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CONJUGATE HEAT TRANSFER IN A VERTICAL CHANNEL FILLED

WITH A NANOFLUID ADJACENT TO A HEAT GENERATING

SOLID DOMAIN

FLAVIUS PĂTRULESCU∗ AND TEODOR GROŞAN†

Abstract. The effect of thermal dispersion in the conjugate steady free convec-
tion flow of a nanofluid in a vertical channel is investigated numerically using a
single phase model. Considering the laminar and fully developed flow regime, a
simplified mathematical model is obtained. In the particular cases when solid
phase and thermal dispersion effects are neglected the problem was solved ana-
lytically. The numerical solution is shown to be in excellent agreement with the
close form analytical solution. Nusselt number enhancement with the Grashof
number, volume fraction, aspect ratio parameter and thermal diffusivity constant
increasing has been found.

MSC 2000. 82D80, 76R10.

Keywords. nanofluid, vertical channel, free convection, conjugate heat transfer,
heat generation.

1. INTRODUCTION

Heat transfer in channels occurs in many industrial processes and natural
phenomena. It has been the subject of many studies for different flow confi-
gurations. We mention some practical applications of convective heat transfer
in channels: design of cooling systems for electronic devices, insulation, ven-
tilation, grain storage, geothermal energy recover, solar energy collection, etc.
Some classical papers, such as by Aung [1], Aung et al. [2], Barletta [3], Kumar
et al. [8], Vajravelu and Sastri [12], are concerned with the evaluation of the
temperature and velocity profiles for the vertical parallel-flow fully developed
regime. Enhancement of heat transfer is essential in improving performances
and compactness of electronic devices. Usual cooling agents (water, oil, etc.)
have relatively small thermal conductivities and therefore heat transfer is not
very efficient. Suspensions of nanoparticles in fluids improve physical proper-
ties and increase the heat transfer. Small fraction of nanoparticles added in
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Fig. 1. Geometry of the problem and the coordinate system.

a base fluid leads to a large increase of the fluid thermal conductivity. Good
description and classification of the nanofluids characteristics can be found
in papers such as: Daungthongsuk and Wongwises [5], Wang and Mujumdar
[14] and Kumar et al. [9]. The chaotic movement of the nanoparticles and
sleeping between the fine particles and fluid generate the thermal dispersion
effect and this leads to an increase in the energy exchange rates in fluid.
Xuan and Roetzel [13] proposed a thermal dispersion model for a single phase
nanofluid. Thermal dispersion effects in nanofluids flow in enclosure using a
single phase model were analyzed by Khanafer et al. [7] and Kumar et al. [9]
for a differentially heated rectangular cavity, Khaled and Vafai [6] studied the
heat transfer enhancement through control of thermal dispersion effects in a
horizontal channel, while Mokmeli and Saffar-Avval [10] numerically studied
nanofluid heat transfer in a straight tube. In all these paper the enhancement
of heat transfer due to nanofluids special properties was reported. In the
present paper, the effect of the thermal dispersion on the steady free convec-
tion flow in a long vertical channel, using the fully developed flow assumptions,
is investigated using a single phase thermal dispersion model similar with the
model considered by Khanafer et al. [7].

2. BASIC EQUATIONS

Consider the fully developed steady flow of an incompressible nanofluid in
vertical channel. The left wall of the channel have a thickness b and thus
we have to consider a conjugate heat transfer problem. The geometry of
the problem, the boundary conditions, and the coordinate system is shown in
Fig. 1. The fluid flows up in the channel driven by buoyancy forces, so that the
flow is due only to the difference in temperature gradient. The flow being fully
developed the following relations apply here v = 0 and ∂v/∂y = 0, where v is
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the velocity in the transversal direction. Thus, from the continuity equation,
we get ∂u/∂x = 0 so that the velocity along the channel is u = u(y). Based on
the fact that the flow is fully developed we can assume that the temperature
depends only by y, i.e., T = T (y). The physical properties of the nanofluid
are considered constant except for density, which is given by the Boussinesq
approximation.

We use in this study the heat capacity and the thermal expansion coefficient
of the nanofluid given in Kanafer et al. [7] as:

(1) (ρCp)nf = (1− φ)(ρCp)f + φ(ρCp)s,

(2) (ρβ)nf = (1− φ)ρfβf + φρsβs,

where ρ is the density, cp is the specific heat at constant pressure, φ is the
volume fraction of suspension particles, β is the expansion coefficient, while
subscripts nf , f and s stand for nanofluid, fluid and solid, respectively.

