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OPTIMAL INEQUALITIES RELATED TO THE LOGARITHMIC,

IDENTRIC, ARITHMETIC AND HARMONIC MEANS‡

WEI-FENG XIA∗ and YU-MING CHU†

Abstract. The logarithmic mean L(a, b), identric mean I(a, b), arithmetic mean
A(a, b) and harmonic mean H(a, b) of two positive real values a and b are defined
by

L(a, b) =

{
b−a

log b−log a
, a 6= b,

a, a = b,

I(a, b) =

 1
e

(
bb

aa

) 1
b−a

, a 6= b,

a, a = b,

A(a, b) = a+b
2

and H(a, b) = 2ab
a+b

, respectively.
In this article, we answer the questions: What are the best possible parameters

α1, α2, β1 and β2, such that α1A(a, b) + (1− α1)H(a, b) ≤ L(a, b) ≤ β1A(a, b) +
(1 − β1)H(a, b) and α2A(a, b) + (1 − α2)H(a, b) ≤ I(a, b) ≤ β2A(a, b) + (1 −
β2)H(a, b) hold for all a, b > 0?
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1. INTRODUCTION

The logarithmic mean L(a, b) and identric mean I(a, b) of two positive real
values a and b are defined by

(1.1) L(a, b) =

{
b−a

log b−log a , a 6= b,

a, a = b
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and

(1.2) I(a, b) =

1
e

(
bb

aa

) 1
b−a

, a 6= b,

a, a = b,

respectively. In the recent past, both mean values have been the subject of
intensive research. In particular, many remarkable inequalities for logarith-
mic mean or identric mean can be found in the literature [1–25]. It might
be surprising that the logarithmic mean has applications in physics, econom-
ics, and even in meteorology [26–28]. In [26] the authors study a variant of
Jensen’s functional equation involving L(a, b), which appears in a heat con-
duction problem.

The power mean Mp(a, b) of order p is defined by

Mp(a, b) =

{(
ap+bp

2

)1
p , p 6= 0,√

ab, p = 0.

If we denote by A(a, b) = 1
2(a + b), G(a, b) =

√
ab and H(a, b) = 2ab

a+b the
arithmetic mean, geometric mean and harmonic mean of two positive numbers
a and b, respectively, then it is well-known that

min{a, b} ≤ H(a, b) = M−1(a, b) ≤ G(a, b) = M0(a, b)(1.3)

≤ L(a, b) ≤ I(a, b) ≤ A(a, b) = M1(a, b) ≤ max{a, b},
and all inequalities are strict for a 6= b.

In [9, 12, 30] the authors present bounds for L(a, b) in terms of G(a, b) and
A(a, b).

G
2
3 (a, b)A

1
3 (a, b) < L(a, b) < 2

3G(a, b) + 1
3A(a, b)

for all a, b > 0 with a 6= b.
The following companion of (1.3) provides inequalities for the geometric and

arithmetic means of L(a, b) and I(a, b). A proof can be found in [7].

G
1
2 (a, b)A

1
2 (a, b) < L

1
2 (a, b)I

1
2 (a, b) < 1

2L(a, b)+ 1
2I(a, b) < 1

2G(a, b)+ 1
2A(a, b)

for all a, b > 0 with a 6= b.

The following bounds for L(a, b), I(a, b), (L(a, b)I(a, b))
1
2 , and L(a,b)+I(a,b)

2
in terms of power means are proved in [4, 6–8, 10, 24, 30].

M0(a, b) < L(a, b) < M1
3
(a, b),

M2
3
(a, b) < I(a, b) < Mlog 2(a, b),

M0(a, b) < L
1
2 (a, b)I

1
2 (a, b) < M1

2
(a, b)

and
M log 2

1+log 2

(a, b) < 1
2L(a, b) + 1

2I(a, b) < M1
2
(a, b)
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for all a, b > 0 with a 6= b.
The main purpose of this paper is to answer the questions: What are

the best possible parameters α1, α2, β1 and β2, such that α1A(a, b) + (1 −
α1)H(a, b) ≤ L(a, b) ≤ β1A(a, b) + (1 − β1)H(a, b) and α2A(a, b) + (1 −
α2)H(a, b) ≤ I(a, b) ≤ β2A(a, b) + (1− β2)H(a, b) hold for all a, b > 0?

