THE CONVERGENCE OF THE EULER'S METHOD

RALUCA ANAMARIA (POMIAN) SALAJAN*

Abstract

In this article we study the Euler's iterative method. For this method we give a global theorem of convergence. In the last section of the paper we give a numerical example which illustrates the result exposed in this work.

MSC 2000. 37C25, 12 D 10.
Keywords. Euler's method, fixed point, one-point iteration method.

1. INTRODUCTION

We consider the problem of finding a zero of the equation

$$
\begin{equation*}
f(x)=0 \tag{1}
\end{equation*}
$$

where $f:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}$ is an analytic function with simple roots. This zero can be determined as a fixed point of some iteration functions $g:[a, b] \rightarrow[a, b]$, by means of the one-point iteration method

$$
\begin{equation*}
x_{n+1}=g\left(x_{n}\right), x_{0} \in[a, b], n=0,1, \ldots, \quad n \in \mathbb{N} \tag{2}
\end{equation*}
$$

where x_{0} is the starting value and g is a function of form

$$
g(x)=x+\varphi(x)
$$

In this article we analyze the Euler's method for approximating the solution $x^{*} \in[a, b]$ of the equation (1). This method is defined by the relation

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{2 f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)+\sqrt{\left[f^{\prime}\left(x_{n}\right)\right]^{2}-2 f\left(x_{n}\right) f^{\prime \prime}\left(x_{n}\right)}}, x_{0} \in[a, b], n \geq 0, n \in \mathbb{N} \tag{3}
\end{equation*}
$$

The Euler's method has been rediscovered by several authors, see for example [1], [2], [5], [6], [7], [8], and references therein.

[^0]
2. THEOREMS OF CONVERGENCE

Next we will study sufficient conditions in order that the sequence $\left\{x_{n}\right\}_{n \geq 0}$ generated through (3) would be convergent, and if $x^{*}=\lim _{n \rightarrow \infty} x_{n}$, then $f\left(x^{*}\right)=0$.

In order to prove the convergence of the method of form (3), we would use the next result.

ThEOREM 1. ([3], 4]) If we consider the function f, the real number $\delta>0$ and $x_{0} \in \Delta$, where $\Delta=\left\{x \in \mathbb{R}:\left|x-x_{0}\right| \leq \delta\right\} \subseteq[a, b]$, we could assure that the following relations hold
a) the function f is of class $C^{s}(\Delta), s \geq 2, s \in \mathbb{N}$ and $\sup _{x \in \Delta}\left|f^{(s)}(x)\right|=$ $M<\infty ;$
b) we have the relation $\left|\sum_{i=0}^{s-1} \frac{1}{i!} f^{(i)}(x) \varphi^{i}(x)\right| \leq \gamma|f(x)|^{s} \quad$ for every $x \in \Delta$, where $\gamma \in \mathbb{R}, \gamma \geq 0 ;$
c) the function φ verifies the relation $|\varphi(x)| \leq \eta|f(x)|$, for every $x \in \Delta$, where $\eta \in \mathbb{R}, \eta>0$;
d) the numbers λ, η, M and δ verify the relations:

$$
\mu_{0}=\lambda\left|f\left(x_{0}\right)\right|<1, \text { where } \lambda=\left(\gamma+\frac{M \eta^{s}}{s!}\right)^{\frac{1}{s-1}} \text { and } \frac{\eta \mu_{0}}{\lambda\left(1-\mu_{0}\right)} \leq \delta
$$

then the sequence $\left\{x_{n}\right\}_{n \geq 0}$ generated by (2) has the following properties:
i) it is convergent, and if $x^{*}=\lim _{n \rightarrow \infty} x_{n}$ then $f\left(x^{*}\right)=0$ and $x^{*} \in \Delta$;
ii) $\left|x_{n+1}-x_{n}\right| \leq \frac{\eta \mu_{0}^{s^{n}}}{\lambda}$, for any $n=0,1, \ldots, n \in \mathbb{N}$;
iii) $\left|x^{*}-x_{n}\right| \leq \frac{\eta \mu_{0}^{s^{n}}}{\lambda\left(1-\mu_{0}^{s^{n}}\right)}, n=0,1,2, \ldots, n \in \mathbb{N}$.

Proof. See [3], [4].
Based on Theorem 1, in our next result we would analyze the convergence of sequence $\left\{x_{n}\right\}_{n \geq 0}$ given by (3).

