REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Rev. Anal. Numér. Théor. Approx., vol. 39 (2010) no. 2, pp. 134-140 ictp.acad.ro/jnaat

ON THE EXISTENCE AND UNIQUENESS OF EXTENSIONS OF SEMI-HÖLDER REAL-VALUED FUNCTIONS

COSTICĂ MUSTĂŢA*

Abstract. Let (X, d) be a quasi-metric space, $y_0 \in X$ a fixed element and Y a subset of X such that $y_0 \in Y$. Denote by $(\Lambda_{\alpha,0}(Y,d), \|\cdot\|_{Y,d}^{\alpha})$ the asymmetric normed cone of real-valued d-semi-Hölder functions defined on Y of exponent $\alpha \in (0,1]$, vanishing in y_0 , and by $(\Lambda_{\alpha,0}(Y,\bar{d}), \|\cdot\|_{Y,\bar{d}}^{\alpha})$ the similar cone if d is replaced by conjugate \bar{d} of d.

One considers the following claims:

- (a) For every f in the linear space $\Lambda_{\alpha,0}(Y) = \Lambda_{\alpha,0}(Y,d) \cap \Lambda_{\alpha,0}(Y,\bar{d})$ there exist $F \in \Lambda_{\alpha,0}(X,d)$ such that $F|_Y = f$ and $||F|_{Y,d}^{\alpha} = ||f|_{Y,d}^{\alpha}$;
- (b) For every $f \in \Lambda_{\alpha,0}(Y)$ there exists $\overline{F} \in \Lambda_{\alpha,0}(X, \overline{d})$ such that $\overline{F}|_Y = f$ and $\|\bar{F}\|_{Y,\bar{d}}^{\alpha} = \|f\|_{Y,\bar{d}}^{\alpha};$
- (c) The extension F in (a) is unique; (d) The extension \overline{F} in (b) is unique;
- The annihilator $Y_{\bar{d}}^{\perp}$ of Y in $\Lambda_{\alpha,0}(X,\bar{d})$ is proximinal for the elements of (e) $\Lambda_{\alpha,0}(X)$ with respect to the distance generated by $\|\cdot\|_{Y,d}^{\alpha}$;
- (f) The annihilator Y_d^{\perp} of Y in $\Lambda_{\alpha,0}(X,d)$ is proximinal for the elements of $\Lambda_{\alpha,0}(X)$ with respect to the distance generated by $\|\cdot\|_{Y,\bar{d}}^{\alpha}$;
- (g) $Y_{\bar{d}}^{\perp}$ in the claim (e) is Chebyshevian;
- (h) Y_d^{\perp} in the claim (f) is Chebyshevian.
- Then the following equivalences hold:

 $(a) \Leftrightarrow (e); (b) \Leftrightarrow (f); (c) \Leftrightarrow (g); (d) \Leftrightarrow (h).$

MSC 2000. 46A22, 41A50, 41A52.

Keywords. Extensions, semi-Lipschitz functions, semi-Hölder functions, best approximation, quasi-metric spaces.

1. INTRODUCTION

Let X be a nonempty set and $d: X \times X \to [0,\infty)$ a function with the properties:

 $(QM_1) \ d(x,y) = d(y,x) = 0 \text{ iff } x = y,$

$$(\mathrm{QM}_2) \ d(x,y) \le d(x,z) + d(z,y),$$

for all $x, y, z \in X$.

Then the function d is called a *quasi-metric* on X and the pair (X, d) is called quasi-metric space ([13]).

^{* &}quot;T. Popoviciu" Institute of Numerical Analysis, Cluj-Napoca, Romania, e-mail: cmustata@ictp.acad.ro, cmustata2001@yahoo.com.

Because, in general, $d(x, y) \neq d(y, x)$, for $x, y \in X$ one defines the conjugate quasi-metric \overline{d} of d, by the equality $\overline{d}(x, y) = d(y, x)$, for all $x, y \in X$. Let Y be a nonvoid subset of (X, d) and $\alpha \in (0, 1]$ a fixed number.