2. LEMMAS

Lemma 2.1. The function g(t) = (t2 + 4t + 1) log t − 3t2 + 3 > 0 for t ∈
(1,+∞).

Proof. By simple computation we have

(2.1) g(1) = 0,

g′(t) = (2t+ 4) log t− 5t+ 1
t + 4,

(2.2) g′(1) = 0,

g′′(t) = 2 log t+ 4
t −

1
t2
− 3,

(2.3) g′′(1) = 0

and

(2.4) g′′′(t) = 2
t −

4
t2

+ 2
t3

= 2
t3

(t− 1)2.

Equation (2.4) leads to g′′′(t) > 0 for t ∈ (1,+∞), then g′′(t) is strictly
increasing in (1,+∞). Hence g(t) > 0 for t ∈ (1,+∞) follows from the
monotonicity of g′′(t) and (2.1)–(2.3). �

Lemma 2.2. The function g(t) = (5t3 + 19t2 + 19t+ 5) log t− 14t3 − 6t2 +
6t+ 14 > 0 for t ∈ (1,+∞).

Proof. By elementary computation we get

(2.5) g(1) = 0,

g′(t) = (15t2 + 38t+ 19) log t− 37t2 + 7t+ 5
t + 25,

(2.6) g′(1) = 0,

g′′(t) = (30t+ 38) log t− 59t+ 19
t −

5
t2

+ 45,

(2.7) g′′(1) = 0,

g′′′(t) = 30 log t+ 38
t −

19
t2

+ 10
t3
− 29,

(2.8) g′′′(1) = 0

and

(2.9) g(4)(t) = 1
t4

(t− 1)(30t2 − 8t+ 30).
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Equation (2.9) leads to g(4)(t) > 0 for t ∈ (1,+∞), then g′′′(t) is strictly
increasing in (1,+∞). Hence g(t) > 0 for t ∈ (1,+∞) follows from the
monotonicity of g′′′(t) and (2.5)–(2.8). �

Lemma 2.3. If g(t) = −[t3 + (2e− 1)t2 + (2e− 1)t+ 1] log t+ (2e− 2)t3 +
(−2e+6)t2 +(2e−6)t−2e+2, then there exists λ ∈ (1,+∞) such that g(t) > 0
for t ∈ (1, λ) and g(t) < 0 for t ∈ (λ,+∞).

Proof. Elementary computation yields

(2.10) g(1) = 0, lim
t→+∞

g(t) = −∞,

g′(t) = −[3t2 + (4e− 2)t+ 2e− 1] log t+ (6e− 7)t2 + (−6e + 13)t− 1
t − 5,

(2.11) g′(1) = 0, lim
t→+∞

g′(t) = −∞,

g′′(t) = −(6t+ 4e− 2) log t+ (12e− 17)t− 2e−1
t + 1

t2
− 10e + 15,

(2.12) g′′(1) = 0, lim
t→+∞

g′′(t) = −∞,

g′′′(t) = −6 log t− 4e−2
t + 2e−1

t2
− 2

t3
+ 12e− 23,

(2.13) g′′′(1) = 10e− 24 > 0, lim
t→+∞

g′′′(t) = −∞,

g(4)(t) = − 1
t4

(t− 1)[6t2 + (8− 4e)t+ 6].(2.14)

Equation (2.14) implies that g(4)(t) < 0 for t ∈ (1,+∞), then g′′′(t) is
strictly decreasing in (1,+∞).

From (2.13) and the monotonicity of g′′′(t) we clearly see that there exists
t1 ∈ (1,+∞), such that g′′′(t) > 0 for t ∈ (1, t1) and g′′′(t) < 0 for t ∈ (t1,+∞).
Hence we know that g′′(t) is strictly increasing in [1, t1) and strictly decreasing
in [t1,+∞).

The monotonicity of g′′(t) and (2.12) imply that there exists t2 ∈ (1,+∞),
such that g′′(t) > 0 for t ∈ (1, t2) and g′′(t) < 0 for t ∈ (t2,+∞). Hence
we know that g′(t) is strictly increasing in [1, t2) and strictly decreasing in
[t2,+∞).

