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AN OPTIMAL DOUBLE INEQUALITY AMONG THE

ONE-PARAMETER, ARITHMETIC AND HARMONIC MEANS∗
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Abstract. For p ∈ R, the one-parameter mean Jp(a, b), arithmetic meanA(a, b),
and harmonic mean H(a, b) of two positive real numbers a and b are defined by

Jp(a, b) =


p(ap+1−bp+1)
(p+1)(ap−bp) , a 6= b, p 6= 0,−1,
a−b

log a−log b
, a 6= b, p = 0,

ab(log a−log b)
a−b , a 6= b, p = −1,

a, a = b,

A(a, b) = a+b
2

, and H(a, b) = 2ab
a+b

, respectively.

In this paper, we answer the question: For α ∈ (0, 1), what are the great-
est value r1 and the least value r2 such that the double inequality Jr1(a, b) <
αA(a, b) + (1− α)H(a, b) < Jr2(a, b) holds for all a, b > 0 with a 6= b?
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1. INTRODUCTION

For p ∈ R, the one-parameter mean Jp(a, b), arithmetic mean A(a, b),
and harmonic mean H(a, b) of two positive real numbers a and b are defined
by

(1) Jp(a, b) =


p(ap+1−bp+1)
(p+1)(ap−bp) , a 6= b, p 6= 0,−1,

a−b
log a−log b , a 6= b, p = 0,
ab(log a−log b)

a−b , a 6= b, p = −1,

a, a = b,

A(a, b) = a+b
2 , and H(a, b) = 2ab

a+b , respectively.
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Recently, the one-parameter mean Jp(a, b) has been the subject of intensive
research. In particular, many remarkable inequalities and properties for the
one-parameter mean Jp can be found in the literature [1–7].

It is well-known that the one-parameter mean Jp(a, b) is continuous and
strictly increasing with respect to p ∈ R for fixed a, b > 0 with a 6= b [5].
Many mean values are special case of the one-parameter mean, for example

J1(a, b) = a+b
2 = A(a, b), the arithmetic mean,

J1
2
(a, b) = a+

√
ab+b
3 = He(a, b), the Heronian mean,

J
−1

2
(a, b) =

√
ab = G(a, b), the geometric mean

and

J−2(a, b) = 2ab
a+b = H(a, b), the harmonic mean.

For r ∈ R, the power mean Mr(a, b) of order r of two positive numbers a
and b is defined by

(2) Mr(a, b) =

{
(a

r+br

2 )
1
r , r 6= 0,√

ab, r = 0.

The main properties of the power mean are given in [8]. In particular,
Mr(a, b) is continuous and strictly increasing with respect to r ∈ R for fixed
a, b > 0 with a 6= b.

In [9], Alzer and Janous established the following sharp double inequality
(see also [9, p. 350])

M log 2
log 3

(a, b) < 2
3J1(a, b) + 1

3J−1
2
(a, b) < M2

3
(a, b)

for all a, b > 0 with a 6= b.
In [10], Mao proved

M1
3
(a, b) ≤ 1

3J1(a, b) + 2
3J−1

2
(a, b) ≤M1

2
(a, b)

for all a, b > 0, and M1
3
(a, b) is the best possible lower power mean bound for

the sum 1
3J1(a, b) + 2

3J−1
2
(a, b).

The purpose of this paper is to answer the question: For α ∈ (0, 1), what
are the greatest value r1 and the least value r2 such that the double inequality

Jr1(a, b) < αA(a, b) + (1− α)H(a, b) < Jr2(a, b)

holds for all a, b > 0 with a 6= b?

