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THE CONVERGENCE OF THE EULER’S METHOD

RALUCA ANAMARIA (POMIAN) SALAJAN∗

Abstract. In this article we study the Euler’s iterative method. For this method
we give a global theorem of convergence. In the last section of the paper we give
a numerical example which illustrates the result exposed in this work.
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1. INTRODUCTION

We consider the problem of finding a zero of the equation

(1) f(x) = 0,

where f : [a, b] ⊂ R → R is an analytic function with simple roots. This zero
can be determined as a fixed point of some iteration functions g : [a, b]→ [a, b],
by means of the one-point iteration method

(2) xn+1 = g(xn), x0 ∈ [a, b], n = 0, 1, ..., n ∈ N,

where x0 is the starting value and g is a function of form

g(x) = x+ ϕ(x).

In this article we analyze the Euler’s method for approximating the solution
x∗ ∈ [a, b] of the equation (1). This method is defined by the relation

(3) xn+1 = xn − 2f(xn)

f ′(xn)+
√

[f ′(xn)]2−2f(xn)f ′′(xn)
, x0 ∈ [a, b], n ≥ 0, n ∈ N.

The Euler’s method has been rediscovered by several authors, see for exam-
ple [1], [2], [5], [6], [7], [8], and references therein.
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2. THEOREMS OF CONVERGENCE

Next we will study sufficient conditions in order that the sequence {xn}n≥0

generated through (3) would be convergent, and if x∗ = lim
n→∞

xn, then

f(x∗) = 0.
In order to prove the convergence of the method of form (3), we would use

the next result.

Theorem 1. ([3], [4]) If we consider the function f , the real number δ > 0
and x0 ∈ ∆, where ∆ = {x ∈ R : |x− x0| ≤ δ} ⊆ [a, b], we could assure that
the following relations hold

a) the function f is of class Cs(∆), s ≥ 2, s ∈ N and sup
x∈∆

∣∣f (s)(x)
∣∣ =

M <∞;

b) we have the relation

∣∣∣∣s−1∑
i=0

1
i!f

(i)(x)ϕi(x)

∣∣∣∣ ≤ γ |f(x)|s for every

x ∈ ∆, where γ ∈ R,γ ≥ 0;
c) the function ϕ verifies the relation |ϕ(x)| ≤ η |f(x)| , for every x ∈ ∆,

where η ∈ R, η > 0;
d) the numbers λ, η,M and δ verify the relations:

µ0 = λ |f(x0)| < 1, where λ =
(
γ + Mηs

s!

) 1
s−1

and ηµ0
λ(1−µ0) ≤ δ;

then the sequence {xn}n≥0 generated by (2) has the following properties:

i) it is convergent, and if x∗ = lim
n→∞

xn then f(x∗) = 0 and x∗ ∈ ∆;

ii) |xn+1 − xn| ≤
ηµs

n

0
λ , for any n = 0, 1, ..., n ∈ N;

iii) |x∗ − xn| ≤
ηµs

n

0

λ(1−µsn0 )
, n = 0, 1, 2, ..., n ∈ N.

Proof. See [3], [4]. �

Based on Theorem 1, in our next result we would analyze the convergence
of sequence {xn}n≥0 given by (3).

Theorem 2. If the function f , the real number δ > 0 and x0 ∈ ∆, where
∆ = {x ∈ R : |x− x0| ≤ δ} ⊆ [a, b], verify the relations

a) the function f is of class C3(∆) and sup
x∈∆
|f ′′′(x)| = M <∞;

b)
∣∣∣ 1
f ′(x)

∣∣∣ ≤ β for every x ∈ ∆, β ∈ R, β > 0;

c) f(x)f ′′(x)
[f ′(x)]2

not
= Lf (x) ≤ 1

2 for every x ∈ ∆;

d) λ =
√

8M
3! β

3 > 0;

e) µ0 = λ |f(x0)| < 1;

f) 2βµ0
λ(1−µ0) ≤ δ;

then the sequence {xn}n≥0 generated by (3) is convergent, and if x∗ = lim
n→∞

xn,

the next relations hold
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i) f(x∗) = 0 and x∗ ∈ ∆;
ii) xn ∈ ∆, n = 0, 1, 2..., n ∈ N;

iii) |f(xn)| ≤ µ3
n

0
λ , n = 0, 1, 2, ..., n ∈ N;

iv) |x∗ − xn| ≤
2βµ3

n

0

λ(1−µ3n0 )
, n = 0, 1, 2, ..., n ∈ N.

