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GÜLEN BAŞCANBAZ-TUNCA1 and AYŞEGÜL ERENÇIN2
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1. INTRODUCTION

In [5], Butzer introduced the Kantorovich variant of the Szasz-Mirakyan
operators as

Kn(f ;x) = ne−nx
∞∑
k=0

(nx)k

k!

∫ k+1
n

k
n

f(t)dt; x ≥ 0

for each n ∈ N and f ∈ L1(0,∞), the space of integrable functions on un-
bounded interval [0,∞). The Lp(1 < p < ∞) saturation and inverse the-
orems for the Szasz-Mirakyan-Kantorovich operators were studied by Totik
in [19]. Bezier variant of the Szasz-Mirakyan-Kantorovich operators were in-
troduced by Gupta, Vasishtha and Gupta in [8], where the rate of conver-
gence of these operators for functions of bounded variation was measured.
Moreover, approximation properties of these operators for locally bounded
functions have been investigated recently by Gupta and Xiao-Ming Zeng in
[9]. In [7], Duman, Özarslan and Della Vecchia constructed a modified Szasz-
Mirakyan-Kantorovich operators and introduced a better error estimation and
a Voronovskaya type theorem. Another interesting modification of Szasz-
Mirakyan-Kantorovich operators has been carried out by Nowak and Sikorska-
Nowak in [15], where the operators are defined for Denjoy-Perron integrable
functions f . The authors have obtained an estimate for the rate of pointwise
convergence for such operators at the Lebesgue Denjoy points of f .
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In 1996, Phillips’ generalization of Bernstein polynomials by using q-integers
[16] has brought up a new point of view to the theory of approximation by lin-
ear positive operators. There are numerous works dealing with this approach.
Some are in [2], [3], [4], [6], [11], [12], [13], [20], [21] and references therein.

In this work, we consider a Kantorovich type generalization of q-Szasz-
Mirakyan operators, introduced by Aral in [4] with the help of the Riemann
type q-integral defined in [14] and prove a Voronovskaya type theorem. Ob-
serve that a different form of q-Szasz-Mirakyan-Kantorovich operators has
been studied in [13] by Mahmudov and Gupta.

2. NOTATION AND CONSTRUCTION OF THE OPERATORS

In this section, we first mention some well-known definitions of q-calculus.
Next introduce the q-Szasz-Mirakyan-Kantorovich operators via Riemann type
q-integral.

Let q > 0 be a fixed real number and n be a nonnegative integer. The
respective definitions of the q-integer [n]q and the q-factorial [n]q! are (see [1])

[n]q =

{
1−qn
1−q if q 6= 1

n if q = 1
,

[n]q! =

{
[1]q[2]q · · · [n]q if n ≥ 1

1 if n = 0
.

The two q-analogues of the exponential function ex are given by

eq(x) =

∞∑
n=0

1
[n]q !x

n = 1
((1−q)x;q)∞

; |x| < 1
1−q , |q| < 1

and

Eq(x) =

∞∑
n=0

q

n(n−1)
2

[n]q ! xn = (−(1− q)x; q)∞; x ∈ R, |q| < 1,

where (x; q)∞ =
∞∏
k=1

(1− xqk−1) (see [10]). We know that

eq(x)Eq(x) = 1

and
lim
q→1−

eq(x) = lim
q→1−

Eq(x) = ex.

In [4], Aral defined the q-Szasz-Mirakyan operators as follows:

(2.1) Sq
n(f ;x) = Eq

(
−[n]q

x
bn

) ∞∑
k=0

f
(

[k]qbn
[n]q

)
([n]qx)k

[k]q !(bn)k
, x ∈

[
0, bn

(1−q)[n]q

)
where n ∈ N, 0 < q < 1, f ∈ C[0,∞) and (bn) is an increasing sequence of pos-
itive numbers such that lim

n→∞
bn =∞. He proved a Voronovskaya type theorem
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using q-derivatives and also obtained convergence properties of these opera-
tors and their derivatives. Note that the operators defined by (2.1) are the
q-extension of the Szasz-Chlodovsky operators introduced in [18] by Stypinski.
From [4] we have

