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Abstract. In this paper, a so-called approximated vector optimization problem
associated to a vector optimization problem is considered. The equivalence be-
tween the efficient solutions of the approximated vector optimization problem
and efficient solutions of the original optimization problem is established.
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1. INTRODUCTION

We consider the vector optimization problem

(V OP )
C −min f (x)
s.t. x ∈ X

g (x) ∈ −K,

where X is a subset of Rn, C is a convex cone in Rp, K is a convex cone in
Rm, and f : X → Rp, g : X → Rm are functions.

Let

F (V OP ) := {x ∈ X : g (x) ∈ −K},
denote the set of all feasible solutions of Problem (V OP ) .

Let L : X × K∗ → Rn be the lagrangian of Problem (VOP), i.e. the
function defined by

L (x, v) := f (x) + 〈g (x) , v〉 e, for all (x, v) ∈ X ×K∗,

where

K∗ := {u ∈ Rm : 〈u, v〉 = 0, for all v ∈ K}
is the polar of the convex cone K, and e = (1, ..., 1) ∈ Rn.
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† “Babeş-Bolyai” University, Faculty of Mathematics and Computer Science, 1 M.
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Definition 1.1. Let x0 be a point of F (V OP ) . We say that x0 is an
efficient solution for Problem (VOP) if there exists no point x ∈ F (V OP )
such that

f
(
x0

)
− f (x) ∈ C\{0}.

Remark 1.2. The point x0 is an efficient solution for Problem (VOP) if
and only if

f
(
x0

)
− f (x) /∈ C\{0}, for all x ∈ F (V OP ) . �

Definition 1.3. Let x0 be a point of F (V OP ) . We say that x0 is a weak
efficient solution for Problem (VOP) if there exists no point x ∈ F (V OP )
such that

f
(
x0

)
− f (x) ∈ intC.

Remark 1.4. The point x0 is a weak efficient solution for Problem (VOP)
if and only if

f
(
x0

)
− f (x) /∈ intC, for all x ∈ F (V OP ) . �

If C is the closed convex cone Rp+ and K is the closed convex cone Rm+ , then
problem (VOP), becomes the multicriteria optimization problem

(MOP)
v- min f (x)
s.t. x ∈ X

g (x) 5 0.

For solving vector optimization problem (VOP), there are various manners
to approach. One of these manners is that for Problem (VOP) one attaches an-
other optimization problem, problem whose solutions gives us the (information
about) solutions of the initial problem (VOP).

If x0 is a feasible solution for (MOP) and f is differentiable at x0, C.R.
Bector, S. Chandra and C. Singh [3], attached to Problem (MOP), the problem

(LMOP)
v- min

[
∇f

(
x0

)]
(x)

s.t. x ∈ X
g (x) 5 0,

and obtained connections of efficient solutions of the original problem (MOP)
to the efficient solutions of the linearized multicriteria optimization problem
(LMOP).

If x0 ∈ F (MOP ) is an interior point of X, f is differentiable at x0, Antczak
[2], proposed the following approximated multicriteria optimization problem

(ηMOP )
v- min

[
∇f

(
x0

)] (
η
(
x, x0

))
s.t. x ∈ X

g (x) 5 0,

where η : X ×X → Rn is a function, and obtained results to connect (MOP)
and (ηMOP).
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In this paper, assuming that x0 ∈ F (V OP ) is an interior point of X, and
η : X ×X → Rn is a function, we attach to Problem (VOP) the problems:
a) assuming that f is differentiable at x0

(FAVOP)
C- min f

(
x0

)
+
[
∇f

(
x0

)] (
η
(
x, x0

))
s.t. x ∈ X

g (x) ∈ −K,
and b) assuming that g is differentiable at x0

(CAVOP)
C −min f (x)
s.t. x ∈ X

g
(
x0

)
+
[
∇g

(
x0

)] (
η
(
x, x0

))
∈ −K.

2. NOTIONS AND PRELIMINARY RESULTS

In the last few years, attempts have been made to weaken the convexity
hypotheses and thus to explore the existence of optimality conditions appli-
cability. Various classes of generalized convex functions have been suggested
for the purpose of weakening the convexity limitation of the results. Among
these, the concept of an invex function proposed by Hanson [11] has received
more attention. The name of invex (invariant convex) function was given by
Craven [5].

