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Abstract. A semilocal convergence analysis for Newton’s method in a Banach
space setting is provided in this study. Using a combination of regularly smooth
and center regularly smooth conditions on the operator involved, we obtain more
precise majorizing sequences than in [7]. It then follows that under the same
computational cost and the same or weaker hypotheses than in [7] the following
benefits are obtained: larger convergence domain; finer estimates on the dis-
tances involved, and an at least as precise information on the location of the
solution of the corresponding equation.

Numerical examples are given to further validate the results obtained in this
study.
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally
unique solution x∗ of equation

(1) F (x) = 0,

where F is a Fréchet-differentiable operator defined on an open convex subset
D of a Banach space X with values in a Banach space Y.

A large number of problems in applied mathematics and also in engineering
are solved by finding the solutions of certain equations. For example, dynamic
systems are mathematically modeled by difference or differential equations,
and their solutions usually represent the states of the systems. For the sake
of simplicity, assume that a time-invariant system is driven by the equation
ẋ = Q(x), for some suitable operator Q, where x is the state. Then the equi-
librium states are determined by solving equation 1. Similar equations are
used in the case of discrete systems. The unknowns of engineering equations
can be functions (difference, differential, and integral equations), vectors (sys-
tems of linear or nonlinear algebraic equations), or real or complex numbers
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(single algebraic equations with single unknowns). Except in special cases,
the most commonly used solution methods are iterative - when starting from
one or several initial approximations a sequence is constructed that converges
to a solution of the equation. Iteration methods are also applied for solving
optimization problems. In such cases, the iteration sequences converge to an
optimal solution of the problem at hand. Since all of theses methods have the
same recursive structure, they can be introduced and discussed in a general
framework.

Newton’s method

(2) xn+1 = xn − F ′(xn)−1F (xn) (n ≥ 0), (x0 ∈ D)

is undoubtedly the most popular iterative procedure for generating a sequence
{xn} (n ≥ 0) approximating x∗. Here, F ′(x) ∈ L(X,Y ) the space of bounded
linear operators from X into Y.

There is an extensive literature on local as well as semilocal convergence
results for Newton’s method under various assumptions [1]–[5], [6]–[10], [12].

The hypothesis of w-smoothness:

(3)
∥∥F ′(x)− F ′(y)

∥∥ ≤ w(‖x− y‖) for all x, y ∈ D,

has been used to provide a semilocal convergence analysis for Newton’s
method, where w : [0,∞) → [0,∞) is a continuous non-decreasing function
which vanishes at zero, and it is positive elsewhere [1], [4], [5], [7], [12]. In the
case: w(r) = cr, condition (3) reduces to the common Lipschitz hypothesis
whereas, when w(r) = crp p ∈ [0, 1) we obtain the Hölder assumption.

Recently in [3]–[5] we introduced the center w-smoothness condition:

(4)
∥∥F ′(x)− F ′(x0)

∥∥ ≤ w0(‖x− x0‖)

where w0 is a function with the same for all x ∈ D, properties as w.
Note that condition (3) implies (4). Using weaker (4) (which is what is

really needed for finding bounds on
∥∥F ′(xn)−1F ′(x0)

∥∥) instead of condition
(3), leads to more precise majorizing sequences, which in turn are used to
provide under the same hypotheses a finer semilocal convergence analysis with
the following advantages over the earlier mentioned works: larger convergence
domain; finer error bounds on the distances involved, and an at least as precise
information on the location of the solution x∗. Note that the above advantages
are obtained under the same computational cost, since in practice finding
function w requires that of w0. In this study we show that the above advantages
hold true if operator F is w-regularly smooth on D [7] (to be precised in
Definition 1).

Numerical examples are also provided to further validate the results ob-
tained in this study.
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2. SEMILOCAL CONVERGENCE ANALYSIS OF NEWTON’S METHOD (??)

Let N denote the class of non-decreasing continuous functions w : [0,∞)→
[0,∞) that are concave. That is they have convex subgraphs {(s, t) : s ≥ 0, and
t ≤ w(s)}, and vanish at zero [11].

We need the definition:

Definition 1. [7] Let F : D ⊆ X → Y be a Fréchet-differentiable operator.
Denote by h(F ) the quantity inf ‖F ′(x)‖ , x ∈ D. Given w ∈ N, we say that
F is w-regularly smooth on D, if there exists an h∈ [0,h(F )] such that for all
x, y ∈ D :

(5) w−1(hF (x, y) +
∥∥F ′(y)− F ′(x)

∥∥)− w−1(hF (x, y)) ≤ ‖y − x‖ ,

where,

(6) hF (x, y) = min{
∥∥F ′(x)

∥∥ ,∥∥F ′(y)
∥∥} − h.

