STRONG ASYMPTOTICS OF EXTREMAL POLYNOMIALS ON THE SEGMENT IN THE PRESENCE OF DENUMERABLE SET OF MASS POINTS

RABAH KHALDI* and AHCENE BOUCENNA*

Abstract

The strong asymptotics of the monic extremal polynomials with respect to a $L_{p}(\sigma)$ norm are studied. The measure σ is concentrated on the segment $[-1,1]$ plus a denumerable set of mass points which accumulate at the boundary points of $[-1,1]$ only. Under the assumptions that the mass points satisfy Blaschke's condition and that the absolutely continuous part of σ satisfies Szegö's condition.

MSC 2000. 42C05, 30E15, 30E10.
Keywords. Orthogonal polynomials, asymptotic behavior.

1. INTRODUCTION

Let $0<p<\infty$ and σ be a positive Borel measure supported on an infinite compact set E of the complex plane. We can then define for $n=1,2,3, \ldots$.

$$
m_{n, p}(\sigma):=\min _{Q \in \mathcal{P}_{n-1}}\left\|z^{n}-Q(z)\right\|_{L_{p}(\sigma)}
$$

where \mathcal{P}_{n-1} denotes the class of complex polynomials of degree at most $n-1$. It is easily seen that there is at least one monic polynomial $T_{n, p}(\sigma, z)=z^{n}+\ldots \in \mathcal{P}_{n}$ such that

$$
\begin{equation*}
\left\|T_{n, p}(\sigma, z)\right\|_{L_{p}(\sigma)}=m_{n, p}(\sigma) \tag{1}
\end{equation*}
$$

We call $T_{n, p}(\sigma, z)$ an L_{p} extremal polynomial with respect to the measure σ. We define also the nomalized extremal polynomials

$$
P_{n, p}(\sigma, z):=T_{n, p}(\sigma, z) / m_{n, p}(\sigma)
$$

$n=1,2,3, \ldots$, satisfying

$$
\left\|P_{n, p}(\sigma, z)\right\|_{L_{p}(\sigma)}=1
$$

*Laboratory LASEA, Faculty of Sciences, University of Annaba, B.P.12, 23000, Annaba, Algeria, e-mail: \{rkhadi@yahoo.fr, ahcene03081977@yahoo.fr\}.

When $p=2, P_{n, 2}(\sigma, z)=\kappa_{n} z^{n}+\ldots \in \mathcal{P}_{n}\left(\kappa_{n}=1 / m_{n, 2}(\sigma)>0\right)$ is just the orthonormal polynomial of degree n with respect to the measure σ i.e.

$$
\left(P_{n, 2}, z^{k}\right)_{L_{p}(\sigma)}:=\int_{E} P_{n, 2}(\xi) \bar{\xi}^{k} \mathrm{~d} \sigma(\xi)=\kappa_{n}^{-1} \delta_{n k}, k=0,1, \ldots, n .
$$

A special area of research in this subject has been the study of the asymptotic behavior of $T_{n, p}(z)$ when n tends to infinity. There exists an extensive literature on orthogonal polynomials, but not enough on extremal polynomials. Beginning by Geronimus results in 1952 [1], who considered the case where the support E of the measure is a rectifiable Jordan curve, in particular, Widom [11] investigated the case $p=\infty$. Then, in 1987, Lubinsky and Saff [7] proved the asymptotic of $m_{n, p}(\sigma)$ and $T_{n, p}$ outside the segment $[-1,1]$ under a general condition on the weight function. Another result on the zero distributions of the extremal polynomials on the unit circle, was presented by X. Li and K. Pan in [6]. In 1992, Kaliaguine [2], obtained the power asymptotic for extremal polynomials when E is a rectifiable Jordan curve plus a finite set of mass points and in 2004, Khaldi presented in [4] an extension of Kaliaguine's results, where he studied the case of a measure supported on a rectifiable Jordan curve plus an infinite set of mass points. Recently, Khaldi [5], solved this problem for a measure supported on the segment $[-1,1]$ plus a finite set of mass points.

We mentioned that in the special case $p=2$ of orthogonal polynomials, Peherstorfer and Yudiskii in [8] established the asymptotic for such polynomial on a segment $[-2,+2]$ plus a infinite set of mass points.

