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STRONG ASYMPTOTICS OF EXTREMAL POLYNOMIALS
ON THE SEGMENT IN THE PRESENCE OF DENUMERABLE SET
OF MASS POINTS

RABAH KHALDI* and AHCENE BOUCENNA*

Abstract. The strong asymptotics of the monic extremal polynomials with re-
spect to a Ly (o) norm are studied. The measure o is concentrated on the segment
[—1,1] plus a denumerable set of mass points which accumulate at the bound-
ary points of [—1,1] only. Under the assumptions that the mass points satisfy
Blaschke’s condition and that the absolutely continuous part of o satisfies Szegd’s
condition.
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1. INTRODUCTION

Let 0 < p < o0 and o be a positive Borel measure supported on an infinite
compact set E of the complex plane. We can then define for n =1,2,3,....

mup(0) 1= min 12" = Q0

n—1

where P,,_1 denotes the class of complex polynomials of degree at most n — 1.
It is easily seen that there is at least one monic polynomial
Thplo,z) = 2" + ... € Py such that

(1) 1Ts(0. 2, () = M (0.

We call T, (0, 2) an L, extremal polynomial with respect to the measure
o. We define also the nomalized extremal polynomials

Pop(0,2) = Top(0, 2) /M (9),

n=1,2,3,..., satisfying

[1Pnp(0, Z)HLP(U) = 1.
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When p =2, P,2(0,2) = kp2" + ... € Py, (kn, = 1/my2(0) > 0) is just the
orthonormal polynomial of degree n with respect to the measure o i.e.

=k _
(P2, 2")1,(0) = [Epn,g(g)g do(&) = k0, k=0,1,...,n.

A special area of research in this subject has been the study of the asymp-
totic behavior of T, ,(2) when n tends to infinity. There exists an extensive
literature on orthogonal polynomials, but not enough on extremal polyno-
mials. Beginning by Geronimus results in 1952 [1], who considered the case
where the support E of the measure is a rectifiable Jordan curve, in particular,
Widom [11] investigated the case p = co. Then, in 1987, Lubinsky and Saff [7]
proved the asymptotic of my,, (o) and T5, ;, outside the segment [—1, 1] under
a general condition on the weight function. Another result on the zero distri-
butions of the extremal polynomials on the unit circle, was presented by X. Li
and K. Pan in [6]. In 1992, Kaliaguine [2], obtained the power asymptotic for
extremal polynomials when FE is a rectifiable Jordan curve plus a finite set of
mass points and in 2004, Khaldi presented in [4] an extension of Kaliaguine’s
results, where he studied the case of a measure supported on a rectifiable Jor-
dan curve plus an infinite set of mass points. Recently, Khaldi [5], solved this
problem for a measure supported on the segment [—1, 1] plus a finite set of
mass points.

We mentioned that in the special case p = 2 of orthogonal polynomials,
Peherstorfer and Yudiskii in [8] established the asymptotic for such polynomial
on a segment [—2, 42| plus a infinite set of mass points.

In this paper, we generalize the work of Peherstorfer and Yudiskii in [8]
in the case where p > 2, more precisely we establish the strong asymptotic
of the L, extremal polynomials {7}, ,(c, z)} associated with the measure o
which has a decomposition of the form ¢ = « + v, where « is a measure
with supp(a) = [—1,1], absolutely continuous with respect to the Lebesgue
measure on the segment [—1, 1] i.e.

+1

(2) da(x) = p(x)dz, p>0, /_1 p(x)dzr < o0,

satisfying Szegd’s condition and v is a discrete measure supported on the
infinite set of points {zx}ro; C C\[-1,+1] i.e.

(3) v = ZAké(Z - Zk); A >0, ZAk < Q.
k=1 k=1

2. PRELIMINARY MATERIALS
2.1. Hardy space and Szeg6 function. Let £ = [-1,1], Q@ = {C\E}U{o0},
G ={w € C : |w| > 1} U {oo}. The conformal mapping ® : Q& — G is
defined by ®(2) = z++/22 — 1, its inverse ¥(w) = 3 (w + 1), and the capacity
1

C(E) = lim (m) =1
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Let p be an integrable non negative weight function on FE satisfying the
Szegd’s condition

1
(4) mlgi\/%a;)dx > —00.
-1

Then we can easily see that the weight function A\ defined on the unit circle
by

/‘@ . E=U(e?), < <2n
/’(I) L E=(),0<0<n

satisfies the following usual Szegd’s condition

/7r Log(A(e'?))do > —cc.