The operator is regularly smooth on D, if it is w-regularly smooth there for
some w ∈ N.

Throughout this study w−1 denotes the function whose closed epigraph
cl{(s, t) : s ≥ 0, and t ≥ w−1(s)} is symmetrical to closed of the subgraph of
w with respect to the axis t = s. Due to the convexity of w−1, each w-regularly
smooth operator is also w-smooth but not necessarily vice versa [7]. Several
properties for operators F that are w-regularly smooth can be found in [7].

It follows from condition (5) that for x = x fixed there exists a function w0

with the same properties as w such that for all y ∈ D :

(7) w−1
0 (hF (x, y) +

∥∥F ′(y)− F ′(x)
∥∥)− w−1(hF (x, y)) ≤ ‖y − x‖ .

Clearly,

(8) w0(s) ≤ w(s) for all s ∈ [0,∞)

holds in general, and w(s)
w0(s) can be arbitrarily large [3]–[5].

It is convenient for us to introduce suitable notations. The superscript t
means the non-negative part of a real number: a+ := max{a, 0}.

Denote:

Z(p, q) := {q, p− q},
m(p, q, r) := min{p, (c− z(p− q, w))+},

and

g(p, q, r) :=

∫ r

0
[w(m(p, q, θ) + θ)− w(m(p, q, θ))]dθ

for all p ≥ 0, and r ≥ 0.

In order for us to apply Newton’s method (2) to equation (1), choose x0 ∈ D
such that F ′(x0)−1 ∈ L(Y,X), and set F0 := F ′(x0)−1F. Clearly, equation (1)
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is equivalent to the equation F0(x) = 0, and the Newton iterations for F and
F0 starting at x0 are identical.

Let h be a lower bound for h (F0) :

(9) 0 ≤ h ≤ h(F0),

and let w ∈ N, w0 ∈ N satisfy (5) and (6), respectively with F0 instead of F
and x = x0. Then F0 is w-regularly smooth, and center-w0-smooth on D.

Let us define constants

(10) k0 = W−1
0 (1− h),

(11) k = w−1(1− h),

and denote by a an upper bound on ‖F0(x0‖ :

(12) ‖F0(x0)‖ ≤ a.
Define scalar sequences {αn}, {γn}, {γn} (n ≥ 0) as follows:

α0 := k, γ0 := 1, δ0 := a,(13)

αn := (αn−1 − δn−1)+, γn := 1− w0(αn + tn) + w0(αn),

δn := γ−1
n g(αn−1, αn−1 − δn−1, δn−1),

where,

tn :=

n−1∑
i=0

δi,

function gh(t) on [0,∞) by:

(14) gh(t) := a− t+ g(k, (k − t)+ − t, t) for all t ≥ 0,

and set
t∗ = lim

n→∞
tn.

The triple (αn, γn, δn) is well defined for all n ≥ 0 provided that

(15) γn > 0 for all n ≥ 0.

Condition (15) can be replaced by

(16) tn < w−1
0 (1) for all n ≥ 0.

We can now state the main semilocal convergence theorem for Newton’s
method (2) for operator F0 that are w-regularly smooth on D.

Theorem 2. Let the operator F0 be w-regularly smooth, and center- w0-
regularly smooth on D. Assume
x0 ∈ D satisfies condition

(17) tn ≤ w−1(1),

and

(18) U(x0, t
∗) = {x ∈ X : ‖x− x0‖ ≤ t∗} ⊆ D,
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then, sequence {xn} generated by Newton’s method (2) (with F0 replacing F )
is well defined, remains in U(x0 ,t∗) for all n ≥ 0, and converges to a solution
x∗ of equation F (x) = 0 in U(x0, t

∗).
Moreover the following estimates hold true for all n ≥ 0 :

(19) ‖xn+1 − xn‖ ≤ tn+1 − tn,

(20) ‖xn − x∗‖ ≤ t∗ − tn,

(21)
∥∥F ′0(xn)−1

∥∥ ≤ γ−1
n ,

and

(22) ‖F0(xn)‖ ≤ g(αn−1, αn − δn−1, δn−1).

Furthermore, if a is such that t∗ ≤ k0, then the solution x∗ is unique in
U(x0, g

−1
h,2(0), where

g−1
h,2 stands for the inverse of the restriction of function gh on the interval

[w−1(1),∞).