In this paper, we generalize the work of Peherstorfer and Yudiskii in [8] in the case where $p \geq 2$, more precisely we establish the strong asymptotic of the L_{p} extremal polynomials $\left\{T_{n, p}(\sigma, z)\right\}$ associated with the measure σ which has a decomposition of the form $\sigma=\alpha+\gamma$, where α is a measure with $\operatorname{supp}(\alpha)=[-1,1]$, absolutely continuous with respect to the Lebesgue measure on the segment $[-1,1]$ i.e.

$$
\begin{equation*}
\mathrm{d} \alpha(x)=\rho(x) \mathrm{d} x, \quad \rho \geq 0, \quad \int_{-1}^{+1} \rho(x) \mathrm{d} x<+\infty, \tag{2}
\end{equation*}
$$

satisfying Szegő's condition and γ is a discrete measure supported on the infinite set of points $\left\{z_{k}\right\}_{k=1}^{\infty} \subset \mathbb{C} \backslash[-1,+1]$ i.e.

$$
\begin{equation*}
\gamma=\sum_{k=1}^{\infty} A_{k} \delta\left(z-z_{k}\right) ; \quad A_{k}>0, \quad \sum_{k=1}^{\infty} A_{k}<\infty . \tag{3}
\end{equation*}
$$

2. PRELIMINARY MATERIALS

2.1. Hardy space and Szegő function. Let $E=[-1,1], \Omega=\{\mathbb{C} \backslash E\} \cup\{\infty\}$, $G=\{w \in \mathbb{C}:|w|>1\} \cup\{\infty\}$. The conformal mapping $\Phi: \Omega \rightarrow G$ is defined by $\Phi(z)=z+\sqrt{z^{2}-1}$, its inverse $\Psi(w)=\frac{1}{2}\left(w+\frac{1}{w}\right)$, and the capacity $C(E)=\lim _{z \rightarrow \infty}\left(\frac{z}{\Phi(z)}\right)=\frac{1}{2}$.

Let ρ be an integrable non negative weight function on E satisfying the Szegő's condition

$$
\begin{equation*}
\int_{-1}^{1} \frac{\log \rho(x)}{\sqrt{1-x^{2}}} \mathrm{~d} x>-\infty . \tag{4}
\end{equation*}
$$

Then we can easily see that the weight function λ defined on the unit circle by

$$
\lambda\left(e^{i \theta}\right)=\left\{\begin{array}{cc}
\rho(\xi) /\left|\Phi_{-}^{\prime}(\xi)\right|, \quad \xi=\Psi\left(e^{i \theta}\right), \pi<\theta<2 \pi \\
\rho(\xi) /\left|\Phi_{+}^{\prime}(\xi)\right|, \quad \xi=\Psi\left(e^{i \theta}\right), 0<\theta<\pi
\end{array}\right.
$$

satisfies the following usual Szegő's condition

$$
\int_{-\pi}^{\pi} \log \left(\lambda\left(e^{\mathrm{i} \theta}\right)\right) \mathrm{d} \theta>-\infty
$$

Thus the Szegő function associated with the unit circle $T=\{t:|t|=1\}$ and the weight function λ is defined by

$$
\begin{equation*}
D(w)=\exp \left\{-\frac{1}{2 p \pi} \int_{0}^{2 \pi} \log (\rho(\cos \theta)|\sin \theta|) \frac{1+w e^{-i \theta}}{1-w e^{-i \theta}} \mathrm{~d} \theta\right\},|w|<1, \tag{5}
\end{equation*}
$$

satisfying the following properties:

1) D is analytic on the open unit disk $U=\{w:|w|<1\}, D(w) \neq 0$, $\forall w \in U$, and $D(0)>0$.
2) D has boundary values, almost everywhere on the unit circle T such that

$$
\lambda\left(e^{\mathrm{i} \theta}\right)=\rho(\cos \theta)|\sin \theta|=|D(t)|^{-p}
$$

a.e. for $t=e^{\mathrm{i} \theta} \in T$.

Definition 2.1. An analytic function f on Ω, belongs to $H^{p}(\Omega, \rho)$ if and only if $f(\Psi(w)) / D(1 / w) \in H^{p}(G)$, where $H^{p}(G)$ is the usual Hardy space associated with G, the exterior of the unit circle.

Any function $f \in H^{p}(\Omega, \rho)$ has boundary values f_{+}and f_{-}on both sides of E, and $f_{+}, f_{-} \in L_{p}(\alpha)$.

In the Hardy space $H^{p}(\Omega, \rho)$ we will define

$$
\|f\|_{H^{p}(\Omega, \rho)}^{p}=\oint_{E}|f(x)|^{p} \rho(x) \mathrm{d} x=\lim _{R \rightarrow 1^{+}} \frac{1}{\pi R} \int_{E_{R}} \frac{|f(z)|^{p}}{|D(z)|^{p}}\left|\Phi^{\prime}(z)\right||\mathrm{d} z|,
$$

where $E_{R}=\{z \in \Omega:|\Phi(z)|=R\}$.
2.2. Notations and lemmas. Let $1 \leq p<\infty$. We denote by $\mu(\rho)$ and $\mu(\sigma)$ respectively the extremal values of the following problems:

$$
\begin{equation*}
\mu(\rho)=\inf \left\{\|\varphi\|_{H^{p}(\Omega, \rho)}^{p}: \varphi \in H^{p}(\Omega, \rho), \varphi(\infty)=1\right\}, \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\mu(\sigma)=\inf \left\{\|\varphi\|_{H^{p}(\Omega, \rho)}^{p}: \varphi \in H^{p}(\Omega, \rho), \varphi(\infty)=1, \varphi\left(z_{k}\right)=0, k=1,2, \ldots\right\} \tag{7}
\end{equation*}
$$

We denote by φ^{*} and ψ^{*} the extremal functions of the problems (6) and (7) respectively.

