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Abstract. In this paper, a so-called second order approximated optimization
problem associated to an optimization problem is considered. The equivalence
between the saddle points of the lagrangian of the second order approximated
optimization problem and optimal solutions of the original optimization problem
is established.
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1. INTRODUCTION

We consider the optimization problem

(P )
min f (x)
s.t. x ∈ X

g (x) 5 0,

where X is a subset of Rn and f : X → R and g = (g1, ..., gm) : X → Rm are
two functions.

Let

F (P ) := {x ∈ X : g (x) 5 0}

denote the set of all feasible solutions of Problem (P ) .
For solving optimization problem (P ) , there are various manners to ap-

proach. One of these manners is that for Problem (P ) one attached to an-
other optimization problem, problem whose solution gives us the (information
about) optimal solution of the initial problem (P ).
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Assuming that X is open, and that f and g are differentiable on X, Man-
gasarian [12] attached to Problem (P ) and the point x0 ∈ X, the problem

min f
(
x0
)

+
〈
u,∇f

(
x0
)〉

s.t. u ∈ Rn
g
(
x0
)

+
[
∇g
(
x0
)]

(u) 5 0.

He took the dual of this linear optimization problem, and then considered
x0 to be a variable. This last problem is precisely the classical dual of the
nonlinear optimization problem, introduced in a different way by Wolfe [16]
and investigated extensively (see, for example [11]). Connections between
optimal solutions of the dual and the primal are known (see, for example
[11]).

The above process is repeated but taking nonlinear instead of linear ap-
proximation of f and g around some fixed x0 ∈ X and taking the dual of the
resulting optimization problem. One takes the dual of this optimization prob-
lem and then one considers x0 to be a variable in X. One obtains the so called
higher-order dual problem of Problem (P). In [12], there are given connections
between the optimal solutions of higher-order dual and initial problem (P) .
D.I. Duca [7], [8] used this idea for optimization problems in complex space.

Another idea came from Antczak [4], [3], [2], who attached to Problem (P)
the following problem

(AP1)
min f

(
x0
)

+
〈
∇f

(
x0
)
, η
(
x, x0

)〉
s.t. x ∈ X

g
(
x0
)

+
[
∇g
(
x0
)] (

η
(
x, x0

))
5 0,

where x0 ∈ X is an interior point of X, η : X × X → Rn is a function, and
f : X → R and g : X → Rm are differentiable at x0. He studied the connections
between the saddle points of Problem (AP1) and optimal solutions of Problem
(P ) .

In [1], [14], [15], [17] the another problems are attached to Problem (P ) .
In this paper, we attached to Problem (P ) , the problem

min F (x)
s.t. x ∈ X

G (x) 5 0,

where F : X → R and G : X → Rm are the functions defined by

F (x) := f
(
x0
)

+
〈
∇f

(
x0
)
, η
(
x, x0

)〉
+ 1

2

〈
η
(
x, x0

)
,
[
∇2f

(
x0
)] (

η
(
x, x0

))〉
,

G (x) := g
(
x0
)

+
[
∇g
(
x0
)] (

η
(
x, x0

))
,

for all x ∈ X, and we study the connections between saddle points of this
Problem and the optimal solutions of Problem (P) .
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2. NOTIONS AND PRELIMINARY RESULTS

In the last few years, attempts have been made to weaken the convexity
hypotheses and thus to explore the existence of optimality conditions appli-
cability. Various classes of generalized convex functions have been suggested
for the purpose of weakening the convexity limitation in this result. Among
these, the concept of an invex function proposed by Hanson ([10]) has received
more attention. The name of invex (invariant convex) function was given by
Craven ([6])

Definition 2.1. Let X be a nonempty subset of Rn, x0 be an interior point
of X, f : X → R be a differentiable function at x0, and η : X ×X → Rn be a
function. We say that the function f is invex at x0 with respect to (w.r.t.) η
if

(2.1) f (x)− f
(
x0
)
=
〈
∇f

(
x0
)
, η
(
x, x0

)〉
, for all x ∈ X.

