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ON THE EXISTENCE AND UNIQUENESS OF EXTENSIONS OF
SEMI-HOLDER REAL-VALUED FUNCTIONS

COSTICA MUSTATA*

Abstract. Let (X,d) be a quasi-metric space, yo € X a fixed element and Y
a subset of X such that yo € Y. Denote by (Aa,0(Y,d),| - |¥,4) the asymmetric
normed cone of real-valued d-semi-Hdélder functions defined on Y of exponent
a € (0,1], vanishing in yo, and by (Aao(Y,d), || - |¥.z) the similar cone if d is
replaced by conjugate d of d.
One considers the following claims:
(a) For every f in the linear space A, 0(Y) = Aa,0(Y,d)NAao(Y,d) there exist
F € Awo(X,d) such that F|y = f and |F|$4 = || fI$.a
(b) For every f € Aq,0(Y) there exists F € Aq,0(X,d) such that F|y = f and
1150 = IF15,q
¢) The extension F in (a) is unique;
(d) The extension F in (b) is unique;
(e) The annihilator Y;" of Y in Aq,0(X,d) is proximinal for the elements of
Aq,0(X) with respect to the distance generated by || - |$4;
(f) The annihilator Y~ of Y in Aao(X,d) is proximinal for the elements of
Aa,0(X) with respect to the distance generated by || - [y 5
(9) Y;" in the claim (e) is Chebyshevian;
(h) Yj" in the claim (f) is Chebyshevian.
Then the following equivalences hold:

(a) = (e); (0) = (f); () & (9); (d) & (h).
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1. INTRODUCTION

Let X be a nonempty set and d : X x X — [0,00) a function with the
properties:
(QMy) d(z,y) =d(y,z) =0 iff z =y,
(QMQ) d(.%', y) < d(.ﬁU, Z) + d(Z, y)7
for all x,y,z € X.

Then the function d is called a quasi-metric on X and the pair (X,d) is
called quasi-metric space ([13]).

*“T. Popoviciu” Institute of Numerical Analysis, Cluj-Napoca, Romania, e-mail:
cmustata@ictp.acad.ro, cmustata2001@yahoo.com.


www.ictp.acad.ro/jnaat

2 Existence and uniqueness of extensions 135

Because, in general, d(z,y) # d(y, ), for 2,y € X one defines the conjugate
quasi-metric d of d, by the equality d(x,y) = d(y,x), for all z,y € X.
Let Y be a nonvoid subset of (X,d) and « € (0, 1] a fixed number.

DEFINITION 1. a) A function f Y — R is called d-semi-Hélder (of
exponent o) if there exists a constant Ky (f) > 0 such that
(1) f(x) = fly) < Ky (f)d*(z,y),

forallx,y €Y. B
b) f:Y — R is called d-semi-Hélder (of exponent «) if there exists a
constant Ky (f) > 0 such that
(2) fx) = fly) < Ky(f)-d*(y, ),
forall x,y €Y.

The smallest constant Ky (f) in (1) is denoted by [| f|y-; and one shows that

(3) 151 2= sup { LGB d(a,y) > 030,y € V]
Analogously one defines || f|{.

Observe that the function f is d-semi-Holder on Y iff —f is d-semi-Holder
on Y. Moreover

(4) 1150 = I-F135-

DEFINITION 2. ([I4]). Let (X,d) be a quasi-metric space and Y C X a
nonempty set. The function f:Y — R is called <g-increasing on'Y if f(x) <
f(y) whenever d(x,y) =0, z,y € Y.

The set of all <g-increasing functions on Y is denoted by de and it is a

cone in the linear space RY of all real-valued functions on Y.
The set

(5) Ao (Y,d) == {f € ]Rgd;f is d-semi-Holder and ||f]§“/7d < oo}

is also a cone, called the cone of d-semi-Holder functions on Y.
If yo € Y is arbitrary, but fixed, one considers the cone

(6) Aao(Y,d) == {f € Au(Y.d) : f(yo) = 0}.
Then the functional || ]?,’d : Aao(Y,d) — [0,00) is subadditive, positively
homogeneous and the equality || f|y-; = ||~ f|y4 = 0 implies f = 0. This means

that |-, is an asymmetric norm (see [13], [14]), on the cone Ay (Y, d).