2. LEMMAS

In order to establish our main result we need two lemmas, which we present
in this section.
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Lemma 1. If t > 1, then

− log t+ (t−1)(t2+10t+1)
6t(t+1) > 0.(3)

Proof. Let

h(t) = − log t+ (t−1)(t2+10t+1)
6t(t+1) .(4)

Then simple computations lead to

h(1) = 0,(5)

h′(t) = (t−1)4

6t2(t+1)2
> 0(6)

for t > 1.
Therefore, Lemma 1 follows from (4)–(6). �

Lemma 2. If t > 1, then

log t− 3(t2−1)
t2+4t+1

> 0.(7)

Proof. Let

g(t) = log t− 3(t2−1)
t2+4t+1

.(8)

Then simple computations lead to

g(1) = 0,(9)

g′(t) = (t−1)4

t(t2+4t+1)2
> 0.(10)

for t > 1.
Therefore, Lemma 2 follows from (8)–(10). �

3. MAIN RESULT

Theorem 3. Inequality

J3α−2(a, b) < αA(a, b) + (1− α)H(a, b) < J α
2−α

(a, b)

holds for all a, b > 0 with a 6= b, and J3α−2(a, b) and J α
2−α

(a, b) are the best

possible lower and upper one-parameter mean bounds for the sum αA(a, b) +
(1− α)H(a, b), respectively.

Proof. We first prove that

αA(a, b) + (1− α)H(a, b) > J3α−2(a, b)(11)

for α ∈ (0, 1) and all a, b > 0 with a 6= b.
Without loss of generality, we assume that a > b and take t = a

b > 1. We
divide the proof into three cases.
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Case 1. If α = 1
3 , then from (1) we have

αA(a, b) + (1− α)H(a, b)− J3α−2(a, b) =

= b[1+t
6 + 4t

3(1+t) −
t log t
t−1 ](12)

= bt
t−1 [− log t+ (t−1)(t2+10t+1)

6t(1+t) ].

Therefore, inequality (11) follows from (12) and Lemma 1.
Case 2. If α = 2

3 , then (1) leads to

αA(a, b) + (1− α)H(a, b)− J3α−2(a, b) =

= b[1+t
3 + 2t

3(1+t) −
t−1
log t ](13)

= b(t2+4t+1)
3(1+t) log t [log t− 3(t2−1)

t2+4t+1
].

Therefore, inequality (11) follows from (13) and Lemma 2.
Case 3. If α ∈ (0, 1

3) ∪ (1
3 ,

2
3) ∪ (2

3 , 1), then (1) implies that

αA(a, b) + (1− α)H(a, b)− J3α−2(a, b) =

= b[α1+t
2 + (1− α) 2t

1+t −
(3α−2)(t3α−1−1)
(3α−1)(t3α−2−1)

].(14)

Let

f(t) = α1+t
2 + (1− α) 2t

1+t −
(3α−2)(t3α−1−1)
(3α−1)(t3α−2−1)

,(15)

then f(t) can be rewritten as

f(t) = f1(t)
2(3α−1)(t+1)(t3α−2−1)

,(16)

where

f1(t) = (1− α)(4− 3α)t3α + 2α(4− 3α)t3α−1 + α(3α− 1)t3α−2

−α(3α− 1)t2 − 2α(4− 3α)t− (1− α)(4− 3α).(17)

Note that

f1(1) = 0,(18)

f1
′(t) = 3α(1− α)(4− 3α)t3α−1 + 2α(4− 3α)(3α− 1)t3α−2

+α(3α− 1)(3α− 2)t3α−3 − 2α(3α− 1)t(19)

−2α(4− 3α),

f1
′(1) = 0,(20)

f1
′′(t) = 3α(1− α)(3α− 1)(4− 3α)t3α−2 + 2α(4− 3α)(3α− 1)

×(3α− 2)t3α−3 + 3α(3α− 1)(3α− 2)(α− 1)t3α−4(21)

−2α(3α− 1),

f1
′′(1) = 0(22)
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and

f1
′′′(t) = 3α(1− α)(4− 3α)(3α− 1)(3α− 2)t3α−5(t− 1)2.(23)