Hanson defined invex functions which allow the use of the Kuhn-Tucker
conditions as sufficient conditions for optimality in constrained optimization
problems. Later, Martin ([13]) proved that invexity hypotheses are not only
sufficient but also necessary when using the Kuhn-Tucker optimality conditions
for unconstrained optimization problems.

After the works of Hanson and Craven, other types of differentiable func-
tions have appeared with the intent of generalizing invex function from differ-
ent points of view.

Ben-Israel and Mond [5] defined the so-called pseudoinvex functions, gener-
alizing pseudoconvex functions in the same way that invex functions generalize
convex functions.

Definition 2.2. Let X be a nonempty subset of Rn, x0 be an interior point
of X, f : X → R be a differentiable function at x0, and η : X ×X → Rn be a
function. We say that f is pseudoinvex at x0 w.r.t. η if, for each x ∈ X with
the property that 〈

∇f
(
x0
)
, η
(
x, x0

)〉
= 0,

we have

f (x) = f
(
x0
)
.

Definition 2.3. Let X be a nonempty subset of Rn, x0 be an interior point
of X, f : X → R be a differentiable function at x0, and η : X ×X → Rn be a
function. We say that f is quasiinvex at x0 w.r.t. η if, for each x ∈ X with
the property that

f (x) 5 f
(
x0
)
,

we have 〈
∇f

(
x0
)
, η
(
x, x0

)〉
5 0.
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Remark 2.4. Note that, in general, there exists no unique function η = ηx0
such that the function f is invex, respectively pseudoinvex and quasiinvex at
the point x0 ∈ X.

Indeed, the function f : R→ R defined by

f (x) = expx, for all x ∈ R,

is invex at x0 = 0 w.r.t. the function η : R× R→ R defined by

η (x, u) = x− u, for all (x, u) ∈ R× R.

Also, the function f is invex at x0 = 0 w.r.t. the function η : R2 → R
defined by

η (x, u) = x+ x2

2 + x3

6 , for all (x, u) ∈ R2.

And also, the function f is invex at x0 w.r.t. the function η : R2 → R
defined by

η (x, u) = x− 2, for all (x, u) ∈ R2.

�

Definition 2.5. Let X be a nonempty subset of Rn, x0 be an interior point
of X, f : X → R be a twice differentiable function at x0 and η : X ×X → Rn
be a function. We say that the function f is second order invex at x0 w.r.t. η
if

f (x)− f
(
x0
)
=
〈
∇f

(
x0
)
, η
(
x, x0

)〉
+(2.2)

+
〈[
∇2f

(
x0
)]

(y) , η
(
x, x0

)〉
− 1

2

〈
y,
[
∇2f

(
x0
)]

(y)
〉
,

for all x ∈ X and y ∈ Rn.

Remark 2.6. If f is a second order invexity at x0 w.r.t. η, then (2.2) is
also satisfied for y = η

(
x, x0

)
. Then (2.2) gives

f (x)− f
(
x0
)
=
〈
∇f

(
x0
)
, η
(
x, x0

)〉
+ 1

2

〈[
∇2f

(
x0
)] (

η
(
x, x0

))
, η
(
x, x0

)〉
,

for all x ∈ X. �

Definition 2.7. Let X be a nonempty subset of Rn, x0 be an interior point
of X, η : X ×X → Rn be a function, and f : X → R be a twice differentiable
function at x0. We say that f is second order pseudoinvex at x0 with respect
to (w.r.t.) η if, for each x ∈ X with the property that〈

∇f
(
x0
)
, η
(
x, x0

)〉
+ 1

2

〈[
∇2f

(
x0
)] (

η
(
x, x0

))
, η
(
x, x0

)〉
= 0,

we have

f (x) = f
(
x0
)
.

Remark 2.8. Obviously, if the function f is second order invex at x0 w.r.t.
η, then the function f is second order pseudoinvex at x0 w.r.t. η. �
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Now let us attach to Problem (P ) its lagrangian L : X × Rm+ → R defined
by

L (x, v) := f (x) + 〈v, g (x)〉 , for all (x, v) ∈ X × Rm+
Then we have the following theorem (see, for example [11]):

Theorem 2.9. If
(
x0, v0

)
∈ X × Rm+ is a saddle point of the lagrangian L

of Problem (P ) , i.e. we have

L
(
x0, v

)
5 L

(
x0, v0

)
5 L

(
x, v0

)
, for all (x, v) ∈ X × Rm+ ,

then x0 is an optimal solution of Problem (P ) .

