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STRONG ASYMPTOTICS OF EXTREMAL POLYNOMIALS

ON THE SEGMENT IN THE PRESENCE OF DENUMERABLE SET

OF MASS POINTS

RABAH KHALDI∗ and AHCENE BOUCENNA∗

Abstract. The strong asymptotics of the monic extremal polynomials with re-
spect to a Lp(σ) norm are studied. The measure σ is concentrated on the segment
[−1, 1] plus a denumerable set of mass points which accumulate at the bound-
ary points of [−1, 1] only. Under the assumptions that the mass points satisfy
Blaschke’s condition and that the absolutely continuous part of σ satisfies Szegő’s
condition.
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1. INTRODUCTION

Let 0 < p <∞ and σ be a positive Borel measure supported on an infinite
compact set E of the complex plane. We can then define for n = 1, 2, 3, ....

mn,p (σ) := min
Q∈Pn−1

‖zn −Q (z)‖Lp(σ) ,

where Pn−1 denotes the class of complex polynomials of degree at most n− 1.
It is easily seen that there is at least one monic polynomial
Tn,p(σ, z) = zn + ... ∈ Pn such that

(1) ‖Tn,p(σ, z)‖Lp(σ) = mn,p (σ) .

We call Tn,p(σ, z) an Lp extremal polynomial with respect to the measure
σ. We define also the nomalized extremal polynomials

Pn,p(σ, z) := Tn,p(σ, z)/mn,p (σ) ,

n = 1, 2, 3, ..., satisfying

‖Pn,p(σ, z)‖Lp(σ) = 1.
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When p = 2, Pn,2(σ, z) = κnz
n + ... ∈ Pn (κn = 1/mn,2 (σ) > 0) is just the

orthonormal polynomial of degree n with respect to the measure σ i.e.

(Pn,2, z
k)Lp(σ) :=

∫
E
Pn,2(ξ)ξ

k
dσ(ξ) = κ−1

n δnk, k = 0, 1, ..., n.

A special area of research in this subject has been the study of the asymp-
totic behavior of Tn,p(z) when n tends to infinity. There exists an extensive
literature on orthogonal polynomials, but not enough on extremal polyno-
mials. Beginning by Geronimus results in 1952 [1], who considered the case
where the support E of the measure is a rectifiable Jordan curve, in particular,
Widom [11] investigated the case p =∞. Then, in 1987, Lubinsky and Saff [7]
proved the asymptotic of mn,p (σ) and Tn,p outside the segment [−1, 1] under
a general condition on the weight function. Another result on the zero distri-
butions of the extremal polynomials on the unit circle, was presented by X. Li
and K. Pan in [6]. In 1992, Kaliaguine [2], obtained the power asymptotic for
extremal polynomials when E is a rectifiable Jordan curve plus a finite set of
mass points and in 2004, Khaldi presented in [4] an extension of Kaliaguine’s
results, where he studied the case of a measure supported on a rectifiable Jor-
dan curve plus an infinite set of mass points. Recently, Khaldi [5], solved this
problem for a measure supported on the segment [−1, 1] plus a finite set of
mass points.

We mentioned that in the special case p = 2 of orthogonal polynomials,
Peherstorfer and Yudiskii in [8] established the asymptotic for such polynomial
on a segment [−2,+2] plus a infinite set of mass points.

In this paper, we generalize the work of Peherstorfer and Yudiskii in [8]
in the case where p ≥ 2, more precisely we establish the strong asymptotic
of the Lp extremal polynomials {Tn,p(σ, z)} associated with the measure σ
which has a decomposition of the form σ = α + γ, where α is a measure
with supp(α) = [−1, 1], absolutely continuous with respect to the Lebesgue
measure on the segment [−1, 1] i.e.

(2) dα(x) = ρ(x)dx, ρ ≥ 0,

∫ +1

−1
ρ(x)dx < +∞,

satisfying Szegő’s condition and γ is a discrete measure supported on the
infinite set of points {zk}∞k=1 ⊂ C\[−1,+1] i.e.

(3) γ =
∞∑
k=1

Akδ(z − zk); Ak > 0,
∞∑
k=1

Ak <∞.

2. PRELIMINARY MATERIALS

2.1. Hardy space and Szegő function. Let E = [−1, 1], Ω = {C\E}∪{∞} ,
G = {w ∈ C : |w| > 1} ∪ {∞} . The conformal mapping Φ : Ω → G is

defined by Φ(z) = z+
√
z2 − 1, its inverse Ψ(w) = 1

2

(
w + 1

w

)
, and the capacity

C(E) = lim
z→∞

(
z

Φ(z)

)
= 1

2 .
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Let ρ be an integrable non negative weight function on E satisfying the
Szegő’s condition

(4)

∫ 1

−1

Logρ(x)√
1−x2 dx > −∞.