The pair (AQ’O(Y, d), || ‘%cl) is called the asymmetric normed cone of d-

semi-Holder real-valued function on Y (compare with [14]). B
Analogously, one defines the asymmetric normed cone (Aq0(Y,d), || - [3.)-

of all d-semi-Holder real-valued functions on Y, vanishing at the fixed point
Yo €Y.
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By the above definitions it follows that
f S (Aa,O(Y7 d)a || |§{/7d) iff — f S (Aa,O(Y7a)v || |§£/’E)

and, moreover, [|f|}; = H—f|§7a.
Defining Ay o(Y) by
(7) Aao(Y) = Aao(Y,d) N Ano(Y, d),

It follows that A, o(Y') is a linear subspace. The following, theorem holds.

THEOREM 3. For every f € Ay o(Y) there exist at least one function F €
Ao o(Y,d) and at least one function F € Ay o(Y,d) such that

1o’
D) |F[3q = If15q and ||[Fy5 = lI£133-

Proof. By Theorem 2 and Remark 3 in [I1] it follows that the functions
defined by the formulae:

(8) F(f)@) = inf {f(y) + 1f13ad*(,y)}, © € X,
G(f)(z) = Sgg{f(y) —Ifl¥qd*(y, 2}, v € X,

are elements of A, o(X,d) and, respectively, the functions given by
(9) F(f)(z) = yigg{f(y) +1flygd*(y, @)}, © € X,
G(f)(z) = Sug{f(y) = Ifygd*(z,y)}, z€ X
ye

are elements of A, o(X,d) such that
(10) F(f)ly = G(f)ly = f and HF(f)’%d = ”G(f)‘ay,d = Hf@,d,
respectively
(1) F(N)ly =Gy = fand [F()lyg= Gy = 1157
O
For f € Aq0(Y) let us consider the following (nonempty) sets of extensions:
(12)  &a(f) :={H € Aao(X,d) : H|y = f and [|H[y,, = [fly.q4}
and
(13) &) ={H € hao(X.d) : H|, = f and |[[H[}5= /15 5}-
The sets £;(f) and £(f) are convex and

(14 F(f)(z) > H(z) > G(f)(z). z € X
for all H € &;(f);
(15) F(f)(z) > H(z) > G(f)(2), = € H,

for all H € &E(f).
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Also, for F € Ay 0(X), Fly € Apo(Y) and
F —H € Ayo(X,d), for all H € E4(Fy),
F —H € Aap(X,d) for all H € &(Fly).

Let (X, d) be a quasi-metric space, yp € X fixed and Y C X such that yo € Y.
Let

(16) Vit = {G € Auo(X,d) : G|y =0}
and

(17) Vohi={G € Aay(X,d) : G|, = 0}.
Obviously, for F' € Ay o(X)

(18) F —E4(Fly) C Aao(X,d)

and

(19) F —&(Fly) C Aap(X,d).

In the sequel we prove a result of Phelps type ([1], [I0], [12]) concerning the
existence and uniqueness of the extensions preserving the smallest semi-Holder
constants and a problem of best approximation by elements of YdL and YEJ-,
respectively.

Let (X, || |) be an asymmetric norm (see [13], [14]) and let M be a nonempty
set of X. The set M is called proxziminal for x € X iff there exists at least one
element mg € M such that

|z —mo| = inf{||lx —m|:m € M} = p(x, M).

If M is proximinal for z, then the set Py(x) = {mg € M : ||z —mg| =
p(x, M)} is called the set of elements of best approximations for x in M. If
card Pys(z) = 1 then the set M is called Chebyshevian for x.

The set M is called proximinal if M is proximinal for every z € X, and
Chebyshevian if M is Chebyshevian for every = € X.