3. η-APPROXIMATED OPTIMIZATION PROBLEM

In what follows, X is a nonempty subset of Rn, x0 is an interior point of X,
and f : X → R and g : X → Rm are two differentiable functions at x0.

For η : X ×X → Rn, Antczak ([4]) attaches to Problem (P ) the problem(
Pη
(
x0
))
, called η-approximated at x0 of Problem (P ) .

In [4] and [9] one establishes the equivalence between saddle points of η-
approximated problem

(
Pη
(
x0
))

and of the original problem (P ) .

If x0 is a feasible solution of Problem (P ) , then

I
(
x0
)

= {i ∈ {1, ...,m} : gi
(
x0
)

= 0}

denote the indices of the active restrictions at x0.
In Ref. [9], generalizing a result from [2], one proves the following statement:

Theorem 3.1. Let η : X × X → Rn such that η
(
x0, x0

)
= 0, f : X → R

be pseudoinvex at x0 w.r.t. η and g = (g1, ..., gm) : X → Rm such that gi,
i ∈ I

(
x0
)

are quasiinvex at x0 w.r.t. η.

If
(
x0, v0

)
∈ X × Rm+ is a saddle point of the lagrangian Lη of Problem(

Pη
(
x0
))
, then x0 is an optimal solution of the original problem (P ) .

Also, in [9], generalizing another result from [2], we showed that, if x0 is an
optimal solution of the original problem (P ) , then under certain conditions,
there exists a point v0 ∈ Rm+ such that

(
x0, v0

)
is a saddle point of the η-

approximated problem
(
Pη
(
x0
))
.

More exactly, the following statement is true

Theorem 3.2. Let x0 be an optimal solution of the original problem (P )
and assume that a suitable constraint qualification is satisfied at x0 (CQ in
[11]). If

(i)
〈
∇f

(
x0
)
, η
(
x0, x0

)〉
5 0;

(ii) g
(
x0
)

+
[
∇g
(
x0
)] (

η
(
x0, x0

))
5 0 (i.e. x0 ∈ F

(
Pη
(
x0
))

),

then there exists a point v0 ∈ Rm+ such that
(
x0, v0

)
is a saddle point of the

lagrangian Lη of the η-approximated problem
(
Pη
(
x0
))
.
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Remark 3.3. If η
(
x0, x0

)
= 0, then the hypotheses (i) and (ii) from The-

orem 3.2 are satisfied. �

Remark 3.4. If f and g are invex at x0 w.r.t. η, then the hypotheses (i)
and (ii) from Theorem 3.2 are satisfied. �

4. (2, 1)-η-APPROXIMATED OPTIMIZATION PROBLEM

In this section, X is a subset of Rn, x0 is an interior point of X, f : X → R
is a twice continuously differentiable function at x0, and g : X → Rm is a
differentiable function at x0.

For η : X ×X → Rn, we attach to Problem (P ) the following optimization
problem

(AP2)
min F (x)
s.t. x ∈ X

G (x) 5 0,

where F : X → R and G : X → Rm are the functions defined by

F (x) := f
(
x0
)

+
〈
∇f

(
x0
)
, η
(
x, x0

)〉
+ 1

2

〈
η
(
x, x0

)
,
[
∇2f

(
x0
)] (

η
(
x, x0

))〉
,

G (x) := g
(
x0
)

+
[
∇g
(
x0
)] (

η
(
x, x0

))
,

for all x ∈ X.
Problem (AP2) is called (2, 1)-η-approximated at x0 of Problem (P ) .

Remark 4.1. If X = Rn and η
(
x, x0

)
= x−x0, for all x ∈ X, then Problem

(AP2) is quadratic. �

Let

F (AP2) := {x ∈ X : g
(
x0
)

+
[
∇g
(
x0
)] (

η
(
x, x0

))
5 0}

= {x ∈ X : G (x) 5 0},
denote the set of all feasible solutions of Problem (AP2).

