REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Rev. Anal. Numér. Théor. Approx., vol. 39 (2010) no. 1, pp. 87–92 ictp.acad.ro/jnaat

THE CONVERGENCE OF THE EULER'S METHOD

RALUCA ANAMARIA (POMIAN) SALAJAN*

Abstract. In this article we study the Euler's iterative method. For this method we give a global theorem of convergence. In the last section of the paper we give a numerical example which illustrates the result exposed in this work.

MSC 2000. 37C25, 12D10.

Keywords. Euler's method, fixed point, one-point iteration method.

1. INTRODUCTION

We consider the problem of finding a zero of the equation

$$(1) f(x) = 0,$$

where $f : [a, b] \subset \mathbb{R} \to \mathbb{R}$ is an analytic function with simple roots. This zero can be determined as a fixed point of some iteration functions $g : [a, b] \to [a, b]$, by means of the one-point iteration method

(2)
$$x_{n+1} = g(x_n), \ x_0 \in [a, b], \ n = 0, 1, ..., \ n \in \mathbb{N},$$

where x_0 is the starting value and g is a function of form

$$g(x) = x + \varphi(x).$$

In this article we analyze the Euler's method for approximating the solution $x^* \in [a, b]$ of the equation (1). This method is defined by the relation

(3)
$$x_{n+1} = x_n - \frac{2f(x_n)}{f'(x_n) + \sqrt{[f'(x_n)]^2 - 2f(x_n)f''(x_n)}}, x_0 \in [a, b], n \ge 0, n \in \mathbb{N}.$$

The Euler's method has been rediscovered by several authors, see for example [1], [2], [5], [6], [7], [8], and references therein.

^{*}Secondary School Vasile Alecsandri, Strada Păşunii, Nr. 2A, Baia Mare, Romania, email: salajanraluca@yahoo.com.

2. THEOREMS OF CONVERGENCE

Next we will study sufficient conditions in order that the sequence $\{x_n\}_{n\geq 0}$ generated through (3) would be convergent, and if $x^* = \lim_{n \to \infty} x_n$, then $f(x^*) = 0.$

In order to prove the convergence of the method of form (3), we would use the next result.

THEOREM 1. ([3], [4]) If we consider the function f, the real number $\delta > 0$ and $x_0 \in \Delta$, where $\Delta = \{x \in \mathbb{R} : |x - x_0| \leq \delta\} \subseteq [a, b]$, we could assure that the following relations hold

- a) the function f is of class $C^{s}(\Delta)$, $s \geq 2$, $s \in \mathbb{N}$ and $\sup_{x \in \Delta} |f^{(s)}(x)| =$ $M < \infty;$
- b) we have the relation $\left|\sum_{i=0}^{s-1} \frac{1}{i!} f^{(i)}(x) \varphi^i(x)\right| \le \gamma |f(x)|^s$ for every $x \in \Delta$, where $\gamma \in \mathbb{R}, \gamma \geq 0$;
- c) the function φ verifies the relation $|\varphi(x)| \leq \eta |f(x)|$, for every $x \in \Delta$, where $\eta \in \mathbb{R}, \eta > 0$;
- d) the numbers λ, η, M and δ verify the relations:

$$\mu_0 = \lambda |f(x_0)| < 1, \text{ where } \lambda = \left(\gamma + \frac{M\eta^s}{s!}\right)^{\frac{1}{s-1}} \text{ and } \frac{\eta\mu_0}{\lambda(1-\mu_0)} \le \delta;$$

then the sequence $\{x_n\}_{n\geq 0}$ generated by (2) has the following properties:

- i) it is convergent, and if $x^* = \lim_{n \to \infty} x_n$ then $f(x^*) = 0$ and $x^* \in \Delta$;
- ii) $|x_{n+1} x_n| \le \frac{\eta \mu_0^{s^n}}{\lambda}$, for any $n = 0, 1, ..., n \in \mathbb{N}$; iii) $|x^* x_n| \le \frac{\eta \mu_0^{s^n}}{\lambda(1 \mu_0^{s^n})}, n = 0, 1, 2, ..., n \in \mathbb{N}$.

Proof. See [3], [4].