—T

A =

Thus the Szegd function associated with the unit circle T = {¢ : [t/ = 1} and
the weight function A\ is defined by

—i0

2T
(5) D (w)=exp {_2]1)7r/ Log(p(cos ) [sin 9])1+w619d9} JJw| < 1,
0

satisfying the following properties:

1) D is analytic on the open unit disk U = {w: |w| <1}, D(w) # 0,
Vw € U, and D (0) > 0.

2) D has boundary values, almost everywhere on the unit circle 7" such that

M) = p(cosB) |sin 0] = |D(t)| P

ae fort=¢? T,

DEFINITION 2.1. An analytic function f on §, belongs to HP(Q, p) if and
only if f(¥(w))/D(1/w) € HP(G),where HP(G) is the usual Hardy space as-
sociated with G, the exterior of the unit circle.

Any function f € HP(Q, p) has boundary values f; and f_ on both sides
of E, and fy, f_ € Ly(«).
In the Hardy space HP (S, p) we will define

P
= ot | B
where Ep = {z € Q: |®(2)| = R}.

2)|1dz],

2.2. Notations and lemmas. Let 1 < p < co. We denote by p (p) and p (o)
respectively the extremal values of the following problems:

(6) (o) = inf { el 0 € H? (2,0) 0 (00) = 1,

(7
(0) = inf {19l 9 € HP (20) 9 (00) = Lip () = 0,k = 1,2,..}
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We denote by ¢* and ¢* the extremal functions of the problems (6) and (7)
respectively.
Notice that ¢*(z) = D (1/®(z)) /D (0) is an extremal function of the prob-

lem (6) and pu(p) = 2/ [D ()] (see [3)):

LEMMA 2 2. The extremal functions ¢* and Y* are related by
g = * and (o) = [B(oon—pu(p), where

O(2)=P(21) |P(2k)]
(8) B(2)®(z)—1 Plzk)

1s a Blaschke product.

Proof. This lemma is proved for a curve in [4, p. 374]. This proof is valid
in this case, too. O

DEFINITION 2.3. A measure 0 = o+ > ;o Apd(z — z) is said to belong
to a class A, if the absolutely continuous part o satisfies the Szegd’s condition
(4) and the discrete part satisfies the the Blaschke’s condition

(9) (Z\cb(zk)r - 1) < oo.
k=1

LEMMA 24. Let 0 = a+ Y poy Apd(z — zx) be a measure which belongs to
a class A, then we have

lim sup 2"my, p(0) < [ (o)) .

n—oo
Proof. This lemma is proved for p = 2 by Peherstorfer and Yudiskii in [8].
We will prove this lemma for p > 2 following the same ideas as in [8].
Without loss of generality, we assume the boundness from below of the

Weight function ﬁ, SO ﬁ > 2. Let be a smooth function such that

> 1 and

ID\
IDI

(10) | [de -

for € > 0. Let us choose n > 0 such that maxﬁ <

dm < e

% and denote by Fi
and E4 the vicinities of &1 of the form

Er={teT,|t+1]<1}, Er={teT|t+1]<n}.
Introduce a smooth function as follows

z%@:{ww%teﬂiui

it+1?, teEs
and for ¢t € E’i\Ei is such that
[t 1P <[, 4 ()] < [D- ()]
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By the above settings it yields

1 1 De(t)
0 < log 0 log D(0) < /E r log ’Fm(t) ) dm
LUB_

A

IN

/EIOgltJ:lPdm+/E logﬁdmzo(l), asn — 0
+ —

In view of (10), we get
(11) F.p(0)=D(0)+o0(1); e—0,7—0.
Let b(t) be the Blaschke product

_ t—t
b(t) - H tﬁ—kl
k=1

with t, = =2~k = 0,1,2,.... We see that b(t) oscillates only in vicinities of
D(z1)