Notice that $\varphi^{*}(z)=D(1 / \Phi(z)) / D(0)$ is an extremal function of the problem (6) and $\mu(\rho)=2 /[D(0)]^{p}($ see $[3])$.

Lemma 2.2. The extremal functions φ^{*} and ψ^{*} are related by $\psi^{*}=\frac{1}{B(\infty)} B \varphi^{*}$ and $\mu(\sigma)=[B(\infty)]^{-p} \mu(\rho)$, where

$$
\begin{equation*}
B(z)=\prod_{k=1}^{\infty} \frac{\Phi(z)-\Phi\left(z_{k}\right)}{\Phi(z) \Phi\left(z_{k}\right)-1} \frac{\left|\left(z_{k}\right)\right|}{\Phi\left(z_{k}\right)} \tag{8}
\end{equation*}
$$

is a Blaschke product.
Proof. This lemma is proved for a curve in [4, p. 374]. This proof is valid in this case, too.

Definition 2.3. A measure $\sigma=\alpha+\sum_{k=1}^{\infty} A_{k} \delta\left(z-z_{k}\right)$ is said to belong to a class A, if the absolutely continuous part α satisfies the Szegö's condition (4) and the discrete part satisfies the the Blaschke's condition

$$
\begin{equation*}
\left(\sum_{k=1}^{\infty}\left|\Phi\left(z_{k}\right)\right|-1\right)<\infty \tag{9}
\end{equation*}
$$

Lemma 2.4. Let $\sigma=\alpha+\sum_{k=1}^{\infty} A_{k} \delta\left(z-z_{k}\right)$ be a measure which belongs to a class A, then we have

$$
\limsup _{n \rightarrow \infty} 2^{n} m_{n, p}(\sigma) \leq[\mu(\sigma)]^{1 / p}
$$

Proof. This lemma is proved for $p=2$ by Peherstorfer and Yudiskii in [8]. We will prove this lemma for $p>2$ following the same ideas as in [8].

Without loss of generality, we assume the boundness from below of the weight function $\frac{1}{|D|}$, so $\frac{1}{|D|} \geq 2$. Let $\frac{1}{\left|D_{\varepsilon}\right|}$ be a smooth function such that $\frac{1}{\left|D_{\varepsilon}\right|} \geq 1$ and

$$
\begin{equation*}
\int_{T}\left|\frac{1}{\left|D_{\varepsilon}\right|^{p}}-\frac{1}{\left|D_{\varepsilon}\right|^{p}}\right| \mathrm{d} m<\epsilon \tag{10}
\end{equation*}
$$

for $\varepsilon>0$. Let us choose $\eta>0$ such that $\max \frac{1}{\left|D_{\varepsilon}\right|} \leq \frac{1}{\eta}$ and denote by $E_{ \pm}$ and $\widetilde{E}_{ \pm}$the vicinities of ± 1 of the form

$$
E_{ \pm}=\left\{t \in T,|t \pm 1| \leq \frac{\eta}{2}\right\}, \quad \widetilde{E}_{ \pm}=\{t \in T,|t \pm 1| \leq \eta\} .
$$

Introduce a smooth function as follows

$$
F_{\varepsilon, \eta}(t)= \begin{cases}\left|D_{\varepsilon}(t)\right|, & t \in T \backslash \widetilde{E}_{+} \cup \widetilde{E}_{-} \\ |t \pm 1|^{2}, & t \in E_{ \pm}\end{cases}
$$

and for $t \in \widetilde{E}_{ \pm} \backslash E_{ \pm}$is such that

$$
|t \pm 1|^{2} \leq\left|F_{\varepsilon,} \quad \eta(t)\right| \leq\left|D_{\varepsilon}(t)\right| .
$$

By the above settings it yields

$$
\begin{aligned}
0 & \leq \log \frac{1}{F_{\varepsilon, \eta}(0)}-\log \frac{1}{D_{\varepsilon}(0)} \leq \int_{\widetilde{E}_{+} \cup \widetilde{E}_{-}} \log \left|\frac{D_{\varepsilon}(t)}{F_{\varepsilon, \eta}(t)}\right| \mathrm{d} m \\
& \leq \int_{\widetilde{E}_{+}} \log \frac{1}{|t+1|^{2}} \mathrm{~d} m+\int_{\widetilde{E}_{-}} \log \frac{1}{|t-1|^{2}} \mathrm{~d} m=o(1), \quad \text { as } \eta \rightarrow 0
\end{aligned}
$$

