:£8i+sj:| >0
2 lij=1
fork=1,...n.
(b) The function s — &, is exponentially convez.
(c) The function s — £, is a log-conver on R and the following inequality
holds for —co < r < s <t < oc0:

— \t—7 = \t—8 = \s—T
Proof. As in the proof of Theorem [2.2] we use Theorem [I.5]instead of The-
orem [I.3] and ¢ instead of %;. O

As in [I], we define the following means of Cauchy type.
1

(3.8) O = (g—’) b=s t,seR, s#t.
a i Piyi e%Yi=3 T | pi i ee®Ti
Os5s = exp (Zlfilypieesyi —ZZ::?;];@-%E? - %), s # 0.

000 = i Pyl =Y pia]
0,0 = exp =L =l ),
3(21:1%%_21:1%%)

THEOREM 3.5. Let t,s,u,v € R such thatt < u, s < v, then the following
inequality is valid

(3.9) 15 < Oup.
Proof. Since &, is log-convex, therefore by (3.8) we get (3.9). O

COROLLARY 3.6. Let x and y be two positive n-tuples, € <x y ,

b (S - Sat), 1# 0,
U (log x;log y) = &(x; y) =

% (Z;":l log?y; — Yo longZ), t=0,
and all z;)’s and yj; ’s are not equal.
Then the following statements are valid:
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n
(a) For every n € N and sy,...,s, € R, the matriz [Qsﬁsj] is a
2 lij=1
positive semi-definite matriz. Particularly

k
2

4,j=1
fork=1,....n.

(b) The function s — Qs is exponentially conver.

(¢) The function s — Qs is a log-convex on R and the following inequality
holds for —co < r < s <t < o00:

(3.11) QT < QT

Proof. As in the proof of Theorem we use Theorem for x = logx
and y = logy and using 1) instead of %,. O

As in [1], we define the following means of Cauchy type.

1
(3.12) U= ()77, tseR s#t
_ iy yf logyi—>o0, @f loga 2)
‘11575 = &P ( e Yi— i s) ° 7& 0.

" logdy,—>°"  log® x;
\I’OO—eXp< 2z i=1 )
3( S log? yi—Y 7, log? :vl)
COROLLARY 3.7. Lett,s,u,v € R such thatt <wu, s <wv, then the following
inequality is valid

(313) \Ijt,s S \Iju,v-
Proof. Since € is log-convex, therefore by (3.12)) we get (3.13)). O

COROLLARY 3.8. Let x and y be two positive decreasing n-tuples, p =
(p1, ., Pn) be a real n-tuple and let

ﬁ15 (X7 y; p) =
& (ipi = Yapial), t# 0;
= &(log x, log y; p) =
L (X0 pilog?ys — YoILy pilog?ei). t= 0,
such that conditions (1.6) and (1.7)) are satisfied and Q; is positive.

Then the following statements are valid:

n
(a) For every n € N and s1,...,8, € R, the matriz [Q5i+sj] is a
2 Jdij=1
positive semi-definite matriz. Particularly

k

2 ligj=1
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fork=1,...n

(b) The function s — Qs is exponentially convez.

(c) The function s — Qg is a log-conver on R and the following inequality
holds for —oco < r < s <t < o00:

(3.15) Q)7 < (@) (@)
Proof. As in the proof of Theorem we use Theorem for x = logx
and y = logy and using 1) instead of @,. O

As in [1], we define the following means of Cauchy type.
1

(3.16) Ty = ()7, tseR s#t
T — S piy; logyi—3 i piaf loga; g)
Vos = eXp( S DV Di T s) 870

— nons logd ;=S - ps logd x;
Vo0 = exp ( Zlgl Pi 108 2-% sz pi log 2901 )
3(22-:1 p; log® y;—> 71— 1 p; log 271)

COROLLARY 3.9. Lett, s, u, v € R such thatt < u, s < v, then the following
iequality is valid

(3.17) Uy < Uy

Proof. Since ; is log-convex, therefore by (3.16) we get (3.17)). O

THEOREM 3.10. Let x(1) and y(T) be two real-valued functions defined on
an interval [a,b], decreasing in [a,b], y(1) = x(T) and

Oy (x(T /wt dT—/ Yy(

and ®; is positive.
Then the following statements are valid:

n
(a) For every n € N and s1,...,s, € R, the matriz [<I>5i+sj] is a
2 Jdij=1
positive semi-definite matriz. Particularly

k
2 j=1

i =
fork=1,...n

(b) The function s — ®s is exponentially conver.

(¢) The function s — ®g is a log-convex on R and the following inequality
holds for —co < r < s <t < 00:

(3.19) PLT < QLT OET

Proof As in the proof of Theorem we use Theorem [1.7] instead of The-
orem [1.3] and +; instead of g,. O
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THEOREM 3.11. Let x(7), y(7) : [a,b] = R, x(7) and y(7) are continuous
and increasing, G : [a,b] = R be a function of bounded variation and

b b
By(a(7), y(r); G(r)) = / i(y(r)) dG(7) - / u((r)) dG(r)

such that conditions (1.11)) and (1.12)) are satisfied and ®; is positive.
Then the following statements are valid:

n
(a) For every n € N and s1,...,s, € R, the matriz |:(P3i+5j:| s a
2 dij=1
positive semi-definite matriz. Particularly

k
(3.20) det [cﬁsﬁsj} > 0
2 Jigj=1
fork=1,....n.
(b) The function s — ® is exponentially convez.
(c) The function s — @ is a log-conver on R and the following inequality

holds for —oo < r < s <t < o0

(3.21) (@) < (@) (@),
Proof. As in the proof of Theorem we use Theorem [1.§] instead of The-
orem [1.3] and v instead of @,. O

THEOREM 3.12. Let F(7) and G(7) are real continuous and increasing func-

tions defined on an interval [0, +00) such that F(0) = G(0) = 0, F(7) = G(7),
F(7) and G(1) are defined in ,

(T, G(1); F(1)) = /000 (1) dG(T) — /000 (1) dF (1),

and 9, is positive.
Then the following statements are valid:

n
(a) For every n € N and s1,...,s, € R, the matriz [Q%ﬁsj} s a

2 Jij=1
positive semi-definite matriz. Particularly
k
(3.22) det [ﬁsi+sj} >0
2 Jig=1
fork=1,....n.

(b) The function s — 94 is exponentially convez.
(¢) The function s — Vs is a log-convex on R and the following inequality
holds for —oco < r < s <t < o0

3.23 9T < 9t 9T,
S T t

Proof. As in the proof of Theorem [2.2] we use Theorem instead of
Theorem [T.3] and v, instead of ;. O
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As in [1], we define the following means of Cauchy type.

1
(3.24) Dy = (g%:) = t,seR, s#t.

B S TefTdG(T)— [ TeSTAF (1) o
Vss = exp ( Terdot e dFm) s

), s # 0.

. S 3 dG(r)— [° 3 dF(T)
Yoo = exp (3(}0‘” 72 dG(T)—;OOO 72 dF(r)) >

THEOREM 3.13. Let t,s,u,v € R such that t < wu, s <wv, then the following

(3.25) Pts < Dup.
Proof. Since 9, is log-convex, therefore by ([3.24]) we get (3.25). O

REMARK 3.14. As in [I], we can use Theorem [3.2, Theorem Corollary

-6] Corollary [3.8] Theorem [3.10, Theorem [3.11] and Theorem [3.12] to obtain
corresponding Cauchy means. g
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