For the effective viscosity we consider the model proposed by Brinkman [4],
which is valid for high volume fraction (φ > 0.05):

(3) µnf =
µf

(1− φ)2.5
,

where µ is the dynamic viscosity.
The effective stagnant thermal conductivity is approximated by the Maxwell-

Garnetts model, see Wang and Mujumdar [14], which applies for spherical type
particles:

(4)
knf
kf

=
ks + 2kf − 2φ(kf − ks)
ks + 2kf + φ(kf − ks)

,

where k is the thermal conductivity.
The effective thermal conductivity includes also the thermal dispersion en-

hancement

(5) keff = knf + kd,

where the term due to thermal dispersion, kd, is given by, see Khaled and
Vafai [6]:

(6) kd = C(ρCp)nf |u|φL,
where L is the thickness of the channel and C is a constant depending on the
diameter of the nanoparticle and its surface geometry.

We limit the study in this paper to water based nanofluids containing Cu
nanoparticles. Nanofluids thermo-physical properties are shown in the Table 1,
see Oztop and Abu-Nada [11].

In the assumption of the fully developed flow the governing equations for
the flow and heat transfer have the following form:

(7) αs
d2Ts
dy2

+
q′′′0

(ρCp)s
= 0;
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Property H2O Cu

Cp(J/kgK) 4179 385

ρ(kg/m3) 997.1 8933

k(W/mK) 0.613 400

α× 107(m2/s) 1.47 1163.1

β × 10−5(1/K) 21 1.67

Table 1. Physical properties of fluid and Cu nanoparticles.

(8) µnf
d2u

dy2
+ (ρβ)nfg(Tf − T0) = 0;

(9)
d

dy
(keff

dTf
dy

) = 0;

subject to the boundary conditions:

(10) Ts|y=0 = TH ; Tf |y=L = TC ;

(11) Tf |y=b = Ts|y=b;

(12) ks
∂Ts
∂y
|y=b = knf

∂Tf
∂y
|y=b;

(13) u(b) = u(L) = 0;

where g is the gravitational acceleration, T is the temperature, u is the velocity,
q′′′0 is the heat generation and α is the thermal diffusivity.

In order to solve equations (7)–(9), subject to the boundary conditions (10)-
(13), we introduce the following non-dimensional variables used also by Kumar
et al. [8]:

(14) Θs =
ks(Ts − T0)

q′′′0 L
2

, Θf =
ks(Tf − T0)

q′′′0 L
2

, Y =
y

L
, U =

u

Uc
,

where Uc and T0 are the characteristic velocity and temperature given by:

(15) T0 =
TH + TC

2
, Uc =

gβf (
q′′′0 L

2

ks
)L2

νf
.

Using (14) in equations (7)-(9) we obtain the following dimensionless ordinary
differential equations:

(16)
d2Θs

dY 2
+ 1 = 0;

(17)
d2U

dY 2
+ λφΘf = 0;

(18)
d

dY
[(kφ + Cφ|U |)

dΘf

dY
] = 0;
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subject to

(19) Θs|Y=0 = q;

(20) Θs|Y=r = Θf |Y=r;

(21)
dΘs

dY
|Y=r = K

dΘf

dY
|Y=r;

(22) Θf |Y=1 = −q;

(23) U(r) = U(1) = 0;

where:

(24) r =
b

L
, λφ = (1− φ)2.5[(1− φ) + φ

ρsβs
ρfβf

], q =
ks(TH − TC)

2q′′′0 L
2

,

(25) K =
knf
ks

, kφ =
knf/kf

1− φ+ φ
(ρCp)s
(ρCp)f

, Cφ = CφPrGr

are constants depending on the properties of the nanofluid and Pr = νf/αf ,
Gr = gβfq

′′′
0 L

3/ν2
f are Prandtl number and Grashof number, respectively.

The physical quantity of interest in this problem is the Nusselt number,
which for the conjugate wall is defined as:

(26) Nu =
hL

kf
|y=b

where the convective heat transfer coefficient, h, is obtained from the relation:

(27) − keff
dT

dy
|y=b = h(T |y=b − T0).