Proof. We consider the function ϕ of form

ϕ(x) = − 2f(x)

f ′(x)+
√

[f ′(x)]2−2f(x)f ′′(x)
, x ∈ ∆.

We’ll show that the elements of the sequence {xn}n≥0 generated by (3) are in
∆.

By conditions b), c) and f) we have

|x1 − x0| =
∣∣∣ f(x0)
f ′(x0)

∣∣∣ ∣∣∣∣ 2

1+
√

1−2Lf (x0)

∣∣∣∣ ≤ 2
∣∣∣ f(x0)
f ′(x0)

∣∣∣ ≤
≤ 2β |f(x0)| = 2λβ|f(x0)|

λ < 2βµ0
λ(1−µ0) ≤ δ ⇒ x1 ∈ ∆.

Applying the Taylor expansion of function f around x0 and taking into
account that

ϕ(x) =
−f ′(x)+

√
[f ′(x)]2−2f(x)f ′′(x)

f ′′(x) =

= −f ′(x)−
√

[f ′(x)]2−2f(x)f ′′(x)

f ′′(x) ,

∀x ∈ ∆, and ϕ(x) is verifying the parable

ax2 + bx+ c = 0, where c = f(x), b = f ′(x), a = f ′′(x)
2 ,

we get

|f(x1)| ≤
∣∣f(x1)−

(
f(x0) + f ′(x0)(x1 − x0) + 1

2f
′′(x0)(x1 − x0)2

)∣∣+
+
∣∣f(x0) + f ′(x0)(x1 − x0) + 1

2f
′′(x0)(x1 − x0)2

∣∣ ≤
≤
∣∣∣f ′′′(ξ)3! (x1 − x0)3

∣∣∣+
∣∣f(x0) + f ′(x0)ϕ(x0) + 1

2f
′′(x0)ϕ2(x0)

∣∣ ≤
≤ M

3! |x1 − x0|3 ≤ 8Mβ3

3! |f(x0)|3 =
µ30
λ , ξ ∈ ∆.

Because
∣∣∣ 1
f ′(x1)

∣∣∣ ≤ β, we have that

|x2 − x1| =
∣∣∣ f(x1)
f ′(x1)

∣∣∣
∣∣∣∣∣∣ 2

1+

√
1−2

f(x1)f ′′(x1)
[f ′(x1)]2

∣∣∣∣∣∣ ≤ 2
∣∣∣ f(x1)
f ′(x1)

∣∣∣ ≤ 2β |f(x1)| ≤ 2βµ30
λ .

From all that we have proved above, by using the induction, it results that
the property iii) holds for every n ∈ N,

(4) |f(xn)| ≤ µ3
n

0
λ .
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Analogously, from b), c) and (4) we can prove the following relation

(5) |xn+1 − xn| =
∣∣∣ f(xn)
f ′(xn)

∣∣∣
∣∣∣∣∣∣ 2

1+

√
1−2

f(xn)f ′′(xn)
[f ′(xn)]2

∣∣∣∣∣∣ ≤ 2βµ3
n

0
λ , n = 0, 1, ..., n ∈ N.

From (5), e) and f) we get the relation ii)

|xn+1 − x0| ≤
n∑
i=0

|xi+1 − xi| ≤(6)

≤
n∑
i=0

2βµ3
i

0
λ ≤ 2βµ0

λ (1 + µ3−1
0 + µ32−1

0 + ...+ µ3n−1
0 )

< 2βµ0
λ(1−µ0) ≤ δ ⇒ xn+1 ∈ ∆, n = 0, 1, 2, ..., n ∈ N.