Based on Theorem 1, in our next result we would analyze the convergence of sequence $\{x_n\}_{n>0}$ given by (3).

THEOREM 2. If the function f, the real number $\delta > 0$ and $x_0 \in \Delta$, where $\Delta = \{x \in \mathbb{R} : |x - x_0| \le \delta\} \subseteq [a, b], \text{ verify the relations}$

- a) the function f is of class $C^{3}(\Delta)$ and $\sup_{x \in \Delta} |f'''(x)| = M < \infty;$ b) $\left|\frac{1}{f'(x)}\right| \leq \beta$ for every $x \in \Delta$, $\beta \in \mathbb{R}, \beta > 0$; c) $\frac{f(x)f''(x)}{[f'(x)]^2} \stackrel{not}{=} L_f(x) \leq \frac{1}{2}$ for every $x \in \Delta$;
- d) $\lambda = \sqrt{\frac{8M}{3!}\beta^3} > 0;$ e) $\mu_0 = \lambda |f(x_0)| < 1;$

f)
$$\frac{-\mu \mu 0}{\lambda(1-\mu_0)} \leq \delta;$$

then the sequence $\{x_n\}_{n\geq 0}$ generated by (3) is convergent, and if $x^* = \lim_{n\to\infty} x_n$, the next relations hold

- i) $f(x^*) = 0$ and $x^* \in \Delta$;

- i) $x_n \in \Delta, n = 0, 1, 2..., n \in \mathbb{N};$ ii) $|f(x_n)| \le \frac{\mu_0^{3^n}}{\lambda}, n = 0, 1, 2, ..., n \in \mathbb{N};$ iv) $|x^* x_n| \le \frac{2\beta\mu_0^{3^n}}{\lambda(1-\mu_0^{3^n})}, n = 0, 1, 2, ..., n \in \mathbb{N}.$

Proof. We consider the function φ of form

$$\varphi(x) = -\frac{2f(x)}{f'(x) + \sqrt{[f'(x)]^2 - 2f(x)f''(x)}}, \ x \in \Delta.$$

We'll show that the elements of the sequence $\{x_n\}_{n\geq 0}$ generated by (3) are in Δ.

By conditions b), c) and f) we have

$$\begin{aligned} |x_1 - x_0| &= \left| \frac{f(x_0)}{f'(x_0)} \right| \left| \frac{2}{1 + \sqrt{1 - 2L_f(x_0)}} \right| \le 2 \left| \frac{f(x_0)}{f'(x_0)} \right| \le \\ &\le 2\beta \left| f(x_0) \right| = \frac{2\lambda\beta |f(x_0)|}{\lambda} < \frac{2\beta\mu_0}{\lambda(1 - \mu_0)} \le \delta \Rightarrow x_1 \in \Delta. \end{aligned}$$

Applying the Taylor expansion of function f around x_0 and taking into account that

$$\begin{aligned} \varphi(x) &= \frac{-f'(x) + \sqrt{[f'(x)]^2 - 2f(x)f''(x)}}{f''(x)} = \\ &= -\frac{f'(x) - \sqrt{[f'(x)]^2 - 2f(x)f''(x)}}{f''(x)}, \end{aligned}$$

 $\forall x \in \Delta$, and $\varphi(x)$ is verifying the parable

$$ax^{2} + bx + c = 0$$
, where $c = f(x), b = f'(x), a = \frac{f''(x)}{2}$,

we get

$$\begin{aligned} |f(x_1)| &\leq \left| f(x_1) - \left(f(x_0) + f'(x_0)(x_1 - x_0) + \frac{1}{2}f''(x_0)(x_1 - x_0)^2 \right) \right| + \\ &+ \left| f(x_0) + f'(x_0)(x_1 - x_0) + \frac{1}{2}f''(x_0)(x_1 - x_0)^2 \right| \leq \\ &\leq \left| \frac{f'''(\xi)}{3!}(x_1 - x_0)^3 \right| + \left| f(x_0) + f'(x_0)\varphi(x_0) + \frac{1}{2}f''(x_0)\varphi^2(x_0) \right| \leq \\ &\leq \frac{M}{3!} \left| x_1 - x_0 \right|^3 \leq \frac{8M\beta^3}{3!} \left| f(x_0) \right|^3 = \frac{\mu_0^3}{\lambda}, \ \xi \in \Delta. \end{aligned}$$