Sq
n(e0;x) = 1

Sq
n(e1;x) = x

Sq
n(e2;x) = qx2 + bn

[n]q
x

Sq
n(e3;x) = q3x3 + (q2 + 2q) bn

[n]q
x2 +

(
bn

[n]q

)2
x

Sq
n(e4;x)=q6x4+(q5 + 2q4+3q3) bn

[n]q
x3+(q3 + 3q2 + 3q)

(
bn

[n]q

)2
x2+

(
bn

[n]q

)3
x,

(2.2)

where em(t) := tm, m = 0, 1, 2, 3, 4.
Now assume that 0 < a < b, 0 < q < 1 and f is a real-valued function. The

q-Jackson integral of f over the interval [0, b] and over a general interval [a, b]
are defined by (see[10])∫ b

0
f(x)dqx = (1− q)b

∞∑
j=0

f
(
bqj
)
qj

and ∫ b

a
f(x)dqx =

∫ b

0
f(x)dqx−

∫ a

0
f(x)dqx,

respectively, provided the series converge. It is easily seen that the inequality

f(x) ≥ 0 for all x ∈ [a, b] does not ensure that
∫ b
a f(x)dqx ≥ 0. This fact

may not be convenient in order to guarantee the positivity of our operator.
On the other hand, since the q-Jackson integral contains two infinite sums,
in obtaining the q-analogues of some well-known integral inequalities which
are used to estimate the order of approximation of linear positive operators
involving q-Jackson integral, some problems are encountered. Because of these
circumstances, we consider the Riemann type q-integral introduced in [14]

(2.3) Rq(f ; a, b) =

∫ b

a
f(x)dR

q x = (1− q)(b− a)
∞∑
j=0

f
(
a + (b− a)qj

)
qj

to construct a Kantorovich variant of the operator defined by (2.1).
With this motivation, we now introduce the Kantorovich type generalization

of the q-Szasz-Mirakyan operators as follows:

(2.4) Kn,q(f ;x)=Eq

(
−[n]q

x
bn

) ∞∑
k=0

([n]qx)k

[k]q !(bn)k
[n]q
qkbn

∫ [k+1]qbn
[n]q

[k]qbn
[n]q

f(t)dR
q t,
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where x ∈
[
0, bn

(1−q)[n]q

)
, n ∈ N, 0 < q < 1, f is Riemann type q-integrable on[ [k]qbn

[n]q
,

[k+1]qbn
[n]q

]
and (bn) is an increasing sequence of positive numbers having

the property lim
n→∞

bn =∞.

3. AUXILIARY RESULTS

In this section, we give some lemmas which will be used to prove our main
result.

Lemma 1. Let m be a nonnegative integer. Then we have

In,k(em) :=

∫ [k+1]qbn
[n]q

[k]qbn
[n]q

tmdR
q t = qkbn

[n]q

m∑
l=0

(
m
l

) ( [k]qbn
[n]q

)m−l
Cm,l(q, bn)

where em(t) := tm and

(3.1) Cm,l(q, bn) =
(

bn
[n]q

)l m−l∑
s=0

(
m−l
s

) (q−1)s

[l+s+1]q
.

Proof. From (2.3) and binomial formula it follows that

In,k(em) = (1− q) q
kbn

[n]q

∞∑
j=0

(
[k]qbn
[n]q

+
(

bn
[n]q

+ (q − 1)
[k]qbn
[n]q

)
qj
)m

qj

= (1− q) q
kbn

[n]q

m∑
i=0

∞∑
j=0

(qj)i+1
(
m
i

) (
bn

[n]q
+ (q − 1)

[k]qbn
[n]q

)i ( [k]qbn
[n]q

)m−i
= qkbn

[n]q

m∑
i=0

(
m
i

)
1

[i+1]q

(
bn

[n]q
+ (q − 1)

[k]qbn
[n]q

)i ( [k]qbn
[n]q

)m−i
= qkbn

[n]q

m∑
i=0

(
m
i

)
1

[i+1]q

(
[k]qbn
[n]q

)m−i i∑
l=0

(
i
l

) (
bn

[n]q

)l (
(q − 1)

[k]qbn
[n]q

)i−l
= qkbn

[n]q

m∑
i=0

(
m
i

)
1

[i+1]q

i∑
l=0

(
i
l

) ( [k]qbn
[n]q

)m−l (
bn

[n]q

)l
(q − 1)i−l.