Theorem 4.2. Assume that g : X → Rm is invex at x0 w.r.t. η. If x is
a feasible solution of Problem (P ), then x is a feasible solution of Problem
(AP2) , i.e.

(4.1) F (P ) ⊆ F (AP2) .

Proof. Let x ∈ X be a feasible solution of Problem (P ) , i.e. g (x) 5 0.
Since g is invex at x0 w.r.t. η, we have[

∇g
(
x0
)] (

η
(
x, x0

))
5 g (x)− g

(
x0
)
,

i.e. [
∇g
(
x0
)] (

η
(
x, x0

))
+ g

(
x0
)
5 g (x) .

But g (x) 5 0 and then[
∇g
(
x0
)] (

η
(
x, x0

))
+ g

(
x0
)
5 0,

hence x is a feasible solution of Problem (AP2) . �
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Example 4.3. For Problem

(P̃ )

min f (x) = x2

s.t. x ∈ X = R
g (x) = x2 − x 5 0,

we have F
(
P̃
)

= [0, 1] .

The function g is invex at x0 = 0 w.r.t. the function η : R2 → R defined by

η (x, u) = x− u, for all (x, u) ∈ R2.

On the other hand, the (2, 1)-η-approximated optimization problem
(
P̃
)

is

(AP̃2)
min x2

s.t. x ∈ X = R
−x 5 0,

which has F
(
AP̃2

)
= [0,+∞[. �

Theorem 4.4. Assume that f : X → R is a second order invex at x0 w.r.t.
η, and g : X → Rm is invex at x0 w.r.t. η. If x0 is an optimal solution of
Problem (P ), then

min {f (x) : x ∈ F (P )} = inf {F (x) : x ∈ F (AP2)} .

Proof. The function f is second order invexity at x0 w.r.t. η, then

f (x) = f
(
x0
)

+
〈
∇f

(
x0
)
, η
(
x, x0

)〉
+ 1

2

〈
η
(
x, x0

)
,
[
∇2f

(
x0
)] (

η
(
x, x0

))〉
,

for all x ∈ X. It follows that

min {f (x) : x ∈ F (P )} = f
(
x0
)
=

= f
(
x0
)

+
〈
∇f

(
x0
)
, η
(
x0, x0

)〉
+ 1

2

〈
η
(
x0, x0

)
,
[
∇2f

(
x0
)] (

η
(
x0, x0

))〉
=

= inf
{
f
(
x0
)

+
〈
∇f

(
x0
)
, η
(
x, x0

)〉
+

+ 1
2

〈
η
(
x, x0

)
,
[
∇2f

(
x0
)] (

η
(
x, x0

))〉
: x ∈ F (P )

}
= (from (4.1))

= inf
{
f
(
x0
)

+
〈
∇f

(
x0
)
, η
(
x, x0

)〉
+

+ 1
2

〈
η
(
x, x0

)
,
[
∇2f

(
x0
)] (

η
(
x, x0

))〉
: x ∈ F (AP2)

}
=

= inf {F (x) : x ∈ F (AP2)} .

�

Theorem 4.5. If η
(
x0, x0

)
= 0, g : X → Rm is invex at x0 w.r.t. η, and

x0 is an optimal solution of Problem (P ), then

min {f (x) : x ∈ F (P )} = inf {F (x) : x ∈ F (AP2)} .
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Proof. We have

min {f (x) : x ∈ F (P )} = f
(
x0
)

=

= f
(
x0
)

+
〈
∇f

(
x0
)
, η
(
x0, x0

)〉
+ 1

2

〈
η
(
x0, x0

)
,
[
∇2f

(
x0
)] (

η
(
x0, x0

))〉
=

= inf
{
f
(
x0
)

+
〈
∇f

(
x0
)
, η
(
x, x0

)〉
+

+ 1
2

〈
η
(
x, x0

)
,
[
∇2f

(
x0
)] (

η
(
x, x0

))〉
: x ∈ F (P )

}
= (from (4.1))

= inf
{
f
(
x0
)

+
〈
∇f

(
x0
)
, η
(
x, x0

)〉
+

+ 1
2

〈
η
(
x, x0

)
,
[
∇2f

(
x0
)] (

η
(
x, x0

))〉
: x ∈ F (AP2)

}
=

= inf {F (x) : x ∈ F (AP2)} .