DEFINITION 1. a) A function $f : Y \to \mathbb{R}$ is called d-semi-Hölder (of exponent α) if there exists a constant $K_Y(f) \ge 0$ such that

(1)
$$f(x) - f(y) \le K_Y(f)d^{\alpha}(x,y),$$

for all
$$x, y \in Y$$
.

b) $f: Y \to \mathbb{R}$ is called \overline{d} -semi-Hölder (of exponent α) if there exists a constant $\overline{K}_Y(f) \ge 0$ such that

(2)
$$f(x) - f(y) \le \overline{K}_Y(f) \cdot d^{\alpha}(y, x)$$

for all $x, y \in Y$.

The smallest constant $K_Y(f)$ in (1) is denoted by $||f|_{Y,d}^{\alpha}$ and one shows that

(3)
$$||f|_{Y,d}^{\alpha} := \sup\left\{\frac{(f(x) - f(y)) \lor 0}{d^{\alpha}(x,y)} : d(x,y) > 0; x, y \in Y\right\}.$$

Analogously one defines $||f|_{V\overline{d}}^{\alpha}$.

Observe that the function f is d-semi-Hölder on Y iff -f is \overline{d} -semi-Hölder on Y. Moreover

(4)
$$\|f\|_{Y,d}^{\alpha} = \|-f\|_{Y,\bar{d}}^{\alpha}.$$

DEFINITION 2. ([14]). Let (X, d) be a quasi-metric space and $Y \subseteq X$ a nonempty set. The function $f: Y \to \mathbb{R}$ is called \leq_d -increasing on Y if $f(x) \leq f(y)$ whenever $d(x, y) = 0, x, y \in Y$.

The set of all \leq_d -increasing functions on Y is denoted by $\mathbb{R}^Y_{\leq_d}$ and it is a cone in the linear space \mathbb{R}^Y of all real-valued functions on Y.

The set

(5)
$$\Lambda_{\alpha}(Y,d) := \{ f \in \mathbb{R}^{Y}_{\leq d} ; f \text{ is } d\text{-semi-Hölder and } \|f\|_{Y,d}^{\alpha} < \infty \}$$

is also a cone, called the cone of d-semi-Hölder functions on Y.

If $y_0 \in Y$ is arbitrary, but fixed, one considers the cone

(6)
$$\Lambda_{\alpha,0}(Y,d) := \{ f \in \Lambda_{\alpha}(Y,d) : f(y_0) = 0 \}$$

Then the functional $\| \|_{Y,d}^{\alpha} : \Lambda_{\alpha,0}(Y,d) \to [0,\infty)$ is subadditive, positively homogeneous and the equality $\| f \|_{Y,d}^{\alpha} = \| -f \|_{Y,d}^{\alpha} = 0$ implies $f \equiv 0$. This means that $\| \cdot \|_{Y,d}^{\alpha}$ is an asymmetric norm (see [13], [14]), on the cone $\Lambda_{\alpha,0}(Y,d)$.

The pair $\left(\Lambda_{\alpha,0}(Y,d), \| \|_{Y,d}^{\alpha}\right)$ is called the asymmetric normed cone of *d*-semi-Hölder real-valued function on *Y* (compare with [14]).

Analogously, one defines the asymmetric normed cone $(\Lambda_{\alpha,0}(Y,d), \|\cdot\|_{Y,\overline{d}}^{\alpha})$. of all \overline{d} -semi-Hölder real-valued functions on Y, vanishing at the fixed point $y_0 \in Y$. By the above definitions it follows that

$$f \in (\Lambda_{\alpha,0}(Y,d), \| \|_{Y,d}^{\alpha})$$
 iff $-f \in (\Lambda_{\alpha,0}(Y,\overline{d}), \| \|_{Y,\overline{d}}^{\alpha})$

and, moreover, $||f|_{Y,d}^{\alpha} = ||-f|_{Y,\overline{d}}^{\alpha}$.

Defining $\Lambda_{\alpha,0}(Y)$ by

(7)
$$\Lambda_{\alpha,0}(Y) = \Lambda_{\alpha,0}(Y,d) \cap \Lambda_{\alpha,0}(Y,\overline{d}).$$

It follows that $\Lambda_{\alpha,0}(Y)$ is a linear subspace. The following, theorem holds.