From (2.11) and the monotonicity of g′(t) we clearly see that there exists
t3 ∈ (1,+∞), such that g′(t) > 0 for t ∈ (1, t3) and g′(t) < 0 for t ∈ (t3,+∞).
Hence we conclude that g(t) is strictly increasing in [1, t3) and strictly decreas-
ing in [t3,+∞).

The monotonicity of g(t) and (2.10) imply that there exists λ ∈ (1,+∞),
such that g(t) > 0 for t ∈ (1, λ) and g(t) < 0 for t ∈ (λ,+∞). �
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3. MAIN RESULTS

Theorem 3.1. The double inequality

α1A(a, b) + (1− α1)H(a, b) ≤ L(a, b) ≤ β1A(a, b) + (1− β1)H(a, b)

holds for all a, b > 0 if and only if α1 ≤ 0 and β1 ≥ 2
3 .

Proof. If a = b, then α1A(a, b) + (1 − α1)H(a, b) = L(a, b) = β1A(a, b) +
(1− β1)H(a, b) = a for all α1, β1 ∈ R. Next, we assume that a 6= b.

Firstly, we prove that H(a, b) < L(a, b) < 2
3A(a, b) + 1

3H(a, b). From (1.3)
we know that H(a, b) < L(a, b) is true, so we only need to prove that L(a, b) <
2
3A(a, b) + 1

3H(a, b).
Without loss of generality, we assume that a > b. Let t = a

b > 1, then
simple computation leads to

2
3A(a, b) + 1

3H(a, b)− L(a, b) = b
[
t+1

3 + 2t
3(t+1) −

t−1
log t

]
(3.1)

= b[(t2+4t+1) log t−3t2+3]
3(t+1) log t .

Therefore, L(a, b) < 2
3A(a, b) + 1

3H(a, b) follows from Lemma 2.1 and (3.1).

Secondly, we prove that the parameters α1 ≤ 0 and β1 ≥ 2
3 cannot be

improved.
For any 0 < ε < 1 and 0 < x < 1, from (1.1) we have

lim
x→0

[εA(1, x) + (1− ε)H(1, x)− L(1, x)] =(3.2)

= lim
x→0

[
ε · 1+x

2 + (1− ε) · 2x
1+x −

x−1
log x

]
= ε

2 .

Equation (3.2) implies that for any 0 < ε < 1, there exists 0 < δ = δ(ε) < 1,
such that εA(1, x)+(1−ε)H(1, x) > L(1, x) for x ∈ (0, δ). Hence the parameter
α1 ≤ 0 cannot be improved.

Next, for any 0 < ε < 1 and 0 < x < 1, from (1.1) we get

L(1 + x, 1)−
[
(2

3 − ε)A(1 + x, 1) + (1
3 + ε)H(1 + x, 1)

]
=(3.3)

= x
log(1+x) −

(
2
3−ε)x

2+4x+4

2(x+2)

= h(x)
2(x+2) log(1+x) ,

where h(x) = 2x(x+ 2)− [(2
3 − ε)x

2 + 4x+ 4] log(1 + x).
Let x→ 0 and using Taylor expansion we obtain

h(x) = εx3 + o(x3).(3.4)

Equations (3.3) and (3.4) imply that for any 0 < ε < 1, there exists 0 <
δ = δ(ε) < 1, such that L(1 + x, 1) > (2

3 − ε)A(1 + x, 1) + (1
3 + ε)H(1 + x, 1)

for x ∈ (0, δ). Hence the parameter β1 ≥ 2
3 cannot be improved. �
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Theorem 3.2. The double inequality

α2A(a, b) + (1− α2)H(a, b) ≤ I(a, b) ≤ β2A(a, b) + (1− β2)H(a, b)

holds for all a, b > 0 if and only if α2 ≤ 2
e and β2 ≥ 5

6 .

Proof. If a = b, then α2A(a, b) + (1 − α2)H(a, b) = I(a, b) = β2A(a, b) +
(1− β2)H(a, b) = a for all α2, β2 ∈ R. Next, we assume that a 6= b.

Firstly, we prove that 2
eA(a, b) + (1− 2

e )H(a, b) < I(a, b) and the parameter

α2 ≤ 2
e cannot be improved.