THEOREM 2. If the function f, the real number $\delta>0$ and $x_{0} \in \Delta$, where $\Delta=\left\{x \in \mathbb{R}:\left|x-x_{0}\right| \leq \delta\right\} \subseteq[a, b]$, verify the relations
a) the function f is of class $C^{3}(\Delta)$ and $\sup _{x \in \Delta}\left|f^{\prime \prime \prime}(x)\right|=M<\infty$;
b) $\quad\left|\frac{1}{f^{\prime}(x)}\right| \leq \beta \quad$ for every $x \in \Delta, \beta \in \mathbb{R}, \beta>0$;
c) $\frac{f(x) f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{2}} \stackrel{\text { not }}{=} L_{f}(x) \leq \frac{1}{2}$ for every $x \in \Delta$;
d) $\lambda=\sqrt{\frac{8 M}{3!} \beta^{3}}>0$;
e) $\mu_{0}=\lambda\left|f\left(x_{0}\right)\right|<1$;
f) $\frac{2 \beta \mu_{0}}{\lambda\left(1-\mu_{0}\right)} \leq \delta ;$
then the sequence $\left\{x_{n}\right\}_{n \geq 0}$ generated by (3) is convergent, and if $x^{*}=\lim _{n \rightarrow \infty} x_{n}$, the next relations hold
i) $f\left(x^{*}\right)=0$ and $x^{*} \in \Delta$;
ii) $x_{n} \in \Delta, n=0,1,2 \ldots, n \in \mathbb{N}$;
iii) $\left|f\left(x_{n}\right)\right| \leq \frac{\mu_{0}^{3^{n}}}{\lambda}, n=0,1,2, \ldots, n \in \mathbb{N}$;
iv) $\left|x^{*}-x_{n}\right| \leq \frac{2 \beta \mu_{0}^{3^{n}}}{\lambda\left(1-\mu_{0}^{3^{n}}\right)}, n=0,1,2, \ldots, n \in \mathbb{N}$.

Proof. We consider the function φ of form

$$
\varphi(x)=-\frac{2 f(x)}{f^{\prime}(x)+\sqrt{\left[f^{\prime}(x)\right]^{2}-2 f(x) f^{\prime \prime}(x)}}, x \in \Delta .
$$

We'll show that the elements of the sequence $\left\{x_{n}\right\}_{n \geq 0}$ generated by (3) are in Δ.

By conditions b), c) and f) we have

$$
\begin{aligned}
\left|x_{1}-x_{0}\right| & =\left|\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}\right|\left|\frac{2}{1+\sqrt{1-2 L_{f}\left(x_{0}\right)}}\right| \leq 2\left|\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}\right| \leq \\
& \leq 2 \beta\left|f\left(x_{0}\right)\right|=\frac{2 \lambda \beta\left|f\left(x_{0}\right)\right|}{\lambda}<\frac{2 \beta \mu_{0}}{\lambda\left(1-\mu_{0}\right)} \leq \delta \Rightarrow x_{1} \in \Delta .
\end{aligned}
$$

Applying the Taylor expansion of function f around x_{0} and taking into account that

$$
\begin{aligned}
\varphi(x) & =\frac{-f^{\prime}(x)+\sqrt{\left[f^{\prime}(x)\right]^{2}-2 f(x) f^{\prime \prime}(x)}}{f^{\prime \prime}(x)}= \\
& =-\frac{f^{\prime}(x)-\sqrt{\left[f^{\prime}(x)\right]^{2}-2 f(x) f^{\prime \prime}(x)}}{f^{\prime \prime}(x)}
\end{aligned}
$$

$\forall x \in \Delta$, and $\varphi(x)$ is verifying the parable

$$
a x^{2}+b x+c=0, \text { where } c=f(x), b=f^{\prime}(x), a=\frac{f^{\prime \prime}(x)}{2},
$$

we get

$$
\begin{aligned}
\left|f\left(x_{1}\right)\right| \leq & \left|f\left(x_{1}\right)-\left(f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right)^{2}\right)\right|+ \\
& +\left|f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right)^{2}\right| \leq \\
\leq & \left|\frac{f^{\prime \prime \prime}(\xi)}{3!}\left(x_{1}-x_{0}\right)^{3}\right|+\left|f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \varphi\left(x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right) \varphi^{2}\left(x_{0}\right)\right| \leq \\
\leq & \frac{M}{3!}\left|x_{1}-x_{0}\right|^{3} \leq \frac{8 M \beta^{3}}{3!}\left|f\left(x_{0}\right)\right|^{3}=\frac{\mu_{0}^{3}}{\lambda}, \quad \xi \in \Delta .
\end{aligned}
$$