Now, consider the following two problems of best approximation:

P3(F). For F € Ay o(X) find Gy € Y;" such that

(20) IF — Golg g = nf{|F = GI§5: G € Y} = pg(F.Yy)
and B

P4(F). For F € Ay o(X) find Go € YgL such that
(21) |F = Goly.y = inf{||F = G|y ,: G € Y5} = pa(FY5).
Let
(22) Pyy(F) = {Goe Yy : |F —Goly,=ra(F,Y5)}
and

(23) Py (F):={Go € Y |IF = Gol% g = pa(F Y0}
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The following theorem holds.
THEOREM 4. If F' € Ay o(X) then

(24) Py (F) = F —&(Fly),
25) Pyi(F) = F — &(Fly)
and

(26) pa(FY5) = ||Fly [$a
(27) pa(FYE) =1 Fly |35 -

Proof. Let F' € Ao o(X)(= Aq,0(X,d) N A 0(X, d))
Then, for every G € Ygl,

a

HF|Y ‘()X’,d = HF‘Y - é‘y ‘aY,d < HF -G X,d*

Taking the infimum with respect to G € YEJ-, one obtains ||y [§ ; < pa(F, YEJ-).
On the other hand, for every H € £;(Fly ),

HF|Y ‘%d = HHBC(,d = HF - (F - H)’?{,d'

Because F — H € Y=", it follows ||F|y [$ ;> pa(F, Yz").
Consequently, YEL is proximinal with respect to the distance pg (pg-proximinal
in short) and

pa(F,Y5) = | Fly [$a -

Now, let Go € Py..(F). Then (F—Gp) |y = Fly and ||F — Gol}, , =

d _ _ b

| Fly |§‘,’d;This means that F_iGO € E4(Fly), ie., Go € F —&;(F|y). Conse-

quently, Gog € Py (F') implies Gy € F — Eq( Fly ).
d
Taking into account the first part of the proof it follows Py..(F) = F —
d

Ea(Fly)-
Analogously, one obtains p5(F, Y;") = ||F|y |§-- and Py (F) = F—=&(Fly).
’ O

By the equalities and it follows.
COROLLARY 5. Let F € Ay o(X) and Y C X such that yo € Y. Then
a) card &4(Fly) =1 iff YEL is pq-Chebyshevian;
b) card E;(F|y) =1 iff Y- is p3-Chebyshevian.
REMARK 6. Observe that the linear space Ay 0(X) = Ap0(X, d)NAa (X, d)
is a Banach space with respect to the norm

(28) 175 = max{[|F[% 4, [|1F]% 3}
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In fact this space in the space of all real-valued Lipschitz functions defined on
the quasi-metric space (X, d®), vanishing at a fixed point yo € X. Obviously,

(20) £ = sup {020l - d(a,y) > 0; 2y € X |

is a norm on A, o(X). O

COROLLARY 7. For every element f in the space Aqo(Y) = Aqo(Y,d) N
Ao o(Y,d) there exists F € Ao o(X) such that

Fly = f and |F|% = I£1y -

The set of all extensions of f € Ay o(Y) preserving the norm || f||y (of the
form , is denoted by E£(f), i.e.,

(30) E(f) : ={Fehao(X): Fly = fand [F[% = [fly}-
Denote by
(31) Y :={G e Auo(X): G|y =0}

the annihilator of the set Y in Banach space A, 0(X), and one considers the
following problem of best approximation:
P. For F € Ay o(X) find Gy € Y+ such that

|F = Golly = nf{||F — G|§ : G e Y'} = p(F Y.

COROLLARY 8. The subspace Ytis prozviminal in Aao(X) and the set of
elements of best approximation for F € Ay o(X) is

Py (F)=F —-&(Fly).
The distance of F to Y is given by
p(E YY) = |Fly |I§ -
The subspace Y+ is Chebyshevian for F iff card E( Fly) = 1.

For f in the linear space Ay 0(Y), the equalities F(f)(z) = F(f)(z), x € X
and G(f)(x) = G(f)(x), z € X are verified iff ||f|y.; = | f|3-5. This means

that [|f|y-4 = | = f|y-4 and, consequently,

£y = max{[[f[3q: 1fly5} = IIf

By Theorem 3 in [14], it follows that A, o(Y") is a Banach space and (Y, d%)
is a metric space.

«a
Yd-
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