�

The lagrangian of Problem (AP2) will be denoted by L
(2,1)
η , i.e. L

(2,1)
η :

X × Rm+ → R is defined by

L(2,1)
η (x, v) := F (x) + 〈v,G (x)〉 =

= f
(
x0
)

+
〈
∇f

(
x0
)
, η
(
x, x0

)〉
+

+ 1
2

〈
η
(
x, x0

)
,
[
∇2f

(
x0
)] (

η
(
x, x0

))〉
+

+
〈
v, g

(
x0
)〉

+
〈
v,
[
∇g
(
x0
)] (

η
(
x, x0

))〉
,

for all (x, v) ∈ X × Rm+ .

Example 4.6. Let us consider the optimization problem

(P )

min f (x) = expx

s.t. x ∈ X = R
g (x) = x2 − x 5 0.

We have that F
(
P
)

= [0, 1] and x0 = 0 is the unique optimal solution of

Problem
(
P
)
.

The functions f and g are invex at x0 = 0 w.r.t. the function η : R2 → R
defined by

η (x, u) = x− u, for all (x, u) ∈ R2.

Then the (2, 1)-η-approximated optimization problem is

(AP2)
min

(
1 + x+ 1

2x
2
)

s.t. x ∈ X = R
−x 5 0,

which has the optimal solution x0 = 0.

On the other hand, the lagrangian L
(2,1)
η of Problem

(
AP2

)
is defined by

L
(2,1)
η (x, v) = 1 + x+ 1

2x
2 − vx, for all (x, v) ∈ R× R+.
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Obviously,
(
x0, v0

)
= (0, 1) is a saddle point of the lagrangian L

(2,1)
η of Problem(

AP2
)
. �

In this section we show the equivalence between saddle points of the la-

grangian L
(2,1)
η , of Problem (AP2) , and optimal solutions of Problem(

P
(2,1)
η

(
x0
))
.

By Theorem 2.9, the following saddle point theorem follows:

Theorem 4.7. If
(
x0, v0

)
∈ X × Rm+ is a saddle point of the lagrangian

L
(2,1)
η of Problem (AP2) , then x0 is an optimal solution of Problem (AP2) .

Remark 4.8. We established Theorem 4.7, without any assumption about
the function involved in Problem (AP2) . �

Now, we can state the converse theorem of Theorem 4.7.

Theorem 4.9. Let x0 ∈ X be an optimal solution of Problem (AP2) , µ :
X ×X → Rn be a function. Assume that η

(
·, x0

)
: X → Rn is differentiable

at x0, the functions F, G = (G1, ..., Gm) : X → Rm are invex at x0 w.r.t. µ
and a suitable constraint qualification (CQ, [11]) is satisfied at x0. Then there
exists a point v0 ∈ Rm+ such that

(
x0, v0

)
is a saddle point of Problem (AP2) .

Proof. In view of Karush-Kuhn-Tucker theorem, there exists a point v0 ∈
Rm+ such that

(4.2) ∇F
(
x0
)

+
[
∇G

(
x0
)]T (

v0
)

= 0,

(4.3)
〈
v0, G

(
x0
)〉

= 0.

The functions F and G are invex at x0 w.r.t. µ, then, for each x ∈ X, we
have

(4.4) F (x)− F
(
x0
)
=
〈
∇F

(
x0
)
, µ
(
x, x0

)〉
,

(4.5) G (x)−G
(
x0
)
=
[
∇G

(
x0
)] (

µ
(
x, x0

))
.

Since v0 ∈ Rm+ , by (4.5) , we obtain

(4.6)
〈
v0, G (x)−G

(
x0
)〉
=
〈
v0,
[
∇G

(
x0
)] (

µ
(
x, x0

))〉
=

=
〈[
∇G

(
x0
)]T (

v0
)
, µ
(
x, x0

)〉
, for all x ∈ X.