THEOREM 3. For every $f \in \Lambda_{\alpha,0}(Y)$ there exist at least one function $F \in \Lambda_{\alpha,0}(Y,d)$ and at least one function $\overline{F} \in \Lambda_{\alpha,0}(Y,\overline{d})$ such that

a)
$$F|_Y = \overline{F}|_Y = f.$$

b) $||F|_{Y,d}^{\alpha} = ||f|_{Y,d}^{\alpha} \text{ and } ||\overline{F}|_{Y,\overline{d}}^{\alpha} = ||f|_{Y,\overline{d}}^{\alpha}.$

Proof. By Theorem 2 and Remark 3 in [11] it follows that the functions defined by the formulae:

(8)
$$F(f)(x) = \inf_{y \in Y} \{ f(y) + \|f\|_{Y,d}^{\alpha} d^{\alpha}(x,y) \}, \ x \in X,$$
$$G(f)(x) = \sup_{y \in Y} \{ f(y) - \|f\|_{Y,d}^{\alpha} d^{\alpha}(y,x) \}, \ x \in X,$$

are elements of $\Lambda_{\alpha,0}(X,d)$ and, respectively, the functions given by

(9)
$$\overline{F}(f)(x) = \inf_{y \in Y} \{ f(y) + \|f\|_{Y,\overline{d}}^{\alpha} d^{\alpha}(y,x) \}, \ x \in X,$$
$$\overline{G}(f)(x) = \sup_{y \in Y} \{ f(y) - \|f\|_{Y,\overline{d}}^{\alpha} d^{\alpha}(x,y) \}, \ x \in X$$

are elements of $\Lambda_{\alpha,0}(X,\overline{d})$ such that

(10)
$$F(f)|_{Y} = G(f)|_{Y} = f$$
 and $||F(f)|_{Y,d}^{\alpha} = ||G(f)|_{Y,d}^{\alpha} = ||f|_{Y,d}^{\alpha}$, respectively

(11)
$$\overline{F}(f)|_{Y} = \overline{G}(f)|_{Y} = f \text{ and } \left\|\overline{F}(f)\right|_{Y,\overline{d}}^{\alpha} = \left\|\overline{G}(f)\right|_{Y,\overline{d}}^{\alpha} = \left\|f\right|_{Y,\overline{d}}^{\alpha}.$$

For $f \in \Lambda_{\alpha,0}(Y)$ let us consider the following (nonempty) sets of extensions:

(12)
$$\mathcal{E}_d(f) := \{ H \in \Lambda_{\alpha,0}(X,d) : H|_Y = f \text{ and } \|H|_{Y,d}^{\alpha} = \|f|_{Y,d}^{\alpha} \}$$

and

(13)
$$\mathcal{E}_{\overline{d}}(f) := \{\overline{H} \in \wedge_{\alpha,0}(X,\overline{d}) : \overline{H}|_{Y} = f \text{ and } \|\overline{H}\|_{Y,\overline{d}}^{\alpha} = \|f\|_{Y,\overline{d}}^{\alpha}\}.$$

The sets $\mathcal{E}_{d}(f)$ and $\mathcal{E}_{\overline{d}}(f)$ are convex and (14) $F(f)(x) \ge H(x) \ge G(f)(x), x \in X$ for all $H \in \mathcal{E}_{d}(f)$; (15) $\overline{F}(f)(x) \ge \overline{H}(x) \ge \overline{G}(f)(x), x \in H$, for all $\overline{H} \in \mathcal{E}_{\overline{d}}(f)$. Also, for $F \in \Lambda_{\alpha,0}(X)$, $F|_Y \in \Lambda_{\alpha,0}(Y)$ and

$$F - H \in \Lambda_{\alpha,0}(X,\overline{d}), \text{ for all } H \in \mathcal{E}_d(F|_Y),$$

$$F - \overline{H} \in \Lambda_{\alpha,0}(X,d) \text{ for all } \overline{H} \in \mathcal{E}_{\overline{d}}(F|_Y).$$

Let (X, d) be a quasi-metric space, $y_0 \in X$ fixed and $Y \subseteq X$ such that $y_0 \in Y$. Let

(16) $Y_d^{\perp} := \{ G \in \Lambda_{\alpha,0}(X,d) : G|_Y = 0 \}$

and

(17)
$$Y_{\overline{d}}^{\perp} := \{ \overline{G} \in \wedge_{\alpha,d}(X, \overline{d}) : \overline{G} |_{Y} = 0 \}.$$

Obviously, for $F \in \Lambda_{\alpha,0}(X)$

(18)
$$F - \mathcal{E}_d(F|_Y) \subset \Lambda_{\alpha,0}(X,\overline{d})$$

(19) $F - \mathcal{E}_{\overline{d}}(F|_Y) \subset \Lambda_{\alpha,0}(X,d).$

In the sequel we prove a result of Phelps type ([1], [10], [12]) concerning the existence and uniqueness of the extensions preserving the smallest semi-Hölder constants and a problem of best approximation by elements of Y_d^{\perp} and $Y_{\overline{d}}^{\perp}$, respectively.