Substituting (27) in (26) the dimensionless form of the Nusselt number be-
comes:

(28) Nu = −
knf
kf

1

Θf |Y=r

dΘf

dY
|Y=r

3. RESULTS AND DISCUSSIONS

In the case when thermal dispersion effect is neglected, i.e. C = 0, the
problem has an analytical solution, which is given by

(29) Θs(Y ) = −Y 2

2 + (r +Ka1)Y + q;

(30) Θf (Y ) = a1Y − a1 − q;

(31) U(Y ) = −λφ[a1
Y 3

6 − (a1 + q)Y
2

2 ] + a2Y + a3;

where:

a1 =
1
2
r2+2q

r(1−K)−1 ; a2 =
λφ
6 [a1(r2 − 2r − 2)− 3q(r + 1)];
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a3 =
λφ
6 r[−a1(r − 2) + 3q].

In this particular case, the Nusselt number, has the form Nu = −aknf/kf ,
where a = a1/(a1r − a1 − q), and depends only by thermal characteristics of
the nanofluid.

Equations (16)–(23) were solved numerically using finite difference dis-
cretization for different volume fractions of Cu nanoparticles, φ = 0, 0.05,
0.1 and 0.2, and thermal conductivity ratio parameter, K = 0.001, 0.01 and
0.1. In this study we consider fixed values for q and r (i.e. q = 1, r = 0.1)
and, following Khaled and Vafai [6], the values for constant Cφ were taken 0,
100, 250, 500, 1000, 5000 and 10000.

We compared the numerical method with the analytical solutions (29)–
(31) and a very good agreement was found. In Figs. 2 to 4 the analytical
solutions are also presented using a dot marker. Thus, we are confident that
the numerical method works fine.

Tables 2 to 4 show the Nusselt number for different values of the above
parameters. We mention that the value of Nusselt number increases with
the increase of constant Cφ and thermal conductivity parameter K. Due to
the conjugate heat transfer and thermal dispersion Nusselt number does not
present a monotone behavior in respect with volume fraction φ.

Cφ φ
0.05 0.1 0.2

0 2.593686 2.984831 3.912962

100 4.383934 4.209832 4.597601

250 8.156642 7.365368 6.165330

500 12.796259 11.836095 9.605016

1000 19.102887 18.263184 15.442523

5000 31.875747 34.480343 37.022310

10000 34.522407 38.455023 45.131964

Table 2. Values of Nusselt number for K = 0.1

Cφ φ
0.05 0.1 0.2

0 2.567849 2.955098 3.873984

100 3.878139 3.912190 4.532541

250 5.801081 5.747647 5.559927

500 7.698974 7.757198 7.510472

1000 9.637866 10.024039 10.138831

5000 12.575802 14.017470 16.581315

10000 13.106638 14.830093 18.361529

Table 3. Values of Nusselt number for K = 0.01

Table 5 presents the variation of the maximum temperature in solid with Cφ
and K. The maximum of the temperature in solid increases with the decrease
of Cφ and K.
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Cφ φ
0.05 0.1 0.2

0 2.565294 2.952158 3.870129

100 3.885839 3.920925 4.526447

250 5.813239 5.758804 5.571575

500 7.716117 7.774421 7.525006

1000 9.655428 10.044972 10.161326

5000 12.575822 14.022163 16.600783

10000 13.100287 14.825970 18.367821

Table 4. Values of Nusselt number for K = 0.001

Cφ K
0.001 0.01 0.1

0 1.004777 1.003020 1.000000

100 1.004739 1.002726 1.000000

250 1.004678 1.002283 1.000000

500 1.004564 1.001548 1.000000

1000 1.004403 1.000760 1.000000

5000 1.003992 1.000000 1.000000

10000 1.003870 1.000000 1.000000

Table 5. Maximum value for the temperature in solid

Figs. 2 to 4 present the velocity and temperature profiles for φ = 0.2 and
different values of Cφ and K. The reversed character of the flow becomes less
important with the increasing of parameter Cφ for K = 0.001 (see Fig. 2a)
while for K = 0.1 the flow is down for large values of Cφ (see Fig. 2b). Figs. 3
and 4 present the temperature profiles for K = 0.1 and K = 0.001 in solid and
nanofluid. We observe a decrease of the temperature in solid and an increase
of the temperature near the cold wall with the increase of Cφ for both values
of K.
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Fig. 2. Velocity profile for different values of parameter Cφ.
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Fig. 3. Temperature profile in solid (left) and fluid (right) for different values of parameter
Cφ and K = 0.1.
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Fig. 4. Temperature profile in solid (left) and fluid (right) for different values of parameter
Cφ and K = 0.001.
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