Proof. The proof is similar to the corresponding one given in Theorem 4.3 in
[7], p. 83)]. Simply use (6) instead of (5) (used in [7]), in the derivation of the
estimate (21). To avoid duplications we will only sketch the above mentioned
differences in the proofs.

It is convenient to set:

αn := w−1(
∥∥F ′0(xn)

∥∥− h), γn :=
∥∥F ′0(xn)−1

∥∥−1
,(23)

δn := ‖xn+1 − xn‖ (n ≥ 0).

For n = 0, we have

α0 = k = α0, γ0 = 1 = γ0, and δ0 ≤ a = δ0,

hold true.
Assume, that for all i = 0, 1, ..., n− 1 (n ≥ 1) :

F ′0(xi) exists so that F ′0(xi)
−1 ∈ L(Y,X),

and

(24) αi ≥ αi, γi ≥ γi, δi ≤ δi.

It follows by the induction hypothesis that

(25) ‖xi − x0‖ ≤
i−1∑
j=0

δj ≤
i−1∑
j=0

δj = ti.



8 Ioannis K. Argyros 6

Hence, F ′0(xi) exists. Using (6) on U(x0, t
∗) ⊆ D we obtain in turn (for

x = x0) : ∥∥F ′0(xi)− F ′0(x0)
∥∥(26)

≤ w−1
0 (w−1

0 (min{1,
∥∥F ′0(xi)

∥∥} − h) + ‖xi − x0‖−
−min{1,

∥∥F ′0(xi)
∥∥}+ h

= w0(min{k, αi}+ ‖xi − x0‖)− w0(min{k, αi})

By Lemma 2.1 in [7], we have:

αi ≥ (k − ‖xi − x0‖)+ ≥ (k − ti)+ = αi,

which together with (26) gives∥∥F ′0(xi)− F ′0(x0)
∥∥ ≤ w0(min{k, αi}+ ‖xi − x0‖)− w0(min{k, αi}(27)

≤ w0(αi + ti)− w0(αi).

In view of (8), (17), (23)-(27) we obtain

(28) γi ≥ 1− w0(αi + ti) + w0(αi) ≥ 1− w0(ti) ≥ 1− w(ti).

It follows from (28), and the Banach Lemma on invertible operators [5], [9],
that F ′0(xi)

−1 exists, so that (21) is satisfied and

γi ≤ γi.

Using (2) (for F0 replacing F ) we obtain the approximation

x2+1 − xi = −F ′0(xi)
−1[F0(xi)− F0(xi−1)− F ′o(xi−1)(xi − xi−1)]

(29)

= −F ′0(xi)
−1

∫ 1

0
[F ′0(xi−1 + θ(xi − xi−1))− F ′0(xi−1)](xi − xi−1dθ.

It follows by Lemma 2.2 in [7] that:

r(xi−1, xi) :=

∥∥∥∥∫ 1

0
[F ′0(xi−1 + θ(xi − xi−1))− F ′0(xi−1)](xi − xi−1)dθ

∥∥∥∥(30)

≤ g(αi−1, αi − δi−1, δi−1) ≤ g(αi−1, αi − δi−1, δi−1).

Hence, we obtain by (21), (29) and (30) that:

(31) δi ≤ γ−1
i r(xi−1, xi)g(αi−1, αi − δi−1, δi−1) =: δi,

which completes the induction for (24). It now follows:

(32) ‖xn+i − xn‖ ≤
n+i−1∑
j=n

δj ≤
n+i−1∑
j=n

δj <

∞∑
j=n

δj = t∗ − tn

It also follows from (32) that sequence {xn} is Cauchy (since {tn} is a con-
vergent sequence) in a Banach space X, and as such it converges to some
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x∗ ∈ U(x0, t
∗) (since U(x0, t

∗) is a closed set). By letting i → ∞ in (30) we
obtain

F0(x∗) = 0⇒ F (x∗) = 0.

Estimate (20) follows from (32) (i.e. (19)) by using standard majorization
techniques [4], [9]. Moreover, estimate (22) is simply (30) for

r(xn−1, xn) = ‖F0(xn)‖ .

The uniqueness part of the proof as identical to the corresponding one in [7]
is omitted.

That completes the proof of the Theorem. �

Remark 3. In order for us to compare our Theorem 2 with the related The-
orem 4.3 in [7], let us define sequences {α1

n}, {γ1
n}, {δ1

n}, {t1n} as
{αn}, {γn}, {δ1

n}, {t1n} respectively by simply setting w0 = w in (13). Clearly,
if w0 = w, then our Theorem 2 reduces to Theorem 4.3 in [7]. Otherwise (i.e.
if (8) holds as a strict inequality), then with the exception of the convergence
domain, the rest of the advantages of our approach over the corresponding
ones in [7] (as already stated in the Introduction of this study) hold true.