Because $\left|\frac{1}{f^{\prime}\left(x_{1}\right)}\right| \leq \beta$, we have that

$$
\left|x_{2}-x_{1}\right|=\left|\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}\right|\left|\frac{2}{1+\sqrt{1-2 \frac{f\left(x_{1}\right) f^{\prime \prime}\left(x_{1}\right)}{\left[f^{\prime}\left(x_{1}\right)\right]^{2}}}}\right| \leq 2\left|\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}\right| \leq 2 \beta\left|f\left(x_{1}\right)\right| \leq \frac{2 \beta \mu_{0}^{3}}{\lambda}
$$

From all that we have proved above, by using the induction, it results that the property iii) holds for every $n \in \mathbb{N}$,

$$
\begin{equation*}
\left|f\left(x_{n}\right)\right| \leq \frac{\mu_{0}^{3^{n}}}{\lambda} \tag{4}
\end{equation*}
$$

Analogously, from b), c) and (4) we can prove the following relation

From (5), e) and f) we get the relation ii)

$$
\begin{align*}
\left|x_{n+1}-x_{0}\right| & \leq \sum_{i=0}^{n}\left|x_{i+1}-x_{i}\right| \leq \tag{6}\\
& \leq \sum_{i=0}^{n} \frac{2 \beta \mu_{0}^{3^{i}}}{\lambda} \leq \frac{2 \beta \mu_{0}}{\lambda}\left(1+\mu_{0}^{3-1}+\mu_{0}^{3^{2}-1}+\ldots+\mu_{0}^{3^{n}-1}\right) \\
& <\frac{2 \beta \mu_{0}}{\lambda\left(1-\mu_{0}\right)} \leq \delta \Rightarrow x_{n+1} \in \Delta, n=0,1,2, \ldots, n \in \mathbb{N} .
\end{align*}
$$

For the convergence of the sequence given by (3) we shall use the Cauchy's theorem. By relation (5) and e) we deduce that

$$
\begin{align*}
\left|x_{n+p}-x_{n}\right| & \leq \sum_{i=n}^{n+p-1}\left|x_{i+1}-x_{i}\right| \leq \sum_{i=n}^{n+p-1} \frac{2 \beta \mu_{0}^{3^{i}}}{\lambda}< \tag{7}\\
& <\frac{2 \beta \mu_{0}^{n}}{\lambda}\left(1+\mu_{0}^{3^{n+1}-3^{n}}+\ldots+\mu_{0}^{3^{n+p-1}-3^{n}}\right) \\
& <\frac{2 \beta \mu_{0}^{3^{n}}}{\lambda\left(1-\mu_{0}^{3^{n}}\right)}, p \in \mathbb{N}, n=0,1,2, \ldots, n \in \mathbb{N} .
\end{align*}
$$

Because $\mu_{0}<1$, it results that the sequence $\left\{x_{n}\right\}_{n \geq 0}$ is fundamental, so according to the Cauchy's theorem, it is convergent.

If $x^{*}=\lim _{n \rightarrow \infty} x_{n}$, for $p \rightarrow \infty$, from the inequality (7) we obtain the relation iv)

$$
\begin{equation*}
\left|x^{*}-x_{n}\right| \leq \frac{2 \beta \mu_{0}^{3^{n}}}{\lambda\left(1-\mu_{0}^{3^{n}}\right)}, n=0,1,2, \ldots, n \in \mathbb{N} . \tag{8}
\end{equation*}
$$

We show now that the relations i) hold, that is, x^{*} is a root of equation (1) and $x^{*} \in \Delta$.

From the continuity of function f and from (4) for $n \rightarrow \infty$, it results

$$
0 \leq\left|f\left(x^{*}\right)\right| \leq \lim _{n \rightarrow \infty} \frac{\mu_{0}^{3^{n}}}{\lambda}=0,
$$

that is, $f\left(x^{*}\right)=0$.
From f) and the inequality (8) for $n=0$, we obtain

$$
\left|x^{*}-x_{0}\right| \leq \frac{2 \beta \mu_{0}^{3^{0}}}{\lambda\left(1-\mu_{0}^{3^{0}}\right)} \leq \delta,
$$

so, $x^{*} \in \Delta$.
It is evidently that all the assumptions of Theorem 1 are verified for $s=3$, $\gamma=0$ and $\eta=2 \beta$.

3. NUMERICAL EXAMPLE

We shall present a numerical example, which illustrates the result exposed in Theorem 2.