Then we can easily see that the weight function λ defined on the unit circle
by

λ(eiθ) =

 ρ(ξ)/
∣∣∣Φ′−(ξ)

∣∣∣ , ξ = Ψ(eiθ), π < θ < 2π

ρ(ξ)/
∣∣∣Φ′+(ξ)

∣∣∣ , ξ = Ψ(eiθ), 0 < θ < π

satisfies the following usual Szegő’s condition∫ π

−π
Log(λ(eiθ))dθ > −∞.

Thus the Szegő function associated with the unit circle T = {t : |t| = 1} and
the weight function λ is defined by

(5) D (w) = exp

{
− 1

2pπ

∫ 2π

0
Log(ρ(cos θ) |sin θ|)1+we−iθ

1−we−iθ dθ

}
, |w| < 1,

satisfying the following properties:
1) D is analytic on the open unit disk U = {w : |w| < 1} , D (w) 6= 0,

∀w ∈ U , and D (0) > 0.
2) D has boundary values, almost everywhere on the unit circle T such that

λ(eiθ) = ρ(cos θ) |sin θ| = |D(t)|−p

a.e. for t = eiθ ∈ T .

Definition 2.1. An analytic function f on Ω, belongs to Hp(Ω, ρ) if and
only if f(Ψ(w))/D(1/w) ∈ Hp(G),where Hp(G) is the usual Hardy space as-
sociated with G, the exterior of the unit circle.

Any function f ∈ Hp(Ω, ρ) has boundary values f+ and f− on both sides
of E, and f+, f− ∈ Lp(α).

In the Hardy space Hp(Ω, ρ) we will define

‖f‖pHp(Ω,ρ) =

∮
E
|f(x)|p ρ(x)dx = lim

R→1+
1
πR

∫
ER

|f(z)|p
|D(z)|p

∣∣Φ′ (z)∣∣ |dz| ,
where ER = {z ∈ Ω : |Φ(z)| = R} .

2.2. Notations and lemmas. Let 1 ≤ p <∞. We denote by µ (ρ) and µ (σ)
respectively the extremal values of the following problems:

(6) µ (ρ) = inf
{
‖ϕ‖pHp(Ω,ρ) : ϕ ∈ Hp (Ω, ρ) , ϕ (∞) = 1

}
,

(7)

µ (σ) = inf
{
‖ϕ‖pHp(Ω,ρ) : ϕ ∈ Hp (Ω, ρ) , ϕ (∞) = 1, ϕ (zk) = 0, k = 1, 2, ...

}
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We denote by ϕ∗ and ψ∗ the extremal functions of the problems (6) and (7)
respectively.

Notice that ϕ∗(z) = D (1/Φ(z)) /D (0) is an extremal function of the prob-
lem (6) and µ(ρ) = 2/ [D (0)]p (see [3]).

Lemma 2.2. The extremal functions ϕ∗ and ψ∗ are related by
ψ∗ = 1

B(∞)Bϕ
∗ and µ(σ) = [B(∞)]−p µ(ρ), where

(8) B(z) =

∞∏
k=1

Φ(z)−Φ(zk)

Φ(z)Φ(zk)−1

|Φ(zk)|
Φ(zk)

is a Blaschke product.

Proof. This lemma is proved for a curve in [4, p. 374]. This proof is valid
in this case, too. �

Definition 2.3. A measure σ = α +
∑∞

k=1Akδ(z − zk) is said to belong
to a class A, if the absolutely continuous part α satisfies the Szegö’s condition
(4) and the discrete part satisfies the the Blaschke’s condition

(9)

( ∞∑
k=1

|Φ(zk)| − 1

)
<∞.

Lemma 2.4. Let σ = α +
∑∞

k=1Akδ(z − zk) be a measure which belongs to
a class A, then we have

lim sup
n→∞

2nmn,p(σ) ≤ [µ (σ)]1/p .

Proof. This lemma is proved for p = 2 by Peherstorfer and Yudiskii in [8].
We will prove this lemma for p > 2 following the same ideas as in [8].