Interchanging the order of summations over i and l and then taking s = i− l
in the obtained result, one may write

In,k(em) = qkbn
[n]q

m∑
l=0

m∑
i=l

(
m
i

)(
i
l

) ( [k]qbn
[n]q

)m−l (
bn

[n]q

)l
(q−1)i−l

[i+1]q

= qkbn
[n]q

m∑
l=0

m∑
i=l

m!
(m−i)!

1
l!(i−l)!

(
[k]qbn
[n]q

)m−l (
bn

[n]q

)l
(q−1)i−l

[i+1]q

= qkbn
[n]q

m∑
l=0

m−l∑
s=0

m!
l!(m−l)!

(m−l)!
s!(m−l−s)!

(
[k]qbn
[n]q

)m−l (
bn

[n]q

)l
(q−1)s

[l+s+1]q
=
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= qkbn
[n]q

m∑
l=0

(
m
l

) ( [k]qbn
[n]q

)m−l (
bn

[n]q

)l m−l∑
s=0

(
m−l
s

) (q−1)s

[l+s+1]q

= qkbn
[n]q

m∑
l=0

(
m
l

) ( [k]qbn
[n]q

)m−l
Cm,l(q, bn),

where each Cm,l(q, bn) is given by (3.1). Thus the proof is completed. �

Now, by means of the Lemma 1 we can evaluate Kn,q(em;x).

Lemma 2. Let m be a nonnegative integer. Then for the operator Kn,q(f ;x)
defined by (2.4), we have

Kn,q(em;x) =
m∑
l=0

(
m
l

)
Cm,l(q, bn)Sq

n(em−l;x),

where Cm,l(q, bn) and Sq
n are given by (3.1) and (2.1), respectively.

Proof. Taking into account the definitions of Kn,q and Sq
n we immediately

obtain that

Kn,q(em;x) = Eq

(
−[n]q

x
bn

) ∞∑
k=0

([n]qx)k

[k]q !(bn)k
[n]q
qkbn

In,k(em)

=

m∑
l=0

(
m
l

)
Cm,l(q, bn)

{
Eq

(
−[n]q

x
bn

) ∞∑
k=0

([n]qx)k

[k]q !(bn)k

(
[k]qbn
[n]q

)m−l}

=

m∑
l=0

(
m
l

)
Cm,l(q, bn)Sq

n(em−l;x).

�

Corollary 1. For the operator Kn,q(f ;x) defined by (2.4) we have

(3.2) Kn,q(e0;x) = C0,0(q, bn)

(3.3) Kn,q(e1;x) = C1,0(q, bn)x + C1,1(q, bn),

(3.4)

Kn,q(e2;x) = C2,0(q, bn)qx2 +
{

bn
[n]q

C2,0(q, bn) + 2C2,1(q, bn)
}
x + C2,2(q, bn)

Kn,q(e3;x) =C3,0(q, bn)q3x3 +
{

(q2 + 2q) bn
[n]q

C3,0(q, bn) + 3qC3,1(q, bn)
}
x2

+

{(
bn

[n]q

)2
C3,0(q, bn) + 3 bn

[n]q
C3,1(q, bn) + 3C3,2(q, bn)

}
x

+ C3,3(q, bn)

(3.5)
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and

Kn,q(e4;x) =C4,0(q, bn)q6x4 +
{

(q5 + 2q4 + 3q3) bn
[n]q

C4,0(q, bn)

+ 4q3C4,1(q, bn)
}
x3 +

{
(q3 + 3q2 + 3q)

(
bn

[n]q

)2
C4,0(q, bn)

+4(q2 + 2q) bn
[n]q

C4,1(q, bn) + 6C4,2(q, bn)
}
x2

+

{(
bn

[n]q

)3
C4,0(q, bn) + 4

(
bn

[n]q

)2
C4,1(q, bn)

+6 bn
[n]q

C4,2(q, bn) + 4C4,3(q, bn)
}
x + C4,4(q, bn).