Definition 2.1. Let X be a nonempty subset of Rn, x0 be an interior point
of X, C be a closed convex cone in Rp, f : X → Rp be a differentiable function
at x0, and η : X ×X → Rn be a function.

a) We say that the function f is C-invex at x0 with respect to (w.r.t.) η
if

(2.1) f (x)− f
(
x0

)
−
[
∇f

(
x0

)] (
η
(
x, x0

))
∈ C, for all x ∈ X.

b) We say that the function f is C-incave at x0 with respect to (w.r.t.)
η if

f (x)− f
(
x0

)
−
[
∇f

(
x0

)] (
η
(
x, x0

))
∈ −C, for all x ∈ X.

Remark 2.2. The function f is C-incave at x0 w.r.t. η if anf only if the
function f is (−C)-invex at x0 w.r.t. η. �

Example 2.3. Let f : R2 → R2 the function defined by

f (x) :=
(
x2

1 + sin πx2
2 , x2

2 + sin πx1
3

)
, for all x = (x1, x2) ∈ R2.

a) The function f is R2
+-invex at x0 = (0, 0) w.r.t. η : R2×R2 → R2 defined

by
η (x, u) :=

(
3
π sin πx1

3 , 2
π sin πx2

2

)
,

for all (x, u) = ((x1, x2) , (u1, u2)) ∈ R2 × R2.
b) Also, the function f is R2

+-invex at x0 = (0, 0) w.r.t. µ : R2 × R2 → R2

defined by
µ (x, u) :=

(
3
π sin πx1

3 − 4, 2
π sin πx2

2 − 7
)
,
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for all (x, u) = ((x1, x2) , (u1, u2)) ∈ R2 × R2.
Let’s remark that µ (x, u) 6= (0, 0) , for all (x, u) ∈ R2 × R2.
c) Also, the function f is R2

+-invex at x0 = (0, 0) w.r.t. ζ : R2 × R2 → R2

defined by

ζ (x, u) :=
(

3
π sin πx1

3 − x
2
1,

2
π sin πx2

2 − x
2
2

)
,

for all (x, u) = ((x1, x2) , (u1, u2)) ∈ R2 × R2. �

After the works of Hanson and Craven, other types of differentiable func-
tions have appeared with the intent of generalizing invex function from differ-
ent points of view.

Ben-Israel and Mond [4] defined the so-called pseudoinvex functions, gener-
alizing pseudoconvex functions in the same way that invex functions generalize
convex functions. Here we give the following notion of pseudoinvexity:

Definition 2.4. Let X be a nonempty subset of Rn, x0 be an interior point
of X, K and L be two convex cones in Rp, f : X → Rp be a differentiable
function at x0, and η : X ×X → Rn be a function. We say that f is (K,L)-
pseudoinvex at x0 with respect to (w.r.t.) η if, for each x ∈ X\{x0} with the
property that [

∇f
(
x0

)] (
η
(
x, x0

))
∈ K,

we have

f (x)− f
(
x0

)
∈ L.

Remark 2.5. The notion of K-pseudoinvexity is equivalent with the notion
of (K,K)-pseudoinvexity. �

Definition 2.6. Let X be a nonempty subset of Rn, x0 be an interior point
of X, K and L be two convex cones in Rp, f : X → R be a differentiable
function at x0, and η : X ×X → Rn be a function. We say that f is (K,L)-
quasiinvex at x0 with respect to (w.r.t.) η if, for each x ∈ X\{x0} with the
property that

f
(
x0

)
− f (x) ∈ K,

we have [
∇f

(
x0

)] (
η
(
x, x0

))
∈ L.

Remark 2.7. The notion of K-quasiinvexity is equivalent with the notion
of (K,−K)-quasiinvexity. �

3. THE MODIFIED CRITERIA FUNCTION OF VECTOR OPTIMIZATION PROBLEMS

In this section, X is a subset of Rn, x0 is an interior point of X, f : X → Rp
is a differentiable function at x0, C is a convex cone in Rp, K is a convex cone
in Rm, and g : X → Rm is a function.
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For η : X ×X → Rn, we attach to Problem (V OP ) the following optimiza-
tion problem:

(FAVOP)
C- min f

(
x0

)
+
[
∇f

(
x0

)] (
η
(
x, x0

))
s.t. x ∈ X

g (x) ∈ −K.

Let

F (FAV OP ) := {x ∈ X : g (x) ∈ −K},
denote the set of all feasible solutions of Problem (FAVOP).

Obviously

F (FAV OP ) = F (V OP ) .

Let F : X → Rp the function defined by

F (x) = f
(
x0

)
+
[
∇f

(
x0

)] (
η
(
x, x0

))
, for all x ∈ X,

i.e. the criteria function of Problem (FAVOP).