In view of (10), we get

$$
\begin{equation*}
F_{\varepsilon, \eta}(0)=D(0)+o(1) ; \quad \varepsilon \rightarrow 0, \eta \rightarrow 0 \tag{11}
\end{equation*}
$$

Let $b(t)$ be the Blaschke product

$$
b(t)=\prod_{k=1}^{\infty} \frac{t-t_{k}}{t \overline{t k_{k}}-1} \frac{\overline{t_{k}}}{\left|t_{k}\right|}
$$

with $t_{k}=\frac{1}{\Phi\left(z_{k}\right)}, k=0,1,2, \ldots$. We see that $b(t)$ oscillates only in vicinities of the points ± 1, moreover, we have

$$
\sup \left\{\left|b^{\prime}(t)\right| t^{2}-\left.1\right|^{2}, t \in T \mid\right\}<\infty
$$

Consequently, $\left(b F_{\varepsilon, \eta}\right)^{\prime}=b^{\prime} F_{\varepsilon, \eta}+b F_{\varepsilon, \eta}^{\prime} \in L_{\infty}$, and the Fourier series of $b F_{\varepsilon, \eta}$ converges to this function uniformly on T. Let

$$
\left(b F_{\varepsilon, \eta}\right)(t)=Q_{n, \varepsilon, \eta}(t)+t^{n+1} g_{n, \varepsilon, \eta}(t), g_{n, \varepsilon, \eta} \in H^{\infty}
$$

Putting

$$
2^{n} P_{n, \varepsilon, \eta}(z)=2^{n} P_{n, \varepsilon, \eta}(\Psi(\xi))=\frac{\zeta^{-n} Q_{n, \varepsilon, \eta}(\zeta)+\zeta^{n} Q_{n, \varepsilon, \eta}\left(\frac{1}{\zeta}\right)}{2^{1 / p}}
$$

We have the following estimate of the norm of the polynomial $2^{n} P_{n, \varepsilon, \eta}(z)$ for the absolutely continuous part of the measure,

$$
\left\|\frac{2^{n} P_{n, \varepsilon, \eta}(z(t))}{D_{\varepsilon}(t)}\right\|_{L_{p}} \leq\left\|\frac{t^{-n} F_{\varepsilon, \eta}(t) b(t)+t^{n} F_{\varepsilon, \eta}(\bar{t}) b(\bar{t})}{D_{\varepsilon}(t) 2^{1 / p}}\right\|_{L_{p}}+\left\|\frac{t g_{n, \varepsilon, \eta}(t)+\bar{t} g_{n, \varepsilon, \eta}(\bar{t})}{D_{\varepsilon}(t) 2^{1 / p}}\right\|_{L_{p}}
$$

From the fact that $\left\|g_{n, \varepsilon, \eta}\right\|_{L_{\infty}} \rightarrow 0$ as $n \rightarrow \infty$ and $\left|\frac{F_{\varepsilon, \eta}(z(t))}{D_{\varepsilon}(t)}\right| \leq 1$, we conclude

$$
\left\|\frac{2^{n} P_{n, \varepsilon, \eta}(z(t))}{D_{\varepsilon}(t)}\right\|_{L_{p}} \leq 1+o(1)
$$

Since $P_{n, \varepsilon, \eta}$ is uniformly bounded, using (10), we get

$$
\begin{equation*}
\left\|\frac{2^{n} P_{n, \varepsilon, \eta}(z(t))}{D(t)}\right\|_{L_{p}} \leq 1+C \varepsilon+o(1) \tag{12}
\end{equation*}
$$

Finally by using the extremal property of the polynomials $T_{n, p}$ and the fact that $P_{n, \varepsilon, \eta}(z)=\frac{\left(b F_{\varepsilon, \eta}\right)(0)}{2^{1 / p}} z^{n}+\ldots$ we get with the help of (12)

$$
2^{n} m_{n, p}(\sigma) \leq \frac{\left\|2^{n} P_{n, \varepsilon, \eta}\right\|_{L_{p}(\sigma)}}{\left(b F_{\varepsilon, \eta}\right)(0) / 2^{1 / p}} \leq \frac{1+C \varepsilon+o(1)}{\left(b F_{\varepsilon, \eta}\right)(0) / 2^{1 / p}}
$$

From here, lemma 1 and (11), it yields

$$
\limsup _{n \rightarrow \infty} 2^{n} m_{n, p}(\sigma) \leq \frac{2^{1 / p}}{b(0) D(0)}=\frac{[\mu(\rho)]^{1 / p}}{B(\infty)}=[\mu(\sigma)]^{1 / p}
$$

The proof is complete.