(3.6)

In the equalities (3.2) − (3.6), the coefficients Cm,l(q, bn) for m = 0, 1, 2, 3, 4,
l = 0, 1, 2, 3, 4 are listed below:

C0,0(q, bn) = 1,

C1,0(q, bn) = 1 + q−1
[2]q

,

C1,1(q, bn) = 1
[2]q

bn
[n]q

,

C2,0(q, bn) = 1 + 2(q−1)
[2]q

+ (q−1)2

[3]q
,

C2,1(q, bn) =
(

1
[2]q

+ q−1
[3]q

)
bn

[n]q
,

C2,2(q, bn) = 1
[3]q

(
bn

[n]q

)2
,

C3,0(q, bn) = 1 + 3(q−1)
[2]q

+ 3(q−1)2

[3]q
+ (q−1)3

[4]q
,

C3,1(q, bn) =
(

1
[2]q

+ 2(q−1)
[3]q

+ (q−1)2

[4]q

)
bn

[n]q
,

C3,2(q, bn) =
(

1
[3]q

+ q−1
[4]q

)(
bn

[n]q

)2
,

C3,3(q, bn) = 1
[4]q

(
bn

[n]q

)3
,

C4,0(q, bn) = 1 + 4(q−1)
[2]q

+ 6(q−1)2

[3]q
+ 4(q−1)3

[4]q
+ (q−1)4

[5]q
,

C4,1(q, bn) =
(

1
[2]q

+ 3(q−1)
[3]q

+ 3(q−1)2

[4]q
+ (q−1)3

[5]q

)
bn

[n]q
,

C4,2(q, bn) =
(

1
[3]q

+ 2(q−1)
[4]q

+ (q−1)2

[5]q

)(
bn

[n]q

)2
,

C4,3(q, bn) =
(

1
[4]q

+ q−1
[5]q

)(
bn

[n]q

)3
,

C4,4(q, bn) = 1
[5]q

(
bn

[n]q

)4
.

Using Lemma 2 and (2.2), it can be proved by direct calculation. So we
omit it.
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In the light of Corollary 1 and the linearity of Kn,q, we now introduce the
following Lemma without proof.

Lemma 3. For the operator Kn,q(f ;x) defined by (2.4), we have

(3.7) Kn,q(ϕx;x) = {C1,0(q, bn)− 1}x + C1,1(q, bn)

Kn,q(ϕ
2
x;x) = {qC2,0(q, bn)− 2C1,0(q, bn) + 1}x2

+
{

bn
[n]q

C2,0(q, bn) + 2C2,1(q, bn)− 2C1,1(q, bn)
}
x + C2,2(q, bn)

(3.8)

and

Kn,q(ϕ
4
x;x) =

=
{
q6C4,0(q, bn)−4q3C3,0(q, bn)+6qC2,0(q, bn)−4C1,0(q, bn)+1

}
x4

+

{
(q5+2q4+3q3) bn

[n]q
C4,0(q, bn) + 4q3C4,1(q, bn)− 4(q2 + 2q) bn

[n]q
C3,0(q, bn)

−12qC3,1(q, bn)+6 bn
[n]q

C2,0(q, bn)+12C2,1(q, bn)−4C1,1(q, bn)

}
x3

+

{
(q3+ 3q2+3q)

(
bn

[n]q

)2
C4,0(q, bn)+4(q2 + 2q) bn

[n]q
C4,1(q, bn)

+6qC4,2(q, bn)− 4
(

bn
[n]q

)2
C3,0(q, bn)

− 12 bn
[n]q

C3,1(q, bn)− 12C3,2(q, bn) + 6C2,2(q, bn)

}
x2

+

{(
bn

[n]q

)3
C4,0(q, bn) + 4

(
bn

[n]q

)2
C4,1(q, bn) + 6 bn

[n]q
C4,2(q, bn)

+ 4C4,3(q, bn)− 4C3,3(q, bn)

}
x + C4,4(q, bn),

(3.9)

where ϕx := e1 − x and the coefficients Cm,l(q, bn) for m = 0, 1, 2, 3, 4, l =
0, 1, 2, 3, 4 are given as in Corollary 1.