Theorem 3.1. Let X be a subset of Rn, x0 be an interior point of X, K be
a closed convex cone in Rm, C be a closed convex cone in Rp, g : X → Rm be
a function, η : X × X → Rn such that η

(
x0, x0

)
= 0 and f : X → Rp be a

differentiable function at x0 and (−C\{0},−C\{0})-pseudoinvex at x0 w.r.t.
η.

If x0 is an efficient solution for (VOP), then x0 is an efficient solution for
(FAVOP) .

Proof. Assume that x0 is not an efficient solution for (FAVOP), then there
exists a feasible solution x1 ∈ F (FAV OP ) such that

F
(
x0

)
− F

(
x1

)
∈ C\{0}.

Since η
(
x0, x0

)
= 0, we have

F
(
x0

)
− F

(
x1

)
=

f
(
x0

)
+
[
∇f

(
x0

)] (
η
(
x0, x0

))
− f

(
x0

)
−
[
∇f

(
x0

)] (
η
(
x1, x0

))
=

= −
[
∇f

(
x0

)] (
η
(
x1, x0

))
,

hence [
∇f

(
x0

)] (
η
(
x1, x0

))
∈ −C\{0}.

But f is (−C\{0},−C\{0})-pseudoinvex at x0 w.r.t η and then

f
(
x1

)
− f

(
x0

)
∈ −C\{0},

i.e. x0 is not an efficient solution for (VOP). The theorem is proved. �

Remark 3.2. The hypothesis that f is (−C\{0},−C\{0})-pseudoinvex at
x0 w.r.t. η is essential, as seen in the following example. �
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Example 3.3. Let’s consider Problem (VOP) with X := R2, C := R2
+,

K := R2
+, and f : R2 → R2, g : R2 → R2 and η : R2 × R2 → R2 the functions

defined by

f (x) =
(
x2

1 + sin πx2
2 , x2

2 + sin πx1
3

)
,

g (x) =
(
x2

1 − x2, x
2
2 − x1

)
,

for all x = (x1, x2) ∈ R2, and

η (x, u) =
(

3
π sin πx1

3 −
3
πx

2
2,

2
π sin πx2

2 −
4
πx

2
1

)
,

for all (x, u) = ((x1, x2) , (u1, u2)) ∈ R2 × R2.
The point x0 = (0, 0) ∈ F (V OP ) is an efficient solution for Problem (VOP).

On the other hand,

F (x) = f
(
x0

)
+
[
5f(x0)

]
(η(x, x0)) =

(
sin πx2

2 − 2x2
1, sin

πx1
3 − x

2
2

)
,

for all x = (x1, x2) ∈ R2, and for x1 = (1, 1) ∈ F (V OP ) = F (FAV OP ) ,

F
(
x0

)
− F

(
x1

)
=

(
1, 1−

√
3

2

)
∈ C\{0} = R2

+\{0}.

Consequently, x0 is not an efficient solution for (FAVOP).
Let’s remark that f is not (−C\{0},−C\{0})-pseudoinvex at x0 w.r.t. η,

because [
5f(x0)

]
(η(x1, x0)) =

(
−1, −

√
3−1
2

)
∈ −C\{0} = −R2

+\{0}

and

f
(
x1

)
− f

(
x0

)
=

(
2, 1 +

√
3

2

)
/∈ −C\{0} = −R2

+\{0}.
�

Remark 3.4. The hypothesis that η
(
x0, x0

)
= 0 is essential, as seen in the

following example. �

Example 3.5. Let’s consider Problem (VOP) with X := R2, C := R2
+,

K := R2
+, and f : R2 → R2, g : R2 → R2 and η : R2 × R2 → R2 the functions

defined by

f (x) = (x1, x2) , g (x) =
(
x2

1 − x2, x
2
2 − x1

)
,

for all x = (x1, x2) ∈ R2
+, and

η (x, u) =
(
x1 + (x1 − 1)2 , x2 + (x2 − 1)2

)
,

for all (x, u) = ((x1, x2) , (u1, u2)) ∈ R2 × R2. The point x0 = (0, 0) is an
efficient solution for Problem (VOP). The function f is (−C)-invex at x0

w.r.t. η, because, for all (x1, x2) ∈ R2, we have:

f (x)− f
(
x0

)
−
[
∇f (x0)

(
η
(
x, x0

))]
= −

(
(1− x1)2 , (1− x2)2

)
∈ −C.