Now we give the main result of this paper:
TheOrem 2.5. Let a measure $\sigma=\alpha+\sum_{k=1}^{\infty} A_{k} \delta\left(z-z_{k}\right)$ be a measure which belongs to a class A. Associate with the measure σ the functions D, B and the extremal values $m_{n, p}(\sigma)$ and $\mu(\sigma)$ given respectively by (5), (8), (1) and (7). Then the monic extremal polynomials $T_{n, p}(\sigma, z)$ have the following asymptotic behavior as $n \rightarrow \infty$
(1) $\lim 2^{n} m_{n, p}(\sigma)=[\mu(\sigma)]^{1 / p}$.
(2) $T_{n, p}(\sigma, z)=\{\Phi(z) / 2\}^{n} B(z) \frac{D(1 / \Phi(z))}{D(0)}\left[1+\chi_{n}(z)\right]$, where $\chi_{n}(z) \rightarrow 0$ uniformly on compact subsets of Ω.

Proof. We recall that by putting $t_{k}=\frac{1}{\Phi\left(z_{k}\right)}, \xi=\Psi(t)$ where $t=e^{i \theta}$, we get $B(\xi)=b(\bar{t})$ and $B(\infty)=b(0)=\prod_{k=1}^{\infty}\left|\frac{1}{\Phi\left(z_{k}\right)}\right|$, with $b(t)=\prod_{k=1}^{\infty} \frac{t-t_{k}}{\overline{t t_{k}}-1} \frac{\overline{t_{k}}}{\left|t_{k}\right|}$.

Now we consider the following integral

$$
I_{n}=\int_{0}^{2 \pi}\left|\frac{2^{1 / p} t^{n} T_{n, p}(\Psi(t))}{m_{n, p}(\sigma) D(t)}-\left(b(t)+\frac{t^{2 n} b(\bar{t}) D(\bar{t})}{D(t)}\right)\right|^{2} \frac{\mathrm{~d} \theta}{2 \pi}
$$

and transform it in a standard way as the following sum

$$
\begin{align*}
I_{n}= & \int_{0}^{2 \pi}\left|\frac{2^{1 / p} t^{n} T_{n, p}(\Psi(t))}{m_{n, p}(\sigma) D(t)}\right|^{2} \frac{\mathrm{~d} \theta}{2 \pi}+\int_{0}^{2 \pi}\left|b(t)+\frac{t^{2 n} b(\bar{t}) D(\bar{t})}{D(t)}\right|^{2} \frac{\mathrm{~d} \theta}{2 \pi} \\
& -2 \mathcal{R} e \int_{0}^{2 \pi} \frac{2^{1 / p} t^{n} T_{n, p}(\Psi(t))}{m_{n, p}(\sigma) D(t)} \overline{\left(b(t)+\frac{t^{2 n} b(\bar{t}) D(\bar{t})}{D(t)}\right)} \frac{\mathrm{d} \theta}{2 \pi} \tag{13}
\end{align*}
$$

Then, applying the Hölder inequality to the first term of (13) for $p \geq 2$ we get

$$
\begin{align*}
\int_{0}^{2 \pi}\left|\frac{2^{1 / p} t^{n} T_{n, p}(\Psi(t))}{m_{n, p}(\sigma) D(t)}\right|^{2} \frac{\mathrm{~d} \theta}{2 \pi} & \leq\left(\int_{0}^{2 \pi}\left|\frac{2^{1 / p} t^{n} T_{n, p}(\Psi(t))}{m_{n, p}(\sigma) D(t)}\right|^{p} \frac{\mathrm{~d} \theta}{2 \pi}\right)^{2 / p}\left(\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{2 \pi}\right)^{1-2 / p} \\
& =\left[\left(\int_{0}^{2 \pi}\left|\frac{T_{n, p}(\Psi(t))}{m_{n, p}(\sigma)}\right|^{p}|D(t)|^{-p} \frac{\mathrm{~d} \theta}{\pi}\right)^{1 / p}\right]^{2} \\
& \leq\left[\frac{1}{m_{n, p}(\sigma)}\left(\frac{2}{\pi} \int_{-1}^{+1}\left|T_{n, p}(x)\right|^{p} \rho(x) \mathrm{d} x\right)^{1 / p}\right]^{2} \leq 2 \tag{14}
\end{align*}
$$

For the second term of (13) we transform it as the following sum

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left|b(t)+\frac{t^{2 n} b(\bar{t}) D(\bar{t})}{D(t)}\right|^{2} \frac{\mathrm{~d} \theta}{2 \pi}= \\
& =\int_{0}^{2 \pi}|b(t)|^{2} \frac{\mathrm{~d} \theta}{2 \pi}+\int_{0}^{2 \pi}|b(\bar{t})|^{2} \frac{d \theta}{2 \pi}+2 \mathcal{R} e \int_{0}^{2 \pi} t^{-2 n} b(t) \overline{\left(\frac{b(\bar{t}) D(\bar{t})}{D(t)}\right)} \frac{\mathrm{d} \theta}{2 \pi} \\
& =2+2 \mathcal{R} e \int_{0}^{2 \pi} t^{-2 n} b(t) \overline{\left(\frac{b(\bar{t}) D(\bar{t})}{D(t)}\right)} \frac{\mathrm{d} \theta}{2 \pi}
\end{aligned}
$$