Now, with the help of the Lemma 3, we can evaluate the following limits
which will be essential in the proof of the main theorem.

Lemma 4. Let (qn) be a sequence in (0, 1) such that lim
n→∞

qn = 1 and

lim
n→∞

bn
[n]qn

= 0. Assume also that there is some a > 0 and some n0 ∈ N
such that

a ≤ bn
(1−qn)[n]qn

for all n ≥ n0.
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Then for every x ∈ [0, a) we have

(3.10) lim
n→∞

[n]qn
bn

Kn,qn(ϕx;x) = 1
2

(3.11) lim
n→∞

[n]qn
bn

Kn,qn(ϕ2
x;x) = x

and

(3.12) lim
n→∞

[n]qn
bn

Kn,qn(ϕ4
x;x) = 0.

Proof. Using the fact lim
n→∞

bn =∞ from (3.7) it readily follows that

lim
n→∞

[n]qn
bn

Kn,qn(ϕx;x) = lim
n→∞

[n]qn
bn
{(C1,0(qn, bn)− 1)x + C1,1(qn, bn)}

= lim
n→∞

(
(qn−1)[n]qn

[2]qnbn
x + 1

[2]qn

)
= lim

n→∞

(
qnn−1

[2]qnbn
x + 1

[2]qn

)
= 1

2 .

Now from (3.8), we can write

Kn,qn(ϕ2
x;x) = {qC2,0(qn, bn)− 2C1,0(qn, bn) + 1}x2

+
{

bn
[n]q

C2,0(qn, bn)+2C2,1(qn, bn)−2C1,1(qn, bn)
}
x+C2,2(qn, bn)

=
{

(qn − 1)+ 2(qn−1)2

[2]qn
+ qn(qn−1)2

[3]qn

}
x2+

(
1+ 2(qn−1)

[2]qn
+ q2n−1

[3]qn

)
bn

[n]qn
x

+ 1
[3]qn

(
bn

[n]qn

)2

and

[n]qn
bn

Kn,qn(ϕ2
x;x)=

{
(qn − 1)+ 2(qn−1)2

[2]qn
+ qn(qn−1)2

[3]qn

}
[n]qn
bn

x2

+
(

1 + 2(qn−1)
[2]qn

+ q2n−1
[3]qn

)
x + 1

[3]qn

bn
[n]qn

=
{

(1 + 2(qn−1)
[2]qn

+ qn(qn−1)
[3]qn

}
qnn−1
bn

x2 +
(

1 + 2(qn−1)
[2]qn

+ q2n−1
[3]qn

)
x

+ 1
[3]qn

bn
[n]qn

.

Since lim
n→∞

qn = 1, lim
n→∞

bn =∞ and lim
n→∞

bn
[n]qn

= 0 this gives

lim
n→∞

[n]qn
bn

Kn,qn(ϕ2
x;x) = x.

Similarly it can be shown that (3.12) holds. �
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4. MAIN RESULT

Now, we can establish a Voronovskaya type result for the operator Kn,q(f ;x)
defined by (2.4).

Theorem 1. Let (qn) be a sequence in (0, 1) such that lim
n→∞

qn = 1 and

lim
n→∞

bn
[n]qn

= 0. Assume also that there is some a > 0 and some n0 ∈ N such

that

a ≤ bn
(1−qn)[n]qn

for all n ≥ n0.

Then for every x ∈ [0, a) and every function f ∈ CB[0,∞), the space of
continuous and bounded functions on [0,∞), which is twice differentiable at x
one has

lim
n→∞

[n]qn
bn

(Kn,qn(f ;x)− f(x)) = f ′(x)+xf ′′(x)
2 .

Proof. Follows by Lemma 4 and Theorem 1 in [17]. �
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