It follows that f is (−C\{0},−C\{0})-pseudoinvex at x0 w.r.t. η.
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Since, for each x = (x1, x2) ∈ R2,

F (x) = f
(
x0

)
+
[
∇f

(
x0

) (
η
(
x, x0

))]
=

(
x1 + (x1 − 1)2 , x2 + (x2 − 1)2

)
,

we deduce that x0 is not an efficient solution for Problem (FAVOP). Why?
Because, for x1 =

(
1
2 ,

1
2

)
, we have

F
(
x0

)
− F

(
x1

)
= f

(
x0

)
+
[
∇f (x0)

(
η
(
x0, x0

))]
− f

(
x0

)
−

−
[
∇f (x0)

(
η
(
x1, x0

))]
=

=
(

3
4 ,

3
4

)
∈ C\{0}.

�

Theorem 3.6. Let X be a subset of Rn, x0 be an interior point of X, K be
a closed convex cone in Rm, C be a closed convex cone with nonempty interior
in Rp, g : X → Rm be a function, η : X×X → Rn such that η

(
x0, x0

)
= 0 and

f : X → Rp be a differentiable function at x0 and (−intC,−intC)-pseudoinvex
at x0 w.r.t. η.

If x0 is a weak efficient solution for (VOP), then x0 is a weak efficient
solution for (FAVOP).

Proof. The proof is similar to the proof of Theorem 3.1. �

Theorem 3.7. Let X be a subset of Rn, x0 be an interior point of X, K be
a closed convex cone in Rm, C be a closed convex cone in Rp, g : X → Rm be
a function, η : X × X → Rn such that η

(
x0, x0

)
= 0 and f : X → Rp be a

differentiable function at x0 and (C\{0}, C\{0})-quasiinvex at x0 w.r.t. η.
If x0 is an efficient solution for (FAVOP), then x0 is an efficient solution

for (VOP).

Proof. Assume that x0 is not an efficient solution for (VOP), then there
exists a feasible solution x1 ∈ F (V OP ) such that

f
(
x0

)
− f

(
x1

)
∈ C\{0}.

But f is (C\{0},−C\{0})-quasiinvex at x0 w.r.t η and hence[
∇f

(
x0

)] (
η
(
x1, x0

))
∈ −C\{0}.

It follows that

F
(
x0

)
− F

(
x1

)
=

= f
(
x0

)
+
[
∇f

(
x0

)] (
η
(
x0, x0

))
− f

(
x0

)
−
[
∇f

(
x0

)] (
η
(
x1, x0

))
∈ C\{0},

because η
(
x0, x0

)
= 0. Consequently, x0 is not an efficient solution for

(FAVOP) which is a contradiction. The theorem is proved. �

Remark 3.8. In Theorem 3.7, the hypothesis that f is C-invex at x0 w.r.t.
η is essential, as seen in the following example. �
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Example 3.9. Let’s consider Problem (VOP) with X := R2, C := R2
+,

K := R2
+, and f : R2 → R2, g : R2 → R2 and η : R2 × R2 → R2 the functions

defined by

f (x) = (x1, x2) ,

g (x) =
(
x2

1 − x2, x
2
2 − x1

)
,

for all x = (x1, x2) ∈ R2, and

η (x, u) =
(
x1 + (x1 − 1)2 , x2 + (x2 − 1)2

)
,

for all (x, u) = ((x1, x2) , (u1, u2)) ∈ R2 × R2. For x0 = (0, 0) ∈ F (V OP ) , we
have

f (x)− f
(
x0

)
−
[
∇f

(
x0

)] (
η
(
x, x0

))
=

= −
(

(x1 − 1)2 , (x2 − 1)2
)
∈ −C = −R2

+,

for all x ∈ R2. Consequently, the function f is not C-invex at x0 w.r.t. η.
Since, for each x = (x1, x2) ∈ R2,

F (x) = f
(
x0

)
+
[
5f(x0)

]
(η(x, x0)) =

(
x1 + (x1 − 1)2 , x2 + (x2 − 1)2

)
=

=
((
x1 − 1

2

)2
+ 3

4 ,
(
x2 − 1

2

)2
+ 3

4

)
it follows that x1 =

(
1
2 ,

1
2

)
∈ F (V OP ) = F (FAV OP ) is an efficient solution

for Problem (FAVOP).
On the other hand,

f
(
x1

)
− f

(
x0

)
=

(
1
2 ,

1
2

)
∈ C\{0}.