Remark 4. The convergence domain can also be extended as follows: De-
fine sequences {α2

n}, {γ2
n}, {δ2

n}, {t2n} as {αn}, {γn}, {δn}, {tn} respectively
by with k0 (given by (10)) replacing k (given by (11)) in (13). Moreover,
replace condition (17) by weaker (16) (with t2n replacing tn in (16)). It then
follows from the proof of Theorem 2 that with the above changes the con-
clusions of this theorem hold true with the exception of the uniqueness part
which holds true on U(x0, t

∗
2), t∗2 = lim

n→∞
t2n. That is we arrived at:

Theorem 5. Let the operator F0 be w-regularly smooth, and center- w0-
regularly smooth on D. Assume: x0 ∈ D satisfies:

t2n ≤ w−1
0 (1),(33)

α0 := k0,

and

U(x0, t
∗
2) ⊆ D,

then sequence {xn} generated by Newton’s method (2) (with F0 replacing F )
is well defined, remains in U(x0, t

∗
2), and converges to a solution x of equation

F (x) = 0 in U(x0, t
∗
n).

Moreover the following estimates hold true for all n ≥ 0 :

(34) ‖xn+1 − xn‖ ≤ t2n+1 − t2n,

(35) ‖xn − x∗‖ ≤ t∗2 − t2n,

(36)
∥∥F ′0(xn)−1

∥∥ ≤ 1
γ2n
,
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and

(37) ‖F0(xn)‖ ≤ g(α2
n−1, α

2
n − δ2

n−1, δ
2
n−1).

Furthermore the solution x∗ is unique in U(x0, w
−1
0 (1)).

Proof. In view of the proof of Theorem 2, we only need to show the unique-
ness part. Let y∗ be a solution of equation

F0(x) = 0 in U(x0, w
−1
0 (1)).

Let us, denote

L :=

∫ 1

0
F ′0(y∗ + θ(x∗ − y∗))dθ

Using (6) for x = x0, y = y∗ + θ(x∗ − y∗), θ ∈ [0, 1], and F replaced by F0, as
in (27) we obtain ∥∥F ′0(x0)− L

∥∥ < 1− w0(t∗2) < 1.

Hence, the linear operator L is invertible on U(x0, w
−1
0 (1) . Moreover using

the identity
0 = F (x∗)− F (y∗) = L (x∗ − y∗),

we obtain x∗ = y∗.
That completes the proof of the theorem. �

In the next result we compare majorizing sequences {tn}, {t1n}, {t2n} :

Proposition 6. Under the hypotheses of Theorem 2, the conclusions of our
Theorem 2.4, and Theorem 4.3 in [7] hold true.

Moreover the following estimates hold true for all n ≥ 0 :

(38) 0 ≤ t2n+1 − t2n ≤ tn+1 − tn ≤ t1n+1 − t1n,

(39) 0 ≤ t∗2 ≤ t∗ ≤ t∗1 − lim
n⇒∞

t1n,

and

(40) t∗2 − t2n ≤ t∗ − tn ≤ t∗1 − tn.

Proof. The proof follows immediately by induction on n ≥ 0, the definition
of the “t” sequences and (8).

That completes the proof of the Proposition. �

Remark 7. (a) If strict inequality holds in (8), so does in (38).
(b) If equality holds in (8), then Theorem 2.4 reduces to Theorem 4.3 in [7].

Otherwise it is an improvement with advantages as stated in the Introduction
of this study (see also (38)-(40), and compare (16), (17), (33) in this case).
Note also that sufficient convergence conditions other than the ones given here
for the satisfaction of conditions (16), (17), (33) (or (15)), weaker (in general),
have been given by us in [4], [5] for operators F that are w-smooth. Clearly,
those conditions can replace (16), (17), (33) in the above results provided that
operator F is w-regularly smooth.
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As an application, we compare the “t” iterations in the interesting case,
when

(41) w0(s) = c0s and w(s) = cs.

Using (41), and the definitions of the ”t” iterations, we obtain:

t0 = 0, t1 = a, tn+1 + f(tn)
2(1−c0tn) ,

(42) t10 = 0, t11 = a, t1n+1 = tn + f(t1n)
2(1−ct1n)

,

and

t20 = 0, t12 = a, t2n+1 = t2n +
c(t2n−t2n−1)2

2(1−c0t2n)
,

where,

(43) f(s) = c
2s

2 − s+ a.