Because $\left|\frac{1}{f'(x_1)}\right| \leq \beta$, we have that $|x_2 - x_1| = \left|\frac{f(x_1)}{f'(x_1)}\right| \left|\frac{2}{1 + \sqrt{1 - 2\frac{f(x_1)f''(x_1)}{[f'(x_1)]^2}}}\right| \leq 2\left|\frac{f(x_1)}{f'(x_1)}\right| \leq 2\beta |f(x_1)| \leq \frac{2\beta\mu_0^3}{\lambda}.$

From all that we have proved above, by using the induction, it results that the property iii) holds for every $n \in \mathbb{N}$,

(4)
$$|f(x_n)| \le \frac{\mu_0^{3^n}}{\lambda}.$$

Т

Analogously, from b), c) and (4) we can prove the following relation

(5)
$$|x_{n+1} - x_n| = \left| \frac{f(x_n)}{f'(x_n)} \right| \left| \frac{2}{1 + \sqrt{1 - 2\frac{f(x_n)f''(x_n)}{[f'(x_n)]^2}}} \right| \le \frac{2\beta\mu_0^{3^n}}{\lambda}, \ n = 0, 1, ..., n \in \mathbb{N}.$$

From (5), e) and f) we get the relation ii)

(6)
$$|x_{n+1} - x_0| \leq \sum_{i=0}^{n} |x_{i+1} - x_i| \leq$$

 $\leq \sum_{i=0}^{n} \frac{2\beta\mu_0^{3^i}}{\lambda} \leq \frac{2\beta\mu_0}{\lambda} (1 + \mu_0^{3-1} + \mu_0^{3^2-1} + ... + \mu_0^{3^n-1})$
 $< \frac{2\beta\mu_0}{\lambda(1-\mu_0)} \leq \delta \Rightarrow x_{n+1} \in \Delta, \ n = 0, 1, 2, ..., n \in \mathbb{N}.$

For the convergence of the sequence given by (3) we shall use the Cauchy's theorem. By relation (5) and e) we deduce that

(7)
$$|x_{n+p} - x_n| \leq \sum_{i=n}^{n+p-1} |x_{i+1} - x_i| \leq \sum_{i=n}^{n+p-1} \frac{2\beta\mu_0^{3^i}}{\lambda} < < \frac{2\beta\mu_0^{3^n}}{\lambda} (1 + \mu_0^{3^{n+1}-3^n} + \dots + \mu_0^{3^{n+p-1}-3^n}) < \frac{2\beta\mu_0^{3^n}}{\lambda(1-\mu_0^{3^n})}, \ p \in \mathbb{N}, \ n = 0, 1, 2, \dots, n \in \mathbb{N}.$$

Because $\mu_0 < 1$, it results that the sequence $\{x_n\}_{n\geq 0}$ is fundamental, so according to the Cauchy's theorem, it is convergent.

If $x^* = \lim_{n \to \infty} x_n$, for $p \to \infty$, from the inequality (7) we obtain the relation iv)

(8)
$$|x^* - x_n| \le \frac{2\beta\mu_0^{3^n}}{\lambda(1-\mu_0^{3^n})}, \ n = 0, 1, 2, ..., n \in \mathbb{N}.$$

We show now that the relations i) hold, that is, x^* is a root of equation (1) and $x^* \in \Delta$.

From the continuity of function f and from (4) for $n \to \infty$, it results

$$0 \le |f(x^*)| \le \lim_{n \to \infty} \frac{\mu_0^{3^n}}{\lambda} = 0,$$

that is, $f(x^*) = 0$.

From f) and the inequality (8) for n = 0, we obtain

$$|x^* - x_0| \le \frac{2\beta\mu_0^{3^0}}{\lambda(1-\mu_0^{3^0})} \le \delta,$$

so, $x^* \in \Delta$.

It is evidently that all the assumptions of Theorem 1 are verified for s = 3, $\gamma = 0$ and $\eta = 2\beta$.