Then, for each x ∈ X

L(2,1)
η

(
x, v0

)
− L(2,1)

η

(
x0, v0

)
=

= F (x)− F
(
x0
)

+
〈
v0, G (x)−G

(
x0
)〉
= (by (4.4) , and (4.6))

=
〈
∇F

(
x0
)

+
[
∇G

(
x0
)]T (

v0
)
, µ
(
x, x0

)〉
= (by (4.2)) = 0.
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Consequently, the second inequality of the definition of saddle point is sat-
isfied.

In order to prove the first inequality of the definition of saddle point, let
v ∈ Rm+ . Then

L(2,1)
η

(
x0, v0

)
− L(2,1)

η

(
x0, v

)
=

=
〈
v0, G

(
x0
)〉
−
〈
v,G

(
x0
)〉

= (by (4.3))

= −
〈
v,G

(
x0
)〉
= 0,

because G
(
x0
)
5 0 and v ∈ Rm+ . �

5. EQUIVALENCE BETWEEN SADDLE POINTS OF (2, 1)-η-APPROXIMATED

PROBLEM AND OF THE ORIGINAL PROBLEM

In this section, X is a subset of Rn, x0 is an interior point of X, f : X → R
is a twice continuously differentiable function at x0, and g : X → Rm is a
differentiable function at x0.

We will prove the equivalence between the original optimization problem
(P ) and its associated (2, 1)-η-approximated optimization problem (AP2) .
We establish the results where one assumes that the function η satisfies only
the condition η

(
x0, x0

)
= 0.

The following statement is true

Theorem 5.1. Let η : X ×X → Rn such that η
(
x0, x0

)
= 0, f : X → R be

second order pseudoinvex function at x0 w.r.t. η and g = (g1, ..., gm) : X →
Rm such that gi, i ∈ I

(
x0
)

are quasiinvex functions at x0 w.r.t. η.

If
(
x0, v0

)
∈ X × Rm+ is a saddle point of the lagrangian L

(2,1)
η of Problem

(AP2) , then x0 is an optimal solution of the original problem (P ) .

Proof. The point
(
x0, v0

)
∈ X × Rm+ is a saddle point of the lagrangian

L
(2,1)
η of Problem (AP2) ; then

L(2,1)
η

(
x0, v

)
5 L(2,1)

η

(
x0, v0

)
, for all v ∈ Rm+ ,

i.e.

(5.1)
〈
v − v0, g

(
x0
)〉
5 0, for all v ∈ Rm+ ,

because η
(
x0, x0

)
= 0.

Let i ∈ {1, ...,m}, and ei = (0, ..., 1, ..., 0) ∈ Rm be the i-th unit point of
Rm. Then, for v = ei + v0 ∈ Rm+ , relation (5.1) becomes gi

(
x0
)
5 0. Hence

gi
(
x0
)
5 0, for all i ∈ {1, ...,m}.

Consequently,
x0 ∈ F (P ) .

If follows that

(5.2)
〈
v0, g

(
x0
)〉
5 0,
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because v0 ∈ Rm+ . But, from (5.1) we deduce

(5.3)
〈
v0, g

(
x0
)〉
= 0,

because v = 0 ∈ Rm+ .
Thus, by (5.2) and (5.3)

(5.4)
〈
v0, g

(
x0
)〉

= 0.

From (5.4) it follows that

(5.5) v0
i = 0, for all i ∈ {1, ...,m}\I

(
x0
)
.

On the other hand, from

L(2,1)
η

(
x0, v0

)
5 L(2,1)

η

(
x, v0

)
, for all x ∈ X,

we deduce that
(5.6)〈

∇f
(
x0
)

+
[
∇g
(
x0
)]T (

v0
)

+ 1
2

[
∇2f

(
x0
)] (

η
(
x, x0

))
, η
(
x, x0

)〉
= 0,

for all x ∈ X.
In order to prove that x0 is an optimal solution of Problem (P ) , let x ∈

F (P ) . Then

gi (x) 5 0, for all i ∈ {1, ...,m}.
Let i ∈ I

(
x0
)
. Since

gi (x)− gi
(
x0
)

= gi (x) 5 0,

and gi is quasiinvex at x0 w.r.t. η, we have〈
∇gi

(
x0
)
, η
(
x, x0

)〉
5 0,

hence 〈
v0
i∇gi

(
x0
)
, η
(
x, x0

)〉
5 0,

because v0
i = 0. Then

(5.7)
〈[
∇g
(
x0
)]T (

v0
)
, η
(
x, x0

)〉
5 0,

because v0
i = 0, for all i ∈ {1, ...,m}\I

(
x0
)
.