Let (X, || |) be an asymmetric norm (see [13], [14]) and let M be a nonempty set of X. The set M is called *proximinal for* $x \in X$ iff there exists at least one element $m_0 \in M$ such that

$$||x - m_0| = \inf\{||x - m| : m \in M\} = \rho(x, M).$$

If M is proximinal for x, then the set $P_M(x) = \{m_0 \in M : ||x - m_0| = \rho(x, M)\}$ is called the set of *elements of best approximations* for x in M. If card $P_M(x) = 1$ then the set M is called Chebyshevian for x.

The set M is called proximinal if M is proximinal for every $x \in X$, and Chebyshevian if M is Chebyshevian for every $x \in X$.

Now, consider the following two problems of best approximation: $\mathbf{P}_{\overline{d}}(\mathbf{F})$. For $F \in \Lambda_{\alpha,0}(X)$ find $G_0 \in Y_d^{\perp}$ such that

(20)
$$||F - G_0|_{Y,\overline{d}}^{\alpha} = \inf\{||F - G|_{Y,\overline{d}}^{\alpha} : G \in Y_d^{\perp}\} = \rho_{\overline{d}}(F, Y_d^{\perp})$$

and

 $\mathbf{P}_{\mathrm{d}}(\mathbf{F})$. For $F \in \Lambda_{\alpha,0}(X)$ find $\overline{G}_0 \in Y_{\overline{d}}^{\perp}$ such that

(21)
$$\|F - \overline{G}_0\|_{Y,d}^{\alpha} = \inf\{\|F - \overline{G}\|_{X,d}^{\alpha} : \overline{G} \in Y_{\overline{d}}^{\perp}\} = \rho_d(F, Y_{\overline{d}}^{\perp}).$$

Let

(22)
$$P_{Y_{\overline{d}}^{\perp}}(F) := \{\overline{G}_0 \in Y_{\overline{d}}^{\perp} : \left\| F - \overline{G}_0 \right\|_{X,d}^{\alpha} = \rho_d(F, Y_{\overline{d}}^{\perp})\}$$

and

(23)
$$P_{Y_d^{\perp}}(F) := \{ G_0 \in Y_d^{\perp} : \|F - G_0\|_{X,\overline{d}}^{\alpha} = \rho_{\overline{d}}(F, Y_d^{\perp}) \}.$$

The following theorem holds.

THEOREM 4. If $F \in \Lambda_{\alpha,0}(X)$ then

(24)
$$P_{Y_{\overline{d}}^{\perp}}(F) = F - \mathcal{E}_d(F|_Y),$$

 $P_{Y_{I}^{\perp}}(F) = F - \mathcal{E}_{\overline{d}}(F|_{Y})$ (25)

and

(26)
$$\rho_d(F, Y_{\overline{d}}^{\perp}) = \|F\|_Y \|_{Y, d}^{\alpha},$$

(27)
$$\rho_{\overline{d}}(F, Y_d^{\perp}) = \|F\|_Y \Big|_{Y,\overline{d}}^{\alpha} .$$

Proof. Let $F \in \Lambda_{\alpha,0}(X) (= \Lambda_{\alpha,0}(X,d) \cap \Lambda_{\alpha,0}(X,\overline{d}))$ Then, for every $\overline{G} \in Y_{\overline{d}}^{\perp}$,

$$\|F\|_{Y}\|_{Y,d}^{\alpha} = \|F\|_{Y} - \overline{G}\|_{Y}\|_{Y,d}^{\alpha} \le \|F - \overline{G}\|_{X,d}^{\alpha}.$$

Taking the infimum with respect to $\overline{G} \in Y_{\overline{d}}^{\perp}$, one obtains $||F|_Y|_{Y,d}^{\alpha} \leq \rho_d(F, Y_{\overline{d}}^{\perp})$. On the other hand, for every $H \in \mathcal{E}_d(F|_V)$,

$$||F|_{Y}|_{Y,d}^{\alpha} = ||H|_{X,d}^{\alpha} = ||F - (F - H)|_{X,d}^{\alpha}.$$

Because $F - H \in Y_{\overline{d}}^{\perp}$, it follows $||F|_{Y}|_{Y,d}^{\alpha} \ge \rho_{d}(F, Y_{d}^{\perp})$.