Since the last term approaches 0 when n tends to ∞ then we have

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\frac{b(t)}{D(0)}+\frac{t^{2 n} b(\bar{t}) D(\bar{t})}{D(0) D(t)}\right|^{2} \frac{\mathrm{~d} \theta}{2 \pi}=2+\alpha_{n} \tag{15}
\end{equation*}
$$

where $\alpha_{n} \rightarrow 0$, as $n \rightarrow \infty$.
In order to estimate the last integral of (13), we transform it as follows

$$
\begin{aligned}
J_{n} & =\int_{0}^{2 \pi} \frac{2^{1 / p} t^{n} T_{n, p}(\Psi(t))}{m_{n, p}(\sigma) D(t)} \overline{\left(b(t)+\frac{t^{2 n} b(\bar{t}) D(\bar{t})}{D(t)}\right)} \frac{\mathrm{d} \theta}{2 \pi}= \\
& =\int_{0}^{2 \pi} \frac{2^{1 / p} t^{n} T_{n, p}(\Psi(t))}{m_{n, p}(\sigma) D(t)} \overline{b(t)} \frac{d \theta}{2 \pi}+\int_{0}^{2 \pi} \frac{2^{1 / p} t^{n} T_{n, p}(\Psi(t))}{m_{n, p}(\sigma) D(t)} \overline{\left(\frac{t^{n} b(\bar{t}) D(\bar{t})}{D(t)}\right) \frac{\mathrm{d} \theta}{2 \pi}} \\
& =2 \int_{0}^{2 \pi} \frac{2^{1 / p} t^{n} T_{n, p}(\Psi(t))}{m_{n, p}(\sigma) D(t)} \overline{b(t)} \frac{\mathrm{d} t}{2 \pi \mathrm{i} t} \\
& =2 \int_{0}^{2 \pi} \frac{2^{1 / p} t^{n} T_{n, p}(\Psi(t))}{m_{n, p}(\sigma) D(t)}\left(\overline{b(t)}-\overline{b_{l}(t)}+\overline{b_{l}(t)}\right) \frac{\mathrm{d} t}{2 \pi \mathrm{i} t} \\
(16) & =2 \int_{0}^{2 \pi} \frac{2^{1 / p} t^{n} T_{n, p}(\Psi(t))}{m_{n, p}(\sigma) D(t)}\left(\overline{b(t)}-\overline{b_{l}(t)}\right) \frac{\mathrm{d} t}{2 \pi \mathrm{i} t}+2 \int_{0}^{2 \pi} \frac{2^{1 / p} t^{n} T_{n, p}(\Psi(t))}{m_{n, p}(\sigma) D(t)} \overline{b_{l}(t)} \frac{\mathrm{d} t}{2 \pi \mathrm{i} t}
\end{aligned}
$$

where $b_{l}(t)=\prod_{k=1}^{l} \frac{t-t_{k}}{\overline{t_{k}}-1} \frac{\overline{t_{k}}}{\left|t_{k}\right|}$ be the finite Blaschke product with zeros $t_{k}=\frac{1}{\Phi\left(z_{k}\right)}$, $k=1,2, \ldots l$.

By applying the Hölder inequality to the first term of (16) we get

$$
\begin{aligned}
& \left|\int_{0}^{2 \pi} \frac{2^{1 / p} t^{n} T_{n, p}(\Psi(t))}{m_{n, p}(\sigma) D(t)}\left(\overline{b(t)}-\overline{b_{l}(t)}\right) \frac{\mathrm{d} t}{2 \pi i t}\right| \leq \\
\leq & \left(\int_{0}^{2 \pi}\left|\frac{2^{1 / p} t^{n} T_{n, p}(\Psi(t))}{m_{n, p}(\sigma) D(t)}\right|^{p} \frac{\mathrm{~d} \theta}{2 \pi}\right)^{\frac{1}{p}}\left(\int_{0}^{2 \pi}\left|b(t)-b_{l}(t)\right|^{q} \frac{\mathrm{~d} \theta}{2 \pi}\right)^{\frac{1}{q}} \\
= & \frac{2^{1 / p}}{m_{n, p}(\sigma)}\left(\int_{0}^{2 \pi}\left|T_{n, p}(\Psi(t))\right|^{p}|D(t)|^{-p} \frac{\mathrm{~d} \theta}{2 \pi}\right)^{\frac{1}{p}}\left(\int_{0}^{2 \pi}\left|b(t)-b_{l}(t)\right|^{q} \frac{\mathrm{~d} \theta}{2 \pi}\right)^{\frac{1}{q}} \\
= & \frac{2^{1 / p+1}}{m_{n, p}(\sigma)}\left(\int_{-1}^{+1}\left|T_{n, p}(x)\right|^{p} \rho(x) \mathrm{d} x\right)^{\frac{1}{p}}\left(\int_{0}^{2 \pi}\left|b(t)-b_{l}(t)\right|^{q} \frac{\mathrm{~d} \theta}{2 \pi}\right)^{\frac{1}{q}} \leq
\end{aligned}
$$

$$
\begin{equation*}
\leq 2^{1 / p+1}\left(\int_{0}^{2 \pi}\left|b(t)-b_{l}(t)\right|^{q} \frac{\mathrm{~d} \theta}{2 \pi}\right)^{\frac{1}{q}} \tag{17}
\end{equation*}
$$