Without loss of generality, we assume the boundness from below of the
weight function 1

|D| , so 1
|D| ≥ 2. Let 1

|Dε| be a smooth function such that
1
|Dε| ≥ 1 and

(10)

∫
T

∣∣∣ 1
|Dε|p −

1
|Dε|p

∣∣∣dm < ε

for ε > 0. Let us choose η > 0 such that max 1
|Dε| ≤

1
η and denote by E±

and Ẽ± the vicinities of ±1 of the form

E± =
{
t ∈ T, |t± 1| ≤ η

2

}
, Ẽ± = {t ∈ T, |t± 1| ≤ η} .

Introduce a smooth function as follows

Fε,η (t) =

{
|Dε (t)| , t ∈ T\Ẽ+ ∪ Ẽ−
|t± 1|2 , t ∈ E±

and for t ∈ Ẽ±\E± is such that

|t± 1|2 ≤ |Fε, η (t)| ≤ |Dε (t)| .
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By the above settings it yields

0 ≤ log 1
Fε,η(0) − log 1

Dε(0) ≤
∫
Ẽ+∪Ẽ−

log
∣∣∣ Dε(t)Fε,η(t)

∣∣∣ dm
≤

∫
Ẽ+

log 1
|t+1|2 dm+

∫
Ẽ−

log 1
|t−1|2 dm = o(1), as η → 0

In view of (10), we get

(11) Fε,η (0) = D (0) + o (1) ; ε→ 0, η → 0.

Let b(t) be the Blaschke product

b(t) =

∞∏
k=1

t−tk
ttk−1

tk
|tk|

with tk = 1
Φ(zk) , k = 0, 1, 2, .... We see that b(t) oscillates only in vicinities of

the points ±1, moreover, we have

sup
{∣∣∣b′(t) ∣∣t2 − 1

∣∣2 , t ∈ T ∣∣∣} <∞,
Consequently, (bFε,η)

′ = b′Fε,η + bF ′ε,η ∈ L∞, and the Fourier series of bFε,η
converges to this function uniformly on T . Let

(bFε,η) (t) = Qn,ε,η (t) + tn+1gn,ε,η (t) , gn,ε,η ∈ H∞.

Putting

2nPn,ε,η (z) = 2nPn,ε,η (Ψ (ξ)) =
ζ−nQn,ε,η(ζ)+ζnQn,ε,η

(
1
ζ

)
21/p

.

We have the following estimate of the norm of the polynomial 2nPn,ε,η (z) for
the absolutely continuous part of the measure,∥∥∥2nPn,ε,η(z(t))

Dε(t)

∥∥∥
Lp
≤
∥∥∥∥ t−nFε,η(t)b(t)+tnFε,η(t)b(t)

Dε(t)21/p

∥∥∥∥
Lp

+

∥∥∥∥ tgn,ε,η(t)+tgn,ε,η(t)
Dε(t)21/p

∥∥∥∥
Lp

From the fact that ‖gn,ε,η‖L∞ → 0 as n→∞ and
∣∣∣Fε,η(z(t))

Dε(t)

∣∣∣ ≤ 1, we conclude∥∥∥2nPn,ε,η(z(t))
Dε(t)

∥∥∥
Lp
≤ 1 + o(1).

Since Pn,ε,η is uniformly bounded, using (10), we get

(12)
∥∥∥2nPn,ε,η(z(t))

D(t)

∥∥∥
Lp
≤ 1 + Cε+ o(1).

Finally by using the extremal property of the polynomials Tn,p and the fact

that Pn,ε,η (z) =
(bFε,η)(0)

21/p
zn + ... we get with the help of (12)

2nmn,p(σ) ≤
‖2nPn,ε,η‖Lp(σ)
(bFε,η)(0)/21/p

≤ 1+Cε+o(1)

(bFε,η)(0)/21/p
,
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From here, lemma 1 and (11), it yields

lim sup
n→∞

2nmn,p(σ) ≤ 21/p

b(0)D(0) = [µ(ρ)]1/p

B(∞) = [µ (σ)]1/p .

The proof is complete. �

Now we give the main result of this paper:

Theorem 2.5. Let a measure σ = α+
∑∞

k=1Akδ(z−zk) be a measure which
belongs to a class A. Associate with the measure σ the functions D, B and the
extremal values mn,p(σ) and µ(σ) given respectively by (5), (8), (1) and (7).
Then the monic extremal polynomials Tn,p(σ, z) have the following asymptotic
behavior as n→∞

(1) lim 2nmn,p(σ) = [µ(σ)]1/p .

(2) Tn,p(σ, z) = {Φ(z)/2}nB(z)D(1/Φ(z))
D(0) [1 + χn(z)] , where χn(z) → 0

uniformly on compact subsets of Ω.