=1

~

Kkl

the points +1, moreover, we have

sup {

Consequently, (bFE,n)/ =VF.,+ bF€’777 € Lo, and the Fourier series of bF;
converges to this function uniformly on T'. Let

(bFE,”I]) (t) = QTZ,E,'I] (t) + tn—‘rlgn,é,'f] (t) 7g1’l,8,7] € HOO

b(t) \t2—1]2,teT‘} < o0,

Putting

1
CinQn,S, (C)+CnQ’ﬂ,E, -
znpn,s,n (2) = 2nPn,€ﬂ7 (¥ ()= . 51/p n<<> .

We have the following estimate of the norm of the polynomial 2" P, . , (z) for
the absolutely continuous part of the measure,

£ Fe o (£)b(t)+" Fe , (T)b(F)
Dc(t)21/p

tgn,s,n(t)"!‘zgn,s,n (Z)

S D.(t)21/p

H 2" Pn.e,n(2(1)) H
Dc(t) Ly

Ly Ly

Fey(2(D))
De (1)

From the fact that ||gneqll;,  — 0 asn — oo and ’ < 1, we conclude

|2, < 1o,

Since P, ¢, is uniformly bounded, using (10), we get

<14 Ce+o(1).

Ly

(12) HQHPDi(Z)((t))‘

Finally by using the extremal property of the polynomials T}, , and the fact

that P, ., (2) = (b%l”}g(o) 2" + ... we get with the help of (12)

12" Prenll (o) 14+Ce+to(1)

2nmn7p(0) - (bFs,77)(O)/21/p - (bFE,n)(O)/Ql/p,
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From here, lemma 1 and (11), it yields

. n 1/p 1/p
lim sup2"my, (o) < b(02)D(0) = [”g(’l]o) = [ (0)]P .
n—oo
The proof is complete. O

Now we give the main result of this paper:

THEOREM 2.5. Let a measure 0 = a+y_po Apd(z—2zy) be a measure which
belongs to a class A. Associate with the measure o the functions D, B and the
extremal values my (o) and p(o) given respectively by (5), (8), (1) and (7).
Then the monic extremal polynomials Ty, (0, z) have the following asymptotic
behavior as n — co

(1) lim2"my, (o) = [u(e)] /7.
(2) Tupl0,2) = {8(2)/2}" B(z)2HGEL [+ xa(2)], where xa(2) — 0

uniformly on compact subsets of Q.

Proof. We recall that by putting t; = ) ¢ = U(t) where t = ¢, we get
Be) = (i) and B(c) =b0) = [T \m vith o) = L 2

Now we consider the following integral

2
ln /
0

and transform it in a standard way as the following sum
27 2 2 12
. 21/, (W) |© de t2"b(t)D(2) |© do
In = /0 mn’p(a)pD(t) o T 0 b(t) + D(t) 2m

(13) —ZRG /’271' 21/Pt"Tn7p(\I1(t)) (b(t) + t2nb(Z)D(Z)) doe
0

2P T, (V1) 2@ D@ | a0
Mn p(a)p D(t) (b(t) + D(t) )‘ 2m?

mp,p(c)D(t) D(t) 2m”

Then, applying the Holder inequality to the first term of (13) for p > 2 we

get
2 21/pt"T ) - 2
0 Mp,p O')D(t ’ — 0
[/ pon
-1

1 9 +1 1/p 2
i) (w /_1 T p(2) [P p(ﬂf)dx) <2

2
ooz, @) [P g0\
Mp,p(0)D(t) 2m

mnp

1/p]2
Tnp(\I’(t)‘ ID(t) —pd0> ]

(14)

IN
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For the second term of (13) we transform it as the following sum
2m =12
£2"b@D(@) |© do _
21 9 21 9 2 9 Wd@
- b(t)|” L + b()]” £ + 2Re t2m(t )( ) )g
0 0

R bHD()
:2+2Re/0 t2m(e) (MR ) 2.