Condition (17) is satisfied provided that the famous Newton-
Kantorovich hypothesis:

(44) K = ca ≤ 1
2

holds true [3], [5], [9]. It then also follows that sequences {tn}, {t1n} given by
(42), and (43) converge to t∗, t∗1 respectively with

t∗ ≤ t∗1 = 1−
√

1−2ca
c0

,

so that the other conclusions of Theorem 2 also hold true.

It was shown by us in [3] (see also [4], [5]) that finer sequence {t2n} converges
to t∗2 provided that

(45) Kβ = (c+ βc0)a ≤ β for some β ∈ [0, 1]

or (45),

(46) 2c0a
2−β ≤ 1,

and

(47) c0β2

2−β ≤ c for some β ∈ [0, 2),

or

(48) c0a ≤ 1− 1
2β for β ∈ [β0, 2),

where

β0 =
−β1+

√
β2
1+8β1

2 , β1 = c
c0
.

or

(49) K2 = c2a ≤ 1
2 ,

where,

c2 = 1
2

(
c+ 4c0 +

√
c3 + 8c0c

)
.
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The simplest from conditions (45)–(49) is K1:

(50) K1 = c1a ≤ 1
2 , c1 = c+c0

2 ,

Note also that

(51) K ≤ 1
2 ⇒ K1 ≤

1

2
⇒ K2 ≤ 1

2 .

but not necessarily vice versa unless if c0 = c.
We complete the study with three numerical examples:

Example 8. Let X = Y = R, x0 = 0, and for given parameters di, i =
0, 1, 2, 3, define function F by

(52) F (x) = d0 + d1x+ d2 sin ed3x.

It can easily be seen by (51) that for d3 large, and d2 sufficiently small c
c0

can
be arbitrarily large.

Example 9. Let X = Y = R, x0 = 1, b ∈
[
0, 1

2

)
, and define function F by

(53) F (x) = x3 − b.
Using (52) we have: a = 1

3(1− b), c0 = 3− b, and c = 2(2− b). Note that

c0 < c for all b ∈
[
0, 1

2

)
.

Condition (44) does not hold, since

K = 2
3(1− b)(2− b) > 1

2 for all b ∈
[
0, 1

2

)
.

That is there is no guarantee that Newton’s method (2) starting from x0 = 1

converges to the solution x∗ = 3
√
b.

However, condition (49) holds for all b ∈
[

5−
√

13
3 , 1

2

)
, since

K1 = 1
6(1− b)[3− b+ 2(2− b)] ≤ 1

2 .

Note that 5−
√

13
3 = .46481624.... Finally condition (49) for holds for b ∈[

.450339002, 1
2

)
.

Example 10. Let X = Y = C[0, 1], be the space of real-valued continuous
functions defined on the interval [0, 1] with norm

‖x‖ = max
0≤s≤1

|x(s)| .

Let d ∈ [0, 1] be a given parameter. Consider the cubic integral equation

(54) u(s) = u3(s) + λu(s)

∫ 1

0
q(s, t)u(t)dt+ y(s)− d.

Here the kernel q(s, t) is a continuous function of two variables defined on
[0, 1]×[0, 1]; the parameter λ is a real number called the “albedo” for scattering;
y(s) is a given continuous function defined on [0, 1] and x(s) is the unknown
function sought in C[0, 1]. Equations of the form (53) arise in the theory of
radiative transfer, neutron transport, and the kinetic theory of gasses [2], [6].
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For simplicity, we choose u0(s) = y(s) = 1 and q(s, t) = s/(s + t), for all
s ∈ [0, 1] and t ∈ [0, t] with s + t 6= 0. If we let D = U(u0, 1 − d), and define
the operator f on D by

(55) f(x)(s) = x3(s) + λx(s)

∫ 1

0
q(s, t)x(t)dt+ y(s)− d

for all s ∈ [0, 1], then every zero of f satisfies equation (53). We have the
estimate

(56) max
0≤s≤1

∣∣∣∣∫ 1

0
s/(s+ t)dt

∣∣∣∣ = ln 2.

Therefore if we set b0 =
∥∥f ′(u0)−1

∥∥ , then it follows from (54) and (55) that
conditions a = b0(|λ| ln 2 + 1 − d), c = 2b0[|λ| ln 2 + 3(2 − d)] and c0 =
b0[2 |λ| ln 2 + 3(3− d)]. Moreover, since c0 < c we get a wider choice of values
λ for which our conditions (45)–(49) or (50) hold than the ones provided by
(44) (used in [2], [6], [9].
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