Proof. We recall that by putting tk = 1
Φ(zk) , ξ = Ψ(t) where t = eiθ, we get

B(ξ) = b(t) and B(∞) = b(0) =
∞∏
k=1

∣∣∣ 1
Φ(zk)

∣∣∣, with b(t) =
∞∏
k=1

t−tk
ttk−1

tk
|tk| .

Now we consider the following integral

In =

∫ 2π

0

∣∣∣21/ptnTn,p(Ψ(t))
mn,p(σ)D(t) −

(
b(t) + t2nb(t)D(t)

D(t)

)∣∣∣2 dθ
2π ,

and transform it in a standard way as the following sum

In =

∫ 2π

0

∣∣∣21/ptnTn,p(Ψ(t))
mn,p(σ)D(t)

∣∣∣2 dθ
2π +

∫ 2π

0

∣∣∣b(t) + t2nb(t)D(t)
D(t)

∣∣∣2 dθ
2π

−2Re
∫ 2π

0

21/ptnTn,p(Ψ(t))
mn,p(σ)D(t)

(
b(t) + t2nb(t)D(t)

D(t)

)
dθ
2π .(13)

Then, applying the Hölder inequality to the first term of (13) for p ≥ 2 we
get∫ 2π

0

∣∣∣21/ptnTn,p(Ψ(t))
mn,p(σ)D(t)

∣∣∣2 dθ
2π ≤

(∫ 2π

0

∣∣∣21/ptnTn,p(Ψ(t))
mn,p(σ)D(t)

∣∣∣p dθ
2π

)2/p(∫ 2π

0

dθ
2π

)1−2/p

=

[(∫ 2π

0

∣∣∣Tn,p(Ψ(t))
mn,p(σ)

∣∣∣p |D(t)|−p dθ
π

)1/p
]2

≤

[
1

mn,p(σ)

(
2
π

∫ +1

−1
|Tn,p(x)|p ρ(x)dx

)1/p
]2

≤ 2(14)
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For the second term of (13) we transform it as the following sum∫ 2π

0

∣∣∣b(t) + t2nb(t)D(t)
D(t)

∣∣∣2 dθ
2π =

=

∫ 2π

0
|b(t)|2 dθ

2π +

∫ 2π

0

∣∣b(t)∣∣2 dθ
2π + 2Re

∫ 2π

0
t−2nb(t)

(
b(t)D(t)
D(t)

)
dθ
2π

= 2 + 2Re
∫ 2π

0
t−2nb(t)

(
b(t)D(t)
D(t)

)
dθ
2π .

Since the last term approaches 0 when n tends to ∞ then we have

(15)

∫ 2π

0

∣∣∣ b(t)D(0) + t2nb(t)D(t)
D(0)D(t)

∣∣∣2 dθ
2π = 2 + αn

where αn → 0, as n→∞.
In order to estimate the last integral of (13), we transform it as follows

Jn =

∫ 2π

0

21/ptnTn,p(Ψ(t))
mn,p(σ)D(t)

(
b(t) + t2nb(t)D(t)

D(t)

)
dθ
2π =

=

∫ 2π

0

21/ptnTn,p(Ψ(t))
mn,p(σ)D(t) b(t) dθ2π +

∫ 2π

0

21/ptnTn,p(Ψ(t))
mn,p(σ)D(t)

(
tnb(t)D(t)
D(t)

)
dθ
2π

= 2

∫ 2π

0

21/ptnTn,p(Ψ(t))
mn,p(σ)D(t) b(t) dt

2πit

= 2

∫ 2π

0

21/ptnTn,p(Ψ(t))
mn,p(σ)D(t)

(
b(t)− bl(t) + bl(t)

)
dt

2πit

= 2

∫ 2π

0

21/ptnTn,p(Ψ(t))
mn,p(σ)D(t)

(
b(t)− bl(t)

)
dt

2πit + 2

∫ 2π

0

21/ptnTn,p(Ψ(t))
mn,p(σ)D(t) bl(t)

dt
2πit(16)

where bl(t) =
l∏

k=1

t−tk
ttk−1

tk
|tk| be the finite Blaschke product with zeros tk = 1

Φ(zk) ,

k = 1, 2, ...l.
By applying the Hölder inequality to the first term of (16) we get∣∣∣∣∫ 2π

0

21/ptnTn,p(Ψ(t))
mn,p(σ)D(t)

(
b(t)− bl(t)

)
dt

2πit

∣∣∣∣ ≤
≤

(∫ 2π

0

∣∣∣21/ptnTn,p(Ψ(t))
mn,p(σ)D(t)

∣∣∣p dθ
2π

) 1
p
(∫ 2π

0
|b(t)− bl(t)|q dθ

2π

) 1
q

= 21/p

mn,p(σ)