For the last term of (16) by using the residue Theorem we get

$$
\begin{align*}
& \int_{T} \frac{t^{n} T_{n, p}(\Psi(t))}{m_{n, p}(\sigma) D(t)} \overline{b_{l}(t)} \frac{\mathrm{d} t}{2 \pi \mathrm{it}}=\int_{T} \frac{t^{n} T_{n, p}(\Psi(t))}{m_{n, p}(\sigma) D(t) b_{l}(t)}\left|b_{l}(t)\right|^{2} \frac{\mathrm{~d} t}{2 \pi \mathrm{i} t} \\
= & \frac{2^{1 / p}}{2^{n} m_{n, p}(\sigma) D(0) b_{l}(0)}+\frac{2^{1 / p}}{m_{n, p}(\sigma)} \sum_{k=1}^{l} \frac{t_{k}^{n-1} T_{n, p}\left(z_{k}\right)}{D\left(t_{k}\right) b_{l}^{\prime}\left(t_{k}\right)} \tag{18}
\end{align*}
$$

the last term of (18) can be estimated as

$$
\begin{aligned}
& \frac{1}{m_{n, p}(\sigma)}\left|\sum_{k=1}^{l} \frac{t_{k}^{n-1} T_{n, p}\left(z_{k}\right)}{D\left(t_{k}\right) b_{l}^{\prime}\left(t_{k}\right)}\right| \leq \\
& \leq \frac{1}{m_{n, p}(\sigma)}\left[\sum_{k=1}^{l}\left|T_{n, p}\left(z_{k}\right)\right|^{p} A_{k}\right]^{1 / p}\left[\sum_{k=1}^{l}\left(\left|\frac{1}{D\left(t_{k}\right) b_{l}^{\prime}\left(t_{k}\right)}\right| \frac{\left|t_{k}^{n-1}\right|}{A_{k}^{1 / p}}\right)^{q}\right]^{1 / q} \\
& \leq\left[\sum_{k=1}^{l}\left(\left|\frac{1}{D\left(t_{k}\right) b_{l}^{\prime}\left(t_{k}\right)}\right| \frac{\left|t_{k}^{n-1}\right|}{A_{k}^{1 / p}}\right)^{q}\right]^{1 / q}, \frac{1}{p}+\frac{1}{q}=1
\end{aligned}
$$

So, (18) becomes

$$
\int_{0}^{2 \pi} \frac{2^{1 / p} t^{n} T_{n, p}(\Psi(t))}{m_{n, p}(\sigma) D(t)} \overline{b_{l}(t)} \frac{\mathrm{d} t}{2 \pi \mathrm{i} t}=\frac{2^{1 / p}}{2^{n} m_{n, p}(\sigma) D(0) b_{l}(0)}+\beta_{n}
$$

where $\beta_{n} \rightarrow 0$, as $n \rightarrow \infty$
So, first choosing l big enough and then n we conclude that

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{t^{n} T_{n, p}(\Psi(t))}{m_{n, p}(\sigma) D(t)} \frac{\mathrm{d} \theta}{2 \pi}=\frac{2^{1 / p}}{2^{n} m_{n, p}(\sigma) D(0) b(0)}+o(1) \tag{19}
\end{equation*}
$$

Substituting (14),(15) and (19) we obtain

$$
\begin{equation*}
0 \leq I_{n} \leq 2+2+\alpha_{n}-\frac{4\left(2^{1 / p}\right)}{2^{n} m_{n, p}(\sigma) D(0) b(0)}+o(1) \tag{20}
\end{equation*}
$$

where $\alpha_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Finally using the previous estimate we get

$$
\liminf _{n \rightarrow \infty} 2^{n} m_{n, p}(\sigma) \geq \frac{2^{1 / p}}{D(0) b(0)}=\frac{[\mu(\rho)]^{1 / p}}{B(\infty)}=[\mu(\sigma)]^{1 / p}
$$