From (5.6) and (5.7) it follows that

(5.8)
〈
∇f

(
x0
)

+ 1
2

[
∇2f

(
x0
)] (

η
(
x, x0

))
, η
(
x, x0

)〉
= 0.

But, the function f is second order pseudoinvex at x0 w.r.t. η, and then,
by (5.8) , we deduce that

f (x) = f
(
x0
)
.

Consequently, x0 is an optimal solution of the original problem (P ) . The
theorem is proved. �
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Remark 5.2. If the function f is second order invex at x0 w.r.t. η, and
g1, ..., gm are invex at x0 with respect to η, then the hypotheses that f is
second order pseudoinvex at x0 w.r.t. η and gi, i ∈ I

(
x0
)

are quasiinvex at

x0 w.r.t. η are satisfied. �

Remark 5.3. The assumption that the function η satisfies the condition
η
(
x0, x0

)
= 0 is essential in order to have the equivalence between the saddle

points of the lagrangian L
(2,1)
η of Problem (AP2) , and the optimal solutions

of the original problem (P ) . (see Example 3.4 from [2]) �

Now, we show that, if x0 is an optimal solution of the original problem (P ) ,
then under certain conditions, there exists a point v0 ∈ Rm+ such that

(
x0, v0

)
is a saddle point of the η-approximated problem (AP2) .

More exactly, the following statement is true:

Theorem 5.4. Let x0 ∈ X be an optimal solution of the original problem
(P ) and assume that a suitable constraint qualification is satisfied at x0 (CQ
in Ref. [11]). If the function η : X ×X → Rm satisfies

(i)
〈
∇f

(
x0
)
, η
(
x0, x0

)〉
5 0;

(ii) g
(
x0
)

+
[
∇g
(
x0
)] (

η
(
x0, x0

))
5 0

(
i.e. x0 ∈ F (AP2)

)
,

(iii) x0 is an optimal solution of the problem

min
〈
η
(
x, x0

)
,
[
∇2f

(
x0
)] (

η
(
x, x0

))〉
s.t. x ∈ X,

then there exists a point v0 ∈ Rm+ such that
(
x0, v0

)
is a saddle point of the

lagrangian L
(2,1)
η of the (2, 1)-η-approximated problem (AP2) .

Proof. Since x0 is an optimal solution of Problem (P ) , and a suitable con-
straint qualification at x0 is satisfied, by Karush-Kuhn-Tucker’s Theorem,
there exists a point v0 ∈ Rm+ such that

(5.9) ∇f
(
x0
)

+
[
∇g
(
x0
)]T (

v0
)

= 0,

(5.10)
〈
v0, g

(
x0
)〉

= 0.

Let x ∈ X. Then, from (5.9) and hypothesis (iii) , we have

L(2,1)
η

(
x, v0

)
− L(2,1)

η

(
x0, v0

)
=

= f
(
x0
)

+
〈
∇f

(
x0
)
, η
(
x, x0

)〉
+ 1

2

〈
η
(
x, x0

)
,
[
∇2f

(
x0
)] (

η
(
x, x0

))〉
+

+
〈
v0, g

(
x0
)〉

+
〈
v0,
[
∇g
(
x0
)] (

η
(
x, x0

))〉
−

− f
(
x0
)
−
〈
∇f

(
x0
)
, η
(
x0, x0

)〉
− 1

2

〈
η
(
x0, x0

)
,
[
∇2f

(
x0
)] (

η
(
x0, x0

))〉
−

−
〈
v0, g

(
x0
)〉
−
〈
v0,
[
∇g
(
x0
)] (

η
(
x0, x0

))〉
=
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=
〈
∇f

(
x0
)

+
[
∇g
(
x0
)]T (

v0
)
, η
(
x, x0

)〉
−

−
〈
∇f

(
x0
)

+
[
∇g
(
x0
)]T (

v0
)
, η
(
x0, x0

)〉
+

+ 1
2

[〈
η
(
x, x0

)
,
[
∇2f

(
x0
)] (

η
(
x, x0

))〉
−

−
〈
η
(
x0, x0

)
,
[
∇2f

(
x0
)] (

η
(
x0, x0

))〉]
=

= 1
2

[〈
η
(
x, x0

)
,
[
∇2f

(
x0
)] (

η
(
x, x0

))〉
−

−
〈
η
(
x0, x0

)
,
[
∇2f

(
x0
)] (

η
(
x0, x0

))〉]
= 0.