Consequently, $Y_{\overline{d}}^{\perp}$ is proximinal with respect to the distance ρ_d (ρ_d -proximinal in short) and

$$p_d(F, Y_{\overline{d}}^\perp) = \|F\|_Y \Big|_{Y, d}^\alpha$$

Now, let $\overline{G}_0 \in P_{Y^{\perp}_{\tau}}(F)$. Then $(F - \overline{G}_0)|_Y = F|_Y$ and $\left\|F - \overline{G}_0\right|_{X,d}^{\alpha} =$ $||F|_Y|_{Y,d}^{\alpha}$. This means that $F - \overline{G}_0 \in \mathcal{E}_d(F|_Y)$, i.e., $\overline{G}_0 \in F - \mathcal{E}_d(F|_Y)$. Consequently, $\overline{G}_0 \in P_{Y_{\overline{d}}^{\perp}}(F)$ implies $\overline{G}_0 \in F - \mathcal{E}_d(F|_Y)$.

Taking into account the first part of the proof it follows $P_{Y_{\pm}^{\perp}}(F) = F - F$ $\mathcal{E}_d(F|_V).$

Analogously, one obtains $\rho_{\overline{d}}(F, Y_d^{\perp}) = ||F|_Y|_{Y,\overline{d}}^{\alpha}$ and $P_{Y_d^{\perp}}(F) = F - \mathcal{E}_{\overline{d}}(F|_Y)$.

By the equalities (22) and (23) it follows.

COROLLARY 5. Let $F \in \Lambda_{\alpha,0}(X)$ and $Y \subset X$ such that $y_0 \in Y$. Then

- a) card $\mathcal{E}_d(F|_Y) = 1$ iff $Y_{\overline{d}}^{\perp}$ is ρ_d -Chebyshevian; b) card $\mathcal{E}_{\overline{d}}(F|_Y) = 1$ iff Y_d^{\perp} is $\rho_{\overline{d}}$ -Chebyshevian.

REMARK 6. Observe that the linear space $\Lambda_{\alpha,0}(X) = \Lambda_{\alpha,0}(X,d) \cap \Lambda_{\alpha,0}(X,\overline{d})$ is a Banach space with respect to the norm

 $||F|_{X}^{\alpha} = \max\{||F|_{X,d}^{\alpha}, ||F|_{X,\overline{d}}^{\alpha}\}.$ (28)

In fact this space in the space of all real-valued Lipschitz functions defined on the quasi-metric space (X, d^{α}) , vanishing at a fixed point $y_0 \in X$. Obviously,

(29)
$$||F||_X^{\alpha} = \sup\left\{\frac{|F(x) - F(y)|}{d^{\alpha}(x, y)} : d(x, y) > 0; \ x, y \in X\right\}$$

is a norm on $\Lambda_{\alpha,0}(X)$.

COROLLARY 7. For every element f in the space $\Lambda_{\alpha,0}(Y) = \Lambda_{\alpha,0}(Y,d) \cap \Lambda_{\alpha,0}(Y,\overline{d})$ there exists $F \in \Lambda_{\alpha,0}(X)$ such that

$$F|_{Y} = f \text{ and } \|F\|_{X}^{\alpha} = \|f\|_{Y}^{\alpha}.$$

The set of all extensions of $f \in \Lambda_{\alpha,0}(Y)$ preserving the norm $||f||_Y^{\alpha}$ (of the form (29), is denoted by $\mathcal{E}(f)$, i.e.,

(30)
$$\mathcal{E}(f) := \{ F \in \Lambda_{\alpha,0}(X) : F|_Y = f \text{ and } \|F\|_X^\alpha = \|f\|_Y^\alpha \}.$$

Denote by

(31)
$$Y^{\perp} := \{ G \in \Lambda_{\alpha,0}(X) : G|_Y = 0 \}.$$

the annihilator of the set Y in Banach space $\Lambda_{\alpha,0}(X)$, and one considers the following problem of best approximation:

P. For $F \in \Lambda_{\alpha,0}(X)$ find $G_0 \in Y^{\perp}$ such that

$$||F - G_0||_X^{\alpha} = \inf\{||F - G||_X^{\alpha} : G \in Y^{\perp}\} = \rho(F, Y^{\perp}).$$