This with Lemma 2 prove the first statement of Theorem.
Now, to prove (2) of Theorem, first we estimate the following integral

$$
\begin{align*}
& \left|\int_{T}\left[\frac{2^{1 / p} t^{n} T_{n, p}(\Psi(t))}{m_{n, p}(\sigma) D(t)}-\left(b(t)+\frac{t^{2 n} b(\bar{t}) D(\bar{t})}{D(t)}\right)\right] \frac{1}{1-w \bar{t}} \frac{\mathrm{~d} t}{2 \pi \mathrm{it}}\right|^{2} \leq \\
& \leq \frac{1}{1-|w|} \int_{T}\left|\frac{2^{1 / p} t^{n} T_{n, p}(\Psi(t))}{m_{n, p}(\sigma) D(t)}-\left(b(t)+\frac{t^{2 n} b(\bar{t}) D(\bar{t})}{D(t)}\right)\right|^{2} \frac{\mathrm{~d} \theta}{2 \pi}=\frac{1}{1-|w|} I_{n} \tag{21}
\end{align*}
$$

As an immediate consequence of (20) and the first statement of Theorem, we get

$$
\lim _{n \rightarrow \infty} I_{n}=0 .
$$

So, from (21) yields

$$
\begin{equation*}
\int_{T}\left[\frac{2^{1 / p} t^{n} T_{n, p}(\Psi(t))}{m_{n, p}(\sigma) D(t)}-\left(b(t)+\frac{t^{2 n} b(\bar{t}) D(\bar{t})}{D(t)}\right)\right] \frac{1}{1-w \bar{t}} \frac{\mathrm{~d} t}{2 \pi \mathrm{i} t}=o(1) \tag{22}
\end{equation*}
$$

On the other hand we have

$$
\begin{align*}
& \int_{T}\left[\frac{2^{1 / p} t^{n} T_{n, p}(\Psi(t))}{m_{n, p}(\sigma) D(t)}-\left(b(t)+\frac{t^{2 n} b(\bar{t}) D(\bar{t})}{D(t)}\right)\right] \frac{1}{1-w \bar{t}} \frac{\mathrm{~d} t}{2 \pi i t}= \\
& =\int_{T} \chi_{n}(\Psi(t)) \frac{1}{1-w t} \frac{\mathrm{~d} t}{2 \pi i t}-\int_{T} \frac{t^{2 n} b(\bar{t}) D(\bar{t})}{D(t)} \frac{1}{1-w t} \frac{\mathrm{~d} t}{2 \pi i t} . \tag{23}
\end{align*}
$$

Applying the Cauchy formula to the first term in (23), we can see that

$$
\begin{equation*}
\int_{T} \chi_{n}(\Psi(t)) \frac{1}{1-w \bar{t}} \frac{\mathrm{~d} t}{2 \pi \mathrm{i} t}=\chi_{n}(z), z=\Psi(w) \in \Omega \tag{24}
\end{equation*}
$$

Since the last term in (23) approaches 0 as $n \rightarrow \infty$, we conclude from (22), (23) and (24), the second statement of Theorem.

REFERENCES

[1] Geronimus, L., On some extremal problem in $L_{\sigma}^{(p)}$ spaces, Math. Sbornik, 31, pp. 3-23, 1952 (in Russian).
[2] Kaliaguine, V.A., On Asymptotics of L_{p} extremal polynomials on a complex curve $(0<p<\infty)$, J. Approx. Theory, 74, pp. 226-236, 1993.
[3] Kaliaguine, V.A., A note on the asymptotics of orthogonal polynomials on a complex arc: the case of a measure with a discrete part, J. Approx. Theory, 80, pp. 138-145 1995.
[4] Khaldi, R., Strong asymptotics for L_{p} extremal polynomials off a complex curve, J. Appl. Math., 2004, no 5, pp. 371-378, 2004.
[5] Khaldi, R., Szegő asymptotics of extremal polynomials on the segment $[-1,+1]$: the case of a measure with finite discrete part, Georgian Math. J., 14, no. 4, pp. 673-680, 2007.
[6] Li, X. and Pan, K., Asymptotics of L_{p} extremal polynomials on the unit circle, J.Approx. Theory, 67, pp. 270-283, 1991.
[7] Lubinsky, D.S. and Saff, E.B., Strong asymptotics for L_{p} extremal polynomials $(1<$ $p \leq \infty)$ associated with weights on $[-1,1]$, in Lecture Notes in Math., 1287, pp. 83-104, 1987.
[8] Peherstorfer, F. and Yudiskin, P., Asymptotics of orthogonal polynomials in the presence of a denumerable set of mass points, Proc. Amer. Math. Soc., 129, pp. 32133220, 2001.
[9] Rudin, W., Real and Complex Analysis,Mc Graw-Hill, New York, 1968.
[10] Szegö, G., Orthogonal plynomials, 4th ed. Amer. Math. Soc. Colloquium Publ., 23, Amer. Math. Soc. Providence, RI, 1975.
[11] Widom, H., Extremal polynomials associated with a system of curves and arcs in the complex plane, Adv. Math., 3, pp. 127-232, 1969.

Received by the editors: October 6, 2010.