Consequently, the second inequality from the saddle point definition is true.
In order to prove the first inequality from the saddle point definition, let

v ∈ Rm+ . Then

L(2,1)
η

(
x0, v0

)
− L(2,1)

η

(
x0, v

)
=

= f
(
x0
)

+
〈
∇f

(
x0
)
, η
(
x0, x0

)〉
+ 1

2

〈
η
(
x0, x0

)
,
[
∇2f

(
x0
)] (

η
(
x0, x0

))〉
+

+
〈
v0, g

(
x0
)〉

+
〈
v0,
[
∇g
(
x0
)] (

η
(
x0, x0

))〉
−

− f
(
x0
)
−
〈
∇f

(
x0
)
, η
(
x0, x0

)〉
− 1

2

〈
η
(
x0, x0

)
,
[
∇2f

(
x0
)] (

η
(
x0, x0

))〉
−

−
〈
v, g

(
x0
)〉
−
〈
v,
[
∇g
(
x0
)] (

η
(
x0, x0

))〉
=

=
〈
∇f

(
x0
)

+
[
∇g
(
x0
)]T (

v0
)
, η
(
x0, x0

)〉
−
〈
∇f

(
x0
)
, η
(
x0, x0

)〉
−

−
〈
g
(
x0
)

+
[
∇g
(
x0
)]T (

η
(
x0, x0

))
, v
〉

= (by (5.9) and (5.10))

= −
〈
∇f

(
x0
)
, η
(
x0, x0

)〉
−
〈
g
(
x0
)

+
[
∇g
(
x0
)] (

η
(
x0, x0

))
, v
〉
=

= (by (i) and (ii)) = 0.

Consequently,
(
x0, v0

)
is a saddle point of the lagrangian of Problem (AP2) .

�

Remark 5.5. If η
(
x0, x0

)
= 0, then the hypotheses (i) and (ii) from The-

orem 5.4 are satisfied. �

Remark 5.6. If f and g = (g1, ..., gm) are invex at x0 w.r.t. η, then the
hypotheses (i) and (ii) from Theorem 5.4 are satisfied. �

Remark 5.7. The hypothesis that the original problem (P ) satisfies a suit-
able constraint qualification at x0 is essential. Indeed, for the problem

(P̂ )

min f (x) = x2

s.t. x ∈ X = R2

g1 (x) = x1 + x2
2 5 0,

g2 (x) = −x1 + x2
2 5 0,

we have the set of all feasible solutions F
(
P̂
)

= {(0, 0)}, and hence x0 = (0, 0)

is the unique optimal solution. Let us remark that Problem
(
P̂
)

is convex,
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and then the functions f, g1, g2 are invex w.r.t. η : R2 × R2 → R2 defined by

η (x, u) = x− u, for all (x, u) ∈ R2 × R2.

In this case, the (2, 1)-η-approximated optimization problem is

(AP̂2)

min x2

s.t. (x1, x2) ∈ R2

−x1 5 0
x1 5 0.

Thus, L̂
(2,1)
η : R2 × R2

+ → R is defined by

L̂(2,1)
η (x, v) = x2 − v1x1 + v2x1,

for all (x, v) = ((x1, x2) , (v1, v2)) ∈ R2 × R2
+. �

Easy to show that, for each v0 =
(
v0

1, v
0
2

)
∈ R2

+, the point
(
x0, v0

)
is not a

saddle point of the lagrangian of Problem
(
AP̂2

)
.

6. CONCLUSIONS

This paper shows how, under some hypotheses, to solve an optimization
problem is equivalent with finding the saddle points

(
x0, v0

)
of the so called

(2, 1)-η- approximated problem at x0 of the original problem.
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