(∫ 2π

0
|Tn,p(Ψ(t))|p |D(t)|−p dθ

2π

) 1
p
(∫ 2π

0
|b(t)− bl(t)|q dθ

2π

) 1
q

= 21/p+1

mn,p(σ)

(∫ +1

−1
|Tn,p(x)|p ρ(x)dx

) 1
p
(∫ 2π

0
|b(t)− bl(t)|q dθ

2π

) 1
q

≤
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≤ 21/p+1

(∫ 2π

0
|b(t)− bl(t)|q dθ

2π

) 1
q

.(17)

For the last term of (16) by using the residue Theorem we get∫
T

tnTn,p(Ψ(t))
mn,p(σ)D(t)bl(t)

dt
2πit =

∫
T

tnTn,p(Ψ(t))
mn,p(σ)D(t)bl(t)

|bl(t)|2 dt
2πit

= 21/p

2nmn,p(σ)D(0)bl(0) + 21/p

mn,p(σ)

l∑
k=1

tn−1
k Tn,p(zk)

D(tk)b
′
l(tk)

,(18)

the last term of (18) can be estimated as

1
mn,p(σ)

∣∣∣∣∣
l∑

k=1

tn−1
k Tn,p(zk)

D(tk)b
′
l(tk)

∣∣∣∣∣ ≤
≤ 1

mn,p(σ)

[
l∑

k=1

|Tn,p(zk)|pAk

]1/p [ l∑
k=1

(∣∣∣∣ 1

D(tk)b
′
l(tk)

∣∣∣∣ |tn−1
k |
A

1/p
k

)q]1/q

≤

[
l∑

k=1

(∣∣∣∣ 1

D(tk)b
′
l(tk)

∣∣∣∣ |tn−1
k |
A

1/p
k

)q]1/q

, 1
p + 1

q = 1.

So, (18) becomes∫ 2π

0

21/ptnTn,p(Ψ(t))
mn,p(σ)D(t) bl(t)

dt
2πit = 21/p

2nmn,p(σ)D(0)bl(0) + βn

where βn → 0, as n→∞
So, first choosing l big enough and then n we conclude that

(19)

∫ 2π

0

tnTn,p(Ψ(t))
mn,p(σ)D(t)

dθ
2π = 21/p

2nmn,p(σ)D(0)b(0) + o(1)

Substituting (14),(15) and (19) we obtain

(20) 0 ≤ In ≤ 2 + 2 + αn −
4(21/p)

2nmn,p(σ)D(0)b(0) + o(1)

where αn → 0 as n→∞.
Finally using the previous estimate we get

lim inf
n→∞

2nmn,p(σ) ≥ 21/p

D(0)b(0) = [µ(ρ)]1/p

B(∞) = [µ (σ)]1/p .

This with Lemma 2 prove the first statement of Theorem.
Now, to prove (2) of Theorem, first we estimate the following integral∣∣∣∣∫

T

[
21/ptnTn,p(Ψ(t))
mn,p(σ)D(t) −

(
b(t) + t2nb(t)D(t)

D(t)

)]
1

1−wt
dt

2πit

∣∣∣∣2 ≤
≤ 1

1−|w|

∫
T

∣∣∣21/ptnTn,p(Ψ(t))
mn,p(σ)D(t) −

(
b(t) + t2nb(t)D(t)

D(t)

)∣∣∣2 dθ
2π = 1

1−|w|In(21)
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As an immediate consequence of (20) and the first statement of Theorem,
we get

lim
n→∞

In = 0.

So, from (21) yields

(22)

∫
T

[
21/ptnTn,p(Ψ(t))
mn,p(σ)D(t) −

(
b(t) + t2nb(t)D(t)

D(t)

)]
1

1−wt
dt

2πit = o(1).

On the other hand we have∫
T

[
21/ptnTn,p(Ψ(t))
mn,p(σ)D(t) −

(
b(t) + t2nb(t)D(t)

D(t)

)]
1

1−wt
dt

2πit =

=

∫
T
χn(Ψ(t)) 1

1−wt
dt

2πit −
∫
T

t2nb(t)D(t)
D(t)

1
1−wt

dt
2πit .(23)

Applying the Cauchy formula to the first term in (23), we can see that

(24)

∫
T
χn(Ψ(t)) 1

1−wt
dt

2πit = χn(z), z = Ψ(w) ∈ Ω.

Since the last term in (23) approaches 0 as n→∞, we conclude from (22),
(23) and (24), the second statement of Theorem. �
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