We divide the proof into two subcases.
Subcase 1. If α ∈ (0, 1

3)∪(2
3 , 1), then from (23) we clearly see that f1

′′′(t) > 0
for t ∈ (1,∞). Then (18) and (20) together with (22) imply that f1(t) > 0 for
t ∈ (1,∞). Note that

(3α− 1)(t3α−2 − 1) > 0(24)

for t > 1.
Therefore, inequality (11) follows from (14)–(16) and (24) together with the

fact that f1(t) > 0 for t ∈ (1,∞).
Subcase 2. If α ∈ (1

3 ,
2
3), then from (23) we clearly see that f1

′′′(t) < 0 for
t ∈ (1,∞). Then (18) and (20) together with (22) imply that f1(t) < 0 for
t ∈ (1,∞). Note that

(3α− 1)(t3α−2 − 1) < 0(25)

for t > 1.
Therefore, inequality (11) follows from (14)–(16) and (25) together with the

fact that f1(t) < 0 for t ∈ (1,∞).

Next, we prove that

αA(a, b) + (1− α)H(a, b) < J α
2−α

(a, b)(26)

for α ∈ (0, 1) and all a, b > 0 with a 6= b.
Without loss of generality, we assume that a > b. Let t = a

b > 1, then from
(1) we have

αA(a, b) + (1− α)H(a, b)− J α
2−α

(a, b) =(27)

= b[α1+t
2 + (1− α) 2t

1+t −
α(t

2
2−α−1)

2(t
α

2−α−1)

].

Let

F (t) = α1+t
2 + (1− α) 2t

1+t −
α(t

2
2−α−1)

2(t
α

2−α−1)

,(28)

then F (t) can be rewritten as

F (t) = tF1(t)

2(t+1)(t
α

2−α−1)

,(29)

where

F1(t) = (4− 3α)t
α

2−α + αt
2(α−1)

2−α − αt− 4 + 3α.(30)

Note that

F1(1) = 0,(31)
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F1
′(t) = α

2−α [(4− 3α)t
2(α−1)

2−α + 2(α− 1)t
3α−4
2−α − 2 + α],(32)

F1
′(1) = 0(33)

and

F1
′′(t) = 2α(4−3α)(1−α)

(2−α)2
t

4α−6
2−α (1− t) < 0(34)

for t ∈ (1,∞) and α ∈ (0, 1).
Therefore, inequality (26) follows from (27)–(29), (31), (33) and (34).

At last, we prove that J3α−2(a, b) and J α
2−α

(a, b) are the best possible lower

and upper one-parameter mean bounds for the sum αA(a, b) + (1−α)H(a, b),
respectively.

For any 0 < ε < α
2−α and x > 0, from (1) one has

lim
x→∞

αA(x,1)+(1−α)H(x,1)
J α

2−α−ε
(x,1) = 2α−α(2−α)ε

2α−2(2−α)ε > 1.(35)

For any ε > 0, ε 6= 1− 3α, ε 6= 2− 3α and x > 0, let x→ 0, making use of
(1) and the Taylor expansion one has

J3α−2+ε(1 + x, 1)− αA(1 + x, 1)− (1− α)H(1 + x, 1) =

= 1 + x
2 + 3α−3+ε

12 x2 + o(x2)− α(1 + x
2 )− (1− α)

× (1 + x
2 −

1
4x

2 + o(x2))(36)

= ε
12x

2 + o(x2).

Inequality (35) implies that for any 0 < ε < α
2−α there exists X = X(α, ε) >

1 such that αA(x, 1) + (1− α)H(x, 1) > J α
2−α−ε

(x, 1) for x ∈ (X,∞), and

inequality (36) implies that for any ε > 0, ε 6= 1−3α and ε 6= 2−3α there exists
δ = δ(α, ε) > 0 such that J3α−2+ε(1 +x, 1) > αA(1 +x, 1) + (1−α)H(1 +x, 1)
for x ∈ (0, δ). �
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