For the convergence of the sequence given by (3) we shall use the Cauchy’s
theorem. By relation (5) and e) we deduce that

|xn+p − xn| ≤
n+p−1∑
i=n

|xi+1 − xi| ≤
n+p−1∑
i=n

2βµ3
i

0
λ <(7)

<
2βµ3

n

0
λ (1 + µ3n+1−3n

0 + ...+ µ3n+p−1−3n

0 )

<
2βµ3

n

0

λ(1−µ3n0 )
, p ∈ N, n = 0, 1, 2, ..., n ∈ N.

Because µ0 < 1, it results that the sequence {xn}n≥0 is fundamental, so
according to the Cauchy’s theorem, it is convergent.

If x∗ = lim
n→∞

xn, for p → ∞, from the inequality (7) we obtain the

relation iv)

(8) |x∗ − xn| ≤
2βµ3

n

0

λ(1−µ3n0 )
, n = 0, 1, 2, ..., n ∈ N.

We show now that the relations i) hold, that is, x∗ is a root of equation (1)
and x∗ ∈ ∆.

From the continuity of function f and from (4) for n→∞, it results

0 ≤ |f(x∗)| ≤ lim
n→∞

µ3
n

0
λ = 0,

that is, f(x∗) = 0.
From f) and the inequality (8) for n = 0, we obtain

|x∗ − x0| ≤
2βµ3

0

0

λ(1−µ300 )
≤ δ,

so, x∗ ∈ ∆. �

It is evidently that all the assumptions of Theorem 1 are verified for s = 3,
γ = 0 and η = 2β.
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3. NUMERICAL EXAMPLE

We shall present a numerical example, which illustrates the result exposed
in Theorem 2.

Example 3. We used the following test functions and display the zeros x∗

found.

f1(x) = ln(x2 − 3), x∗ = −2, x ∈ [−2.35,−1.9],

f2(x) = x3 − 3x2 − 13x+ 15, x∗ = 5, x ∈ [4.5, 5.5],

f3(x) = x5 − 1, x∗ = 1, x ∈ [0.88, 1.38].

For the derivatives of order 1, 2 and 3 of fi, i = 1, 2, 3, we have the relations

f ′1(x) = 2x
−3+x2

, f ′′1 (x) = −4x2

(−3+x2)2
+ 2
−3+x2

,

f ′′′1 (x) = 16x3

(−3+x2)3
− 12x

(−3+x2)2
,

from which we get β = 0.536702 and M = 422.22;

f ′2(x) = 3x2 − 6x− 13, f ′′2 (x) = 6x− 6, f ′′′2 (x) = 6,

from which we get β = 0.0481928 and M = 6;

f ′3(x) = 5x4, f ′′3 (x) = 20x3, f ′′′3 (x) = 60x2,

from which we get β = 0.333503 and M = 114.264.
In the Table 1 are listed the values for x0, M , β, λ, µ0, δ and 2βµ0

λ(1−µ0) , for

each test functions.
i x0 M β λ µ0 δ 2βµ0

λ(1−µ0)
< δ

1 -1.989 422.22 0.53670 9.32908 0.41860 0.089 0.08284

2 4.875 6 0.04819 0.02992 0.11414 0.625 0.41503

3 1.035 114.264 0.33350 2.37724 0.33873 0.353 0.14372

Table 1.

The implementations were done in Mathematica 7.0 with double precision.
From the Table 1 we can conclude that all the assumptions a)–f) of Theorem
2 are verified.

In the next Table 2 we can observe that, the convergence is faster and the
method (3) converges at x∗.

i x0 x1 x2 x3 = x∗

1 -1.989 -2.0000063482540900 -1.9999999999999990 -2

2 4.875 5.0000611233335144 4.999999999999993 5

3 1.027 0.999958832170524 1.000000000000139 1

Table 2.
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[6] Petrović, M., Tričković, S. and Herceg, D., Higher order Euler-like methods, Novi
Sad J. Math., 28, no. 3, pp. 129–136, 1998.

[7] Varona, J., Graphic and numerical comparison between iterative methods, The Mathe-
matical Intelligencer, 24, no. 1, pp. 37–46, 2002.

[8] Ye, X. and Li, C., Convergence of the family of the deformed Euler-Halley iterations
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