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Abstract. In the present paper we generalize some results for Schurer and
Schurer-Stancu operators. Firstly, we establish a general formula concerning
calculation of test functions by Schurer operators. Secondly, using this rela-
tionship and some known results we prove in every case a Voronovskaja type
theorem, the uniform convergence and the order of approximation for Schurer
and Schurer-Stancu operators.
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1. INTRODUCTION

Let N be the set of positive integers and N0 = N ∪ {0}. The operators
Bn : C([0, 1])→ C([0, 1]) given by

(1.1) Bn(f ;x) =
n∑
k=0

pn,k(x)f
(
k
n

)
,

where pn,k(x) are the fundamental Bernstein’s polynomials defined by

(1.2) pn,k(x) =
(
n
k

)
xk(1− x)n−k,

for any x ∈ [0, 1], k ∈ {0, 1, . . . , n} and n ∈ N, are called Bernstein operators
and were first introduced in [8]. In what follows, let p ∈ N0 be a fixed natural
number and let the real parameters α, β be given such that 0 ≤ α ≤ β. The
operators B̃n,p : C([0, 1 + p])→ C([0, 1]) given by

(1.3) B̃n,p(f ;x) =

n+p∑
k=0

p̃n,k(x)f
(
k
n

)
,

where p̃n,k(x) are the fundamental Schurer’s polynomials defined by

(1.4) p̃n,k(x) =
(
n+p
k

)
xk(1− x)n+p−k,
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for any x ∈ [0, 1], k ∈ {0, 1, . . . , n+p} and n ∈ N, are called Schurer operators

[20]. The operators S̃
(α,β)
n,p : C([0, 1 + p])→ C([0, 1]) defined by

(1.5) S̃(α,β)
n,p (f ;x) =

n+p∑
k=0

p̃n,k(x)f
(
k+α
n+β

)
,

for any x ∈ [0, 1], k ∈ {0, 1, . . . , n + p} and n ∈ N, where p̃n,k(x) are the
fundamental Schurer’s polynomials given at (1.4), are called Schurer-Stancu
operators and were first introduced in [9], then studied intensively in [6].

Remark 1.1. More results and properties concerning (1.3) and (1.5) can
be found also in monographs [2], [3], [7]. �

The aim of this paper is to generalize some results for the presented op-
erators. Firstly, we establish a general formula concerning calculation of the
test functions by Schurer operators and next, taking this into account, we will
prove a Voronovskaja type theorem in every case for Schurer and Schurer-
Stancu operators. Using some known results, which will be cited at the ade-
quate moment we shall prove the uniform convergence, general Voronovskaja
type formulas and the order of approximation up to twice continuously differ-
entiable function for the Bernstein type operators.

2. PRELIMINARIES

Of the greatest utility in the calculus of finite differences, in number theory,
in the summation of series, in the calculation of the Bernstein polynomials are
the numbers introduced in 1730 by J. Stirling in his Methodus differentialis
[21], subsequently called “Stirling numbers” of the first and second kind. For
any x ∈ R and n ∈ N0, let

(x)n :=
n−1∏
i=0

(x− i),

where (x)0 := 1 is the falling factorial denoted by Pochhammer symbol. It is
well known that

(2.1) xj =

j∑
i=0

S(j, i)(x)i

holds for any x ∈ R and j ∈ N0, where S(j, i) are the Stirling numbers of
second kind. Now, let i, j ∈ N0 be natural numbers, then the Stirling numbers
of second kind have the following properties:
(2.2)

S(j, i) :=


1, if j = i = 0; j = i or j > 1, i = 1

0, if j > 0, i = 0

0, if j < i

i · S(j−1, i)+S(j−1, i−1), if j, i > 1.
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Let ej(x) = xj , with j ∈ N0 be the test functions. The main result established
in [16], by O.T. Pop and M. Farcaş concerning calculation of the test functions
in general case by Bernstein operators is given by the following:

Proposition 2.1. [16] If n, j ∈ N, then

(2.3) Bn(ej ;x) = 1
nj

j∑
i=1

S(j, i)(n)ix
i.

During the preparation of the present paper, making some researches we
discovered that, the relation (2.3) had been proved earlier by S. Karlin and Z.
Ziegler [13]. As a special case, we can find the same relation in the article [1],
where the asymptotic expansion of multivariate Bernstein polynomials on a
simplex are considered. Later, in [19] the authors O.T. Pop, D. Bărbosu and
P.I. Braica proved another result concerning calculation of the test functions
by Bernstein operators. In [14] we established that the result proved in [19]
does not differ by the result given at (2.3).

In this section we recall some results from [17] and [18], which we shall
use in the present paper. Let I, J be real intervals and I ∩ J 6= ∅. For any
n, k ∈ N0, n 6= 0 consider the functions ϕn,k : J → R, with the property that
ϕn,k(x) ≥ 0, for any x ∈ J and also consider the linear positive functionals
An,k : E(I)→ R. For any n ∈ N define the operator Ln : E(I)→ F (J), by

(2.4) Ln(f ;x) =

n∑
k=0

ϕn,k(x)An,k(f),

where E(I) is a linear space of real-valued functions defined on I and F (J) is
a subset of the set of real-valued functions defined on J .

Remark 2.2. [17] The operators (Ln)n∈N are linear and positive on
E(I ∩ J). �

For n ∈ N and i ∈ N0 define T ