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SHARP BOUNDS FOR GAMMA AND DIGAMMA FUNCTION

ARISING FROM BURNSIDE’S FORMULA

CRISTINEL MORTICI∗

Abstract. The main aim of this paper is to improve the Burnside’s formula for
approximating the factorial function. We prove the complete monotonicity of a
function involving the gamma function to establish new lower and upper sharp
bounds for the gamma and digamma function.
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1. INTRODUCTION

There are many situations of practical problems from pure mathematics,
or other branches of science when we are forced to deal with large factorials.
As a direct computation cannot be made even by the computer programs,
approximation formulas were constructed, one of the most known and most
used being the Stirling’s formula:

(1.1) n! ≈
√

2π · nn+
1
2 e−n.

It was first discovered in 1733 by the French mathematician Abraham de
Moivre (1667-1754) in the form

n! ≈ constant ·nn+
1
2 e−n

with missing constant. Afterwards, the Scottish mathematician James Stirling
(1692-1770) found the constant

√
2π in formula (1.1). For proofs, interesting

historical facts, and other details see [8, 10].
If in probability theory, or statistics, such approximations are satisfactory,

in pure mathematics, more precise estimates are required. Although in the
last decades, many authors are concerned to give new improvements of the
Stirling’s formula, we mention here the following approximation due to W.
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Burnside [3]:

(1.2) n! ≈
√

2π

(
n+

1
2

e

)n+
1
2
,

which gives better results than Stirling’s formula (1.1). Burnside’s formula, as
Stirling’s formula remain beautiful because of their simplicity.

In this paper, we study the complete monotonicity of the function
f : [0,∞)→ R, given by the formula

f (x) = ln Γ (x+ 1)− ln
√

2π −
(
x+ 1

2

)
ln
(
x+ 1

2

)
+ x+ 1

2 .

As a direct consequence, we establish new lower and upper sharp bounds for
the gamma and digamma function. More precisely, we prove that for x ≥ 1,

ω ·
√

2π

(
x+

1
2

e

)x+
1
2
≤ Γ (x+ 1) <

√
2π

(
x+

1
2

e

)x+
1
2
,

where the constant ω = 2
3
√

3π
e3/2 = 0.973 23... is best possible.

For x ≥ 1, we have

ln
(
x+ 1

2

)
− 1

x < ψ (x) ≤ ln
(
x+ 1

2

)
− 1

x + ζ,

with best possible constant ζ = 1− ln 3
2 − γ = 0.017319... . Here,

γ = lim
n→∞

(
1 + 1

2 + ...+ 1
n − lnn

)
= 0.577215...

is the Euler-Mascheroni constant. Our new inequality improves other known
results [2, 4, 5, 6, 9] of the form

lnx− 1
x < ψ (x) < lnx− 1

2x , x > 1.

Similar techniques were developed by the author in the very recent paper [7].

2. THE RESULTS

The gamma Γ and digamma ψ functions are defined by

Γ (x) =

∫ ∞
0

tx−1e−tdt , ψ (x) = d
dx (ln Γ (x)) = Γ′(x)

Γ(x) ,

for every positive real numbers x. The gamma function is an extension of
the factorial function, since Γ (n+ 1) = n!, for n = 0, 1, 2, 3 . . .. The deriva-
tives ψ′, ψ′′, . . ., known as polygamma functions, have the following integral
representations:

(2.1) ψ(n) (x) = (−1)n−1
∫ ∞

0

tne−xt

1−e−t dt

for n = 1, 2, 3, . . .. For proofs and other details, see for example, [1, 11]. We
also use the following integral representation

(2.2) 1
xn = 1

(n−1)!

∫ ∞
0

tn−1e−xtdt , n ≥ 1.
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Recall that a function f is (strictly) completely monotonic in an interval I if

f has derivatives of all orders in I such that (−1)n f (n) (x) ≥ 0, (respective

(−1)n f (n) (x) > 0) for all x ∈ I and n = 0, 1, 2, 3 . . .. It is to be noticed that ev-
ery non-constant, completely monotonic function is in fact strictly completely
monotonic.

Completely monotonic functions involving ln Γ (x) are important because
they produce bounds for the polygamma functions. The famous Hausdorff-
Bernstein-Widder theorem states that a function f is completely monotonic
on [0,∞) if and only if it is a Laplace transform,

f (x) =

∫ ∞
0

e−xtdµ (t) ,

where µ is a non-negative measure on [0,∞) such that the integral converges
for all x > 0, see [11, pp. 161]. Now we are in position to prove the following

Theorem 1. Let there be given f : [0,∞)→ R, by

f (x) = ln Γ (x+ 1)− ln
√

2π −
(
x+ 1

2

)
ln
(
x+ 1

2

)
+ x+ 1

2 .

Then −f is completely monotonic.

Proof. We have
f ′ (x) = ψ (x+ 1)− ln

(
x+ 1

2

)
.

By the recurrence formula ψ (x+ 1) = ψ (x) + 1
x , (see [1, Rel. 6.3.5, p. 258]),

we obtain
f ′ (x) = ψ (x) + 1

x − ln
(
x+ 1

2

)
,

then
f ′′ (x) = ψ′′ (x)− 1

x2
− 1

x+
1
2

.

Using (2.1)–(2.2), we deduce that

f ′′ (x) =

∫ ∞
0

te−xt

1−e−t dt−
∫ ∞

0
te−xtdt−

∫ ∞
0

e
−
(
x+

1
2

)
t
dt,

or

f ′′ (x) =

∫ ∞
0

(
t

1−e−t − t− e−
1
2 t

)
e−txdt.

Hence

f ′′ (x) =

∫ ∞
0

e−(x+1)t

1−e−t ϕ (t) dt,

where ϕ denotes the function

ϕ (t) = t− e−t/2
(
et − 1

)
.

As we have
ϕ′ (t) = − 1

2et/2

(
et/2 − 1

)2
< 0,

it results that ϕ is strictly decreasing. For t > 0, we have ϕ (t) < ϕ (0) = 0,
so −f ′′ is completely monotonic. Furthermore, f ′ is strictly decreasing, since
f ′′ < 0.
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But we have limx→∞ f
′ (x) = 0, so f ′ (x) > 0 and consequently, f is strictly

increasing. Using the fact that limx→∞ f (x) = 0, we deduce that f < 0.
Finally, −f is completely monotonic. �

As a direct consequence of the fact that f is strictly increasing, we have

f (1) ≤ f (x) < lim
x→∞

f (x) = 0,

for all x ≥ 1. As f (1) = 3
2 + ln 2

3
√

3π
, by exponentiating, we get, for x ≥ 1 :

ω ·
√

2π
(
x+1/2

e

)x+1/2
≤ Γ (x+ 1) <

√
2π
(
x+1/2

e

)x+1/2
,

where the constant ω = 2
3
√

3π
e3/2 = 0.973 23... is best possible.

Using the fact that f ′ is strictly decreasing, we have

0 = lim
x→∞

f ′ (x) < f ′ (x) ≤ f ′ (1) ,

for all x ≥ 1. As we have f ′ (1) = 1− ln 3
2 − γ, we obtain, for x ≥ 1 :

0 < ψ (x) + 1
x − ln

(
x+ 1

2

)
≤ ζ,

with best possible constant ζ = 1− ln 3
2 − γ = 0.017319... .
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