Example 3. We used the following test functions and display the zeros x^{*} found.

$$
\begin{aligned}
& f_{1}(x)=\ln \left(x^{2}-3\right), x^{*}=-2, x \in[-2.35,-1.9] \\
& f_{2}(x)=x^{3}-3 x^{2}-13 x+15, x^{*}=5, x \in[4.5,5.5] \\
& f_{3}(x)=x^{5}-1, x^{*}=1, x \in[0.88,1.38]
\end{aligned}
$$

For the derivatives of order 1,2 and 3 of $f_{i}, i=1,2,3$, we have the relations

$$
\begin{aligned}
& f_{1}^{\prime}(x)=\frac{2 x}{-3+x^{2}}, f_{1}^{\prime \prime}(x)=\frac{-4 x^{2}}{\left(-3+x^{2}\right)^{2}}+\frac{2}{-3+x^{2}} \\
& f_{1}^{\prime \prime \prime}(x)=\frac{16 x^{3}}{\left(-3+x^{2}\right)^{3}}-\frac{12 x}{\left(-3+x^{2}\right)^{2}}
\end{aligned}
$$

from which we get $\beta=0.536702$ and $M=422.22$;

$$
f_{2}^{\prime}(x)=3 x^{2}-6 x-13, f_{2}^{\prime \prime}(x)=6 x-6, f_{2}^{\prime \prime \prime}(x)=6
$$

from which we get $\beta=0.0481928$ and $M=6$;

$$
f_{3}^{\prime}(x)=5 x^{4}, f_{3}^{\prime \prime}(x)=20 x^{3}, f_{3}^{\prime \prime \prime}(x)=60 x^{2}
$$

from which we get $\beta=0.333503$ and $M=114.264$.
In the Table 1 are listed the values for $x_{0}, M, \beta, \lambda, \mu_{0}, \delta$ and $\frac{2 \beta \mu_{0}}{\lambda\left(1-\mu_{0}\right)}$, for each test functions.

i	x_{0}	M	β	λ	μ_{0}	δ	$\frac{2 \beta \mu_{0}}{\lambda\left(1-\mu_{0}\right)}<\delta$
1	-1.989	422.22	0.53670	9.32908	0.41860	0.089	0.08284
2	4.875	6	0.04819	0.02992	0.11414	0.625	0.41503
3	1.035	114.264	0.33350	2.37724	0.33873	0.353	0.14372

Table 1.

The implementations were done in Mathematica 7.0 with double precision. From the Table 1 we can conclude that all the assumptions a)-f) of Theorem 2 are verified.

In the next Table 2 we can observe that, the convergence is faster and the method (3) converges at x^{*}.

i	x_{0}	x_{1}	x_{2}	$x_{3}=x^{*}$
1	-1.989	-2.0000063482540900	-1.9999999999999990	-2
2	4.875	5.0000611233335144	4.999999999999993	5
3	1.027	0.999958832170524	1.000000000000139	1

Table 2.

REFERENCES

[1] Amat, S., Busquier, S. and Plaza, S., Review of some iterative root-finding methods from a dynamical point of view, Scientia, Series A: Mathematical Sciences, 10, pp. 3-35, 2004.
[2] OsADA, N., A one parameter family of locally quartically convergent zero-finding methods, J. Comput. Appl. Math., 205, pp. 116-128, 2007.
[3] Păvăloiv, I., Sur les procedées itérative à un order élevé de convergence, Mathématica, 12(35), no. 2, pp. 309-324, 1970.
[4] Păvăloiu, I. and Pop, N., Interpolare şi aplicaţii, Editura Risoprint, Cluj-Napoca, 2005.
[5] Petković, L. D., Petković, M. S. and Z̆ıviković, D., Hansen-Patrick's family is of Laguerre's type, Novi Sad J. Math., 33, no. 1, pp. 109-115, 2003.
[6] Petrović, M., Tričković, S. and Herceg, D., Higher order Euler-like methods, Novi Sad J. Math., 28, no. 3, pp. 129-136, 1998.
[7] Varona, J., Graphic and numerical comparison between iterative methods, The Mathematical Intelligencer, 24, no. 1, pp. 37-46, 2002.
[8] Ye, X. and Li, C., Convergence of the family of the deformed Euler-Halley iterations under the Hölder condition of the second derivative, Journal of Computational and Applied Mathematics, 194, pp. 294-308, 2006.

Received by the editors: October 23, 2010.

[^0]: *Secondary School Vasile Alecsandri, Strada Păşunii, Nr. 2A, Baia Mare, Romania, email: salajanraluca@yahoo.com.