Without loss of generality, we assume that a > b. Let t = a
b > 1, then

I(a, b)−
[

2
eA(a, b) + (1− 2

e )H(a, b)
]

=(3.5)

= b
e

[
t

t
t−1 − (t+ 1)− (e− 2) 2t

t+1

]
.

Let f(t) = log t
t

t−1 − log
[
(t+ 1) + (e− 2) 2t

t+1

]
, then elementary computa-

tion yields

(3.6) lim
t→1

f(t) = 0, lim
t→+∞

f(t) = 0

and

(3.7) f ′(t) = g(t)
(t+1)(t−1)2[t2+(2e−2)t+1]

,

where g(t) = −[t3 + (2e− 1)t2 + (2e− 1)t+ 1] log t+ (2e− 2)t3 + (−2e + 6)t2 +
(2e− 6)t− 2e + 2.

From (3.7) and Lemma 2.3 we know that there exists λ ∈ (1,+∞), such
that f(t) is strictly increasing in (1, λ) and strictly decreasing in (λ,+∞).
Then (3.6) and the monotonicity of f(t) imply that f(t) > 0 for t ∈ (1,+∞),
and from (3.5) we know that I(a, b) > 2

eA(a, b) + (1 − 2
e )H(a, b) for a, b > 0

with a 6= b.
Next, we prove that the parameter α2 ≤ 2

e cannot be improved.
For any 0 < ε < 1 and 0 < x < 1, from (1.2) we have

lim
x→0

[
(2

e + ε)A(1, x) + (1− 2
e − ε)H(1, x)− I(1, x)

]
=(3.8)

= lim
x→0

[
(2

e + ε) · 1+x
2 + (1− 2

e − ε) ·
2x

1+x −
1
ex

x
x−1

]
= ε

2 .

Equation (3.8) implies that for any 0 < ε < 1, there exists 0 < δ = δ(ε) < 1,
such that (2

e + ε)A(1, x) + (1 − 2
e − ε)H(1, x) > I(1, x) for x ∈ (0, δ). Hence

the parameter α2 ≤ 2
e cannot be improved.

Secondly, we prove that I(a, b) < 5
6A(a, b) + 1

6H(a, b) and the parameter

β2 ≥ 5
6 cannot be improved.
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Let t = a
b > 1, then from (1.2) we have

5
6A(a, b) + 1

6H(a, b)− I(a, b) = b

[
5t2+14t+5

12(t+1) −
1
e t

t
t−1

]
.(3.9)

Let f(t) = log
[

5t2+14t+5
12(t+1)

]
− log

(
1
e t

t
t−1

)
, then

(3.10) f(1) = 0

and

(3.11) f ′(t) = g(t)
(t−1)(t2−1)(5t2+14t+5)

,

where g(t) = (5t3 + 19t2 + 19t+ 5) log t− 14t3 − 6t2 + 6t+ 14.
From Lemma 2.2 and (3.11) together with (3.10) we clearly see that f(t) > 0

for t ∈ (1,+∞). Hence from (3.9) we know that 5
6A(a, b) + 1

6H(a, b) > I(a, b)
for a, b > 0 with a 6= b.

Next, we prove that the parameter β2 ≥ 5
6 cannot be improved.

For any 0 < ε < 1 and 0 < x < 1, from (1.2) we get

I(1 + x, 1)−
[
(5

6 − ε)A(1 + x, 1) + (1
6 + ε)H(1 + x, 1)

]
=(3.12)

= 1
e (1 + x)

1+x
x − (

5
6−ε)x

2+4x+4

2(2+x)

= h(x)
2(2+x) ,

where h(x) = 2
e (2 + x)(1 + x)

1+x
x − (5

6 − ε)x
2 − 4x− 4.

Let x→ 0 and using Taylor expansion we obtain

h(x) = 2(2 + x)
[
1 + 1

2x−
1
24x

2 + o(x2)
]
− (5

6 − ε)x
2 − 4x− 4(3.13)

= εx2 + o(x2).

Equations (3.12) and (3.13) imply that for any 0 < ε < 1, there exists
0 < δ = δ(ε) < 1, such that I(1+x, 1) > (5

6−ε)A(1+x, 1)+(1
6 +ε)H(1+x, 1)

for x ∈ (0, δ). Hence the parameter β2 ≥ 5
6 cannot be improved. �
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