Consequently, x1, which is an efficient solution for Problem (FAVOP), is not
an efficient solution for problem (VOP); the function f is not C-invex at x0

w.r.t. η. �

Remark 3.10. In Theorem 3.7, the hypothesis that η
(
x0, x0

)
= 0 is essen-

tial, as seen in the following example. �

Example 3.11. Let’s consider Problem (VOP) with X := R2, C := R2
+,

K := R2
+, and f : R2 → R2, g : R2 → R2 and η : R2 × R2 → R2 the functions

defined by

f (x) =
(
x2

1 + x1, x
2
2 + x2

)
,

g (x) =
(
x2

1 − x2, x
2
2 − x1

)
,

for all x = (x1, x2) ∈ R2, and

η (x, u) =
(
x1 −

(
x2

1 + 1
)2
, x2 −

(
x2

2 + 1
)2
)
,

for all (x, u) = ((x1, x2) , (u1, u2)) ∈ R2 × R2.
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For x0 = (0, 0) ∈ F (V OP ) , we have

f (x)− f
(
x0

)
−
[
∇f

(
x0

)] (
η
(
x, x0

))
=

=
(
x2

1 +
(
x2

1 + 1
)
, x2

2 +
(
x2

2 + 1
))
∈ C,

for all x ∈ R2. Consequently, the function f is C-invex at x0 w.r.t. η.
Since, for each x = (x1, x2) ∈ R2,

F (x) = f
(
x0

)
+
[
5f(x0)

]
(η(x, x0)) =

(
x1 −

(
x2

1 + 1
)2
, x2 −

(
x2

2 + 1
)2
)

=

=
(
−x4

1 − 4x3
1 − 6x2

1 − 3x1 − 1,−x4
2 − 4x3

2 − 6x2
2 − 3x2 − 1

)
,

it follows that x1 = (1, 1) ∈ F (V OP ) = F (FAV OP ) is an efficient solution
for Problem (FAVOP).

On the other hand,

f
(
x0

)
− f

(
x1

)
= (2, 2) ∈ C\{0}.

Consequently, x1, which is an efficient solution for Problem (FAVOP), is not
an efficient solution for problem (VOP).

Let’s remark that η
(
x0, x0

)
= (−1,−1) 6= (0, 0) . �

Theorem 3.12. Let X be a subset of Rn, x0 be an interior point of X, K
be a closed convex cone in Rm, C be a closed convex cone in Rp, g : X → Rm
be a function, η : X ×X → Rn such that η

(
x0, x0

)
= 0 and f : X → Rp be a

differentiable function at x0 and (intC, intC)-quasiinvex at x0 w.r.t. η.
If x0 is a weak efficient solution for (FAVOP), then x0 is a weak efficient

solution for (VOP).

Proof. The proof is similar to the proof of Theorem 3.7. �

4. THE MODIFIED CONSTRAINT FUNCTION OF VECTOR OPTIMIZATION

PROBLEMS

In this section, X is a subset of Rn, x0 is an interior point of X, f : X → Rp
is a function, C is a convex cone in Rp, K is a convex cone in Rm, and
g : X → Rm is a differentiable function at x0.

For η : X × X → Rn, we attach to Problem (VOP) the following vector
optimization problem:

(CAVOP)
C- min f (x)
s.t. x ∈ X

g
(
x0

)
+
[
∇g

(
x0

)] (
η
(
x, x0

))
∈ −K

Let

F (CAV OP ) := {x ∈ X : g
(
x0

)
+
[
∇g

(
x0

)] (
η
(
x, x0

))
∈ −K},

denote the set of all feasible solutions of Problem (CAVOP).
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Theorem 4.1. Let X be a subset of Rn, x0 be an interior point of X, K be
a closed convex cone in Rm, C be a closed convex cone in Rp, η : X×X → Rn
and f : X → R be two functions and g : X → Rm be a differentiable function
at x0.

If the function g is K-incave at x0 w.r.t. η, then every feasible solution for
Problem (CAVOP) is a feasible solution for Problem (VOP), i. e.

F(CAV OP ) ⊆ F(V OP ).

Proof. Let x1 ∈ F(CAV OP ), i.e.

g(x0) +
[
5g(x0)

]
(η(x1, x0)) ∈ −K.