3. NUMERICAL EXAMPLE

We shall present a numerical example, which illustrates the result exposed in Theorem 2.

EXAMPLE 3. We used the following test functions and display the zeros x^* found.

$$f_1(x) = \ln(x^2 - 3), \ x^* = -2, \ x \in [-2.35, -1.9],$$

$$f_2(x) = x^3 - 3x^2 - 13x + 15, \ x^* = 5, \ x \in [4.5, 5.5],$$

$$f_3(x) = x^5 - 1, \ x^* = 1, \ x \in [0.88, 1.38].$$

For the derivatives of order 1, 2 and 3 of f_i , i = 1, 2, 3, we have the relations

$$f_1'(x) = \frac{2x}{-3+x^2}, \ f_1''(x) = \frac{-4x^2}{(-3+x^2)^2} + \frac{2}{-3+x^2},$$
$$f_1'''(x) = \frac{16x^3}{(-3+x^2)^3} - \frac{12x}{(-3+x^2)^2},$$

from which we get $\beta = 0.536702$ and M = 422.22;

$$f_2'(x) = 3x^2 - 6x - 13, \ f_2''(x) = 6x - 6, \ f_2'''(x) = 6,$$

from which we get $\beta = 0.0481928$ and M = 6;

$$f'_3(x) = 5x^4, \ f''_3(x) = 20x^3, \ f''_3(x) = 60x^2,$$

from which we get $\beta = 0.333503$ and M = 114.264.

In the Table 1 are listed the values for x_0 , M, β , λ , μ_0 , δ and $\frac{2\beta\mu_0}{\lambda(1-\mu_0)}$, for each test functions.

i	x_0	M	β	λ	μ_0	δ	$\frac{2\beta\mu_0}{\lambda(1-\mu_0)} < \delta$
1	-1.989	422.22	0.53670	9.32908	0.41860	0.089	0.08284
2	4.875	6	0.04819	0.02992	0.11414	0.625	0.41503
3	1.035	114.264	0.33350	2.37724	0.33873	0.353	0.14372

Tal	ole	1.

The implementations were done in Mathematica 7.0 with double precision. From the Table 1 we can conclude that all the assumptions a)–f) of Theorem 2 are verified.

In the next Table 2 we can observe that, the convergence is faster and the method (3) converges at x^* .

i	x_0	x_1	x_2	$x_3 = x^*$
1	-1.989	-2.0000063482540900	-1.9999999999999999990	-2
2	4.875	5.0000611233335144	4.9999999999999993	5
3	1.027	0.999958832170524	1.00000000000139	1

Table 2.

REFERENCES

- [1] AMAT, S., BUSQUIER, S. and PLAZA, S., *Review of some iterative root-finding methods from a dynamical point of view*, Scientia, Series A: Mathematical Sciences, **10**, pp. 3–35, 2004.
- [2] OSADA, N., A one parameter family of locally quartically convergent zero-finding methods, J. Comput. Appl. Math., 205, pp. 116–128, 2007.
- [3] PĂVĂLOIU, I., Sur les procedées itérative à un order élevé de convergence, Mathématica, 12(35), no. 2, pp. 309–324, 1970.
- [4] PĂVĂLOIU, I. and POP, N., *Interpolare și aplicații*, Editura Risoprint, Cluj-Napoca, 2005.
- [5] PETKOVIĆ, L. D., PETKOVIĆ, M. S. and ŽIVIKOVIĆ, D., Hansen-Patrick's family is of Laguerre's type, Novi Sad J. Math., 33, no. 1, pp. 109–115, 2003.
- [6] PETROVIĆ, M., TRIČKOVIĆ, S. and HERCEG, D., Higher order Euler-like methods, Novi Sad J. Math., 28, no. 3, pp. 129–136, 1998.
- [7] VARONA, J., *Graphic and numerical comparison between iterative methods*, The Mathematical Intelligencer, **24**, no. 1, pp. 37–46, 2002.
- [8] YE, X. and LI, C., Convergence of the family of the deformed Euler-Halley iterations under the Hölder condition of the second derivative, Journal of Computational and Applied Mathematics, 194, pp. 294–308, 2006.

Received by the editors: October 23, 2010.