Since the last term approaches 0 when n tends to oo then we have

15) /Ozw

where o, — 0, as n — oo.
In order to estimate the last integral of (13), we transform it as follows

2
o 21/P¢nT,, (W (1)) t27b(1) D (%)
Jn = /0 g (0)D(E) (b(t) D@ )27r
B 2 21/PtnTn,p(\IJ(t))7(t>d79 N 2 Ql/pt"Tnyp(\I/(t)) <t”b(¥)D(¥)>d79
- 0 My, p(0)D(t) 2m 0 Mp,p(0)D(t) D(t) 2m
B 21/P4n T, (U (8) 775y
- 2/(; mnyp(ajDD() b( )27r1t
2
21247 T, (O () (777,
= 2 [ ERER (50— 50 + D) 2

2
21247, (U () (77 ) d 21/p¢nT,, YT T
(16) = 2/(; mn,p(o')pD(t) (b(t> B bl(t)> 27riit + 2/ My p(o')pé(t()) b(t ( )271-113

bt t27b(t)D(t
D((g) D((g))D(t()) ‘ o = 2t o

where by(t) = knl %E % be the finite Blaschke product with zeros ty = 575 (lzk)’
k=121

By applying the Holder inequality to the first term of (16) we get
27
2V/Pn T, (B () (77 7 Ld
/0 Sl CORUIO
27 21 %
(/ ([ o - neor )
0 0
21/P 2m —p do % 2 a0 é
= 22 ([ matwonrpor ) ([ o - nor )
1 1
+1 » o .
1/p+1
= @ ( / ) |Tw($)\pp($)dx> ( /O |b(t) — bz(t)lq3fr>

<

=

IN

2Pt T p (W (1)) ‘p 0
mn,p(U)D(t) 2

IN
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(1) < o (f " ) o ‘”)

For the last term of (16) by using the residue Theorem we get
2 dt

nTn \\/] TN Tn
/wbl(t)%zéﬂm|bl( )" 5

Mn,p(0)D(t)

(18) _ 21/p 21/17 Z tz 1 np Zk
2nm"!P(J)D(O)bl(O m’ﬂ P D tk b (tk ’
k=1

the last term of (18) can be estimated as

l
Zt Tnpzk
D(t
=1

mnp

I Up PN 1/q
1 p 1 t

< ke |2 Tl A [Z (| 5o A;/p)]

k=1 k=1
1/q
< zl: 1 ! 11y
= |4 | Db (i) | 4P p g

k=1
So, (18) becomes
2 o + B

o
2L/ T (U () T 7 B
/0 mnp(a)p D(t) bit )271'1t = 27mp.(0)D(0)b; (0

where 3, — 0, as n — oo
So, first choosing [ big enough and then n we conclude that

27
T (U (1)) d 1/p
(19) .A D) 2% = Ty by + o)

Substituting (14),(15) and (19) we obtain

4(2'/7)
(20) 0 < In < 242+ Oy — 2" () D(0)5(0) + 0(1)
where o,, — 0 as n — oo.
Finally using the previous estimate we get
1/ 1/p
lim inf2"m,, , (o) > D(20)I;0) = [ngzjo) = [ (o)]Y7.

n—oo
This with Lemma 2 prove the first statement of Theorem
Now, to prove (2) of Theorem, first we estimate the following integral

t%b(i)D(z)ﬂ 1 dt ?

21/P¢nT,, (W (1))
/T[ mnp(o)pD(t) _<b(t)+ D(t) 1—wt 27wit | —
21/Pt”Tnp )) @O\ |2 a9 1
@) <y [ B - (s + 000 - A,
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As an immediate consequence of (20) and the first statement of Theorem,
we get
lim I,, = 0.

n—oo

So, from (21) yields
2L/P T, H (U (1) t27b(1) D(1) 1 dt
@) [ [ZeRae (o) + Z0P0)] Lo — o(1).
On the other hand we have
2170, ,(T(1) t27b(%) D () 1 dt
/T [ Tinp(0)D(2) (b(t) + D )} T_wi2mit
2ny(F n
@) = [ - [P0
Applying the Cauchy formula to the first term in (23), we can see that
(24) ) st = (.2 = W) € 0

Since the last term in (23) approaches 0 as n — oo, we conclude from (22),
(23) and (24), the second statement of Theorem. O
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