Since g is K-incave at x0 w.r.t. η, we have

g(x1)− g(x0)−
[
5g(x0)

]
(η(x1, x0)) ∈ −K

From this, it follows

g(x1) ∈ −K + {g
(
x0

)
+
[
5g(x0)

]
(η(x1, x0))} ⊆ −K + (−K) = −K,

hence x ∈ F(V OP ) �

Example 4.2. Let’s consider Problem (VOP) with X = R2, C = K = R2
+,

and f : R2 → R2, g : R2 → R2 and η : R2 ×R2 → R2 the functions defined by

f (x) =
(

sin (x1+x2)π
4 , x2

1 (x2 − 7)2
)
,

g (x) =
(
x2

1 − x2, x
2
2 − x1

)
,

for all x = (x1, x2) ∈ R2 and

η (x, u) = (x1 − u1, x2 − u2)

for all (x, u) = ((x1, x2) , (u1, u2)) ∈ R2 × R2.
The function g is not R2

+-incave at x0 = (0, 0) w.r.t. η, because

g (1, 1)− g
(
x0

)
−
[
∇g

(
x0

)] (
η
(
(1, 1) , x0

))
= (1, 1) /∈ −R2

+

Since

g
(
x0

)
+
[
5g(x0)

]
(η(x, x0)) = (−x2,−x1) , for all x = (x1, x2) ∈ R2,

the set of feasible solutions for Problem (CAVOP) is F (CAV OP ) = R2
+.

Consequently

F (CAV OP ) = R2
+ ⊇ F (V OP ) = {(x1, x2) : x2

1 − x2 5 0, x2
2 − x1 5 0}.

Obviously, the point

x1 = (0, 7) ∈ F (CAV OP ) \ F (V OP ) .

The point x0 = (0, 0) is an efficient solution for Problem (VOP) and x0 is
not an efficient solution for Problem (CAVOP) because

f
(
x0

)
− f (0, 7) = (1, 0) ∈ C\{0} = R2

+\{0}.
�
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Theorem 4.3. Let X be a subset of Rn, x0 be an interior point of X, K be
a closed convex cone in Rm, C be a closed convex cone in Rp, η : X×X → Rn
and f : X → R be two functions and g : X → Rm be a differentiable function
at x0.

If the function g is K-invex at x0 w.r.t. η, then every feasible solution for
Problem (VOP), is a feasible solution for Problem (CAVOP), i. e.

F(V OP ) ⊆ F(CAV OP ).

Proof. Let x1 ∈ F(V OP ), i.e. g(x1) ∈ −K. Since g is K-invex at x0 w.r.t.
η we have

g(x1)− g(x0)−
[
5g(x0)

]
(η(x1, x0)) ∈ K

From this, it follows

g(x0) +
[
5g(x0)

]
(η(x1, x0)) ∈ −K + {g

(
x1

)
} ⊆ −K + (−K) = −K,

hence x1 ∈ F(CAV OP ). �

Example 4.4. Let’s consider Problem (VOP) with X := R2, C := R2
+,

K := R2
+, and f : R2 → R2, g : R2 → R2 and η : R2 × R2 → R2 the functions

defined by

f (x) =
(

sin (x1+x2)π
4 , x2

1 (x2 − 7)2
)
,

g (x) =
(
x2

1 − x2, x
2
2 − x1

)
,

for all x = (x1, x2) ∈ R2, and

η (x, u) = (x1 − u1, x2 − u2)

for all (x, u) = ((x1, x2) , (u1, u2)) ∈ R2 × R2.
We have

F (V OP ) = {(x1, x2) : x2
1 − x2 5 0, x2

2 − x1 5 0} ⊆ [0, 1]× [0, 1] ;

the point x0 = (0, 0) is an efficient solution for (VOP) and the function g is
R2

+-invex at x0 w.r.t. η.
Since

g
(
x0

)
+
[
5g(x0)

]
(η(x, x0)) = (−x2, − x1) , for all x = (x1, x2) ∈ R2,

the set of feasible solutions for Problem (CAVOP) is

F (CAV OP ) = R2
+ ⊇ F (V OP ) .

Easy to remark that x0 is not an efficient solution for Problem (CAVOP)
because

f
(
x0

)
− f (0, 7) = (1, 0) ∈ C\{0} = R2

+\{0}.
�



12 Vector optimization problems and approximated vector optimization problems 133

5. CONCLUSIONS

In this paper one shows how, under some hypotheses, in order to obtain
a solution for a vector optimization problem it is sufficient to solve another
vector optimization problem.
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Bolyai, Cluj-Napoca, 1985.

[8] D.I. Duca, Multicriteria Optimization in Complex Space, House of the Book of Science,
Cluj-Napoca, 2006.

[9] D.I. Duca, and E. Duca, Optimization Problems and η−Approximated Optimization
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