COROLLARY 8. The subspace Y^{\perp} is proximinal in $\Lambda_{\alpha,0}(X)$ and the set of elements of best approximation for $F \in \Lambda_{\alpha,0}(X)$ is

$$P_{Y^{\perp}}(F) = F - \mathcal{E}(|F|_Y).$$

The distance of F to Y^{\perp} is given by

$$\rho(F, Y^{\perp}) = ||F|_Y ||_Y^{\alpha}.$$

The subspace Y^{\perp} is Chebyshevian for F iff card $\mathcal{E}(F|_Y) = 1$.

For f in the linear space $\Lambda_{\alpha,0}(Y)$, the equalities $F(f)(x) = \overline{F}(f)(x)$, $x \in X$ and $G(f)(x) = \overline{G}(f)(x)$, $x \in X$ are verified iff $||f|_{Y,d}^{\alpha} = ||f|_{Y,\overline{d}}^{\alpha}$. This means that $||f|_{Y,d}^{\alpha} = ||-f|_{Y,d}^{\alpha}$ and, consequently,

$$\|f\|_{Y}^{\alpha} = \max\{\|f\|_{Y,d}^{\alpha}; \|f\|_{Y,\overline{d}}^{\alpha}\} = \|f\|_{Y,d}^{\alpha}.$$

By Theorem 3 in [14], it follows that $\Lambda_{a,0}(Y)$ is a Banach space and (Y, d^{α}) is a metric space.

REFERENCES

- [1] S. COBZAŞ, Phelps type duality reuslts in best approximation, Rev. Anal. Numér. Théor. Approx., **31**, no. 1., pp. 29–43, 2002.
- [2] J. COLLINS and J. ZIMMER, An asymmetric Arzelā-Ascoli Theorem, Topology Appl., 154, no. 11, pp. 2312–2322, 2007.
- [3] P. FLECTHER and W.F. LINDGREN, Quasi-Uniform Spaces, Marcel Dekker, New York, 1982.
- [4] M.G. KREIN and A.A. NUDEL'MAN, The Markov Moment Problem and Extremum Problems, Nauka, Moscow 1973 (in Russian), English translation: American Mathematical Society, Providence, R.I., 1977.
- [5] E. MATOUŠKOVA, Extensions of continuous and Lipschitz functions, Canad. Math. Bull., 43, no. 2, pp. 208–217, 2000.
- [6] E.T. MCSHANE, Extension of range of functions, Bull. Amer. Math. Soc., 40, pp. 837– 842, 1934.
- [7] A. MENNUCCI, On asymmetric distances, Tehnical report, Scuola Normale Superiore, Pisa, 2004.
- [8] C. MUSTĂŢA, Best approximation and unique extension of Lipschitz functions, J. Approx. Theory, 19, no. 3, pp. 222–230, 1977.
- C. MUSTĂŢA, Extension of semi-Lipschitz functions on quasi-metric spaces, Rev. Anal. Numér. Théor. Approx., 30, no. 1, pp. 61–67, 2001.
- [10] C. MUSTĂŢA, A Phelps type theorem for spaces with asymmetric norms, Bul. Ştiinţ. Univ. Baia Mare, Ser. B. Matematică-Informatică, 18, pp. 275–280, 2002.
- C. MUSTĂŢA, Extensions of semi-Hölder real valued functions on a quasi-metric space, Rev. Anal. Numér. Théor. Approx., 38, no. 2, pp. 164–169, 2009.
- [12] R.R. PHELPS, Uniqueness of Hahn-Banach extension and unique best approximation, Trans. Numer. Math. Soc., 95, pp. 238–255, 1960.
- [13] S. ROMAGUERA and M. SANCHIS, Semi-Lipschitz functions and best approximation in quasi-metric spaces, J. Approx. Theory, 103, pp. 292–301, 2000.
- [14] S. ROMAGUERA and M. SANCHIS, Properties of the normed cone of semi-Lipschitz functions, Acta Math. Hungar, 108, nos. 1–2, pp. 55–70, 2005.
- [15] J.H. WELLS and L.R. WILLIAMS, Embeddings and Extensions in Analysis, Springer-Verlag, Berlin, 1975.

Received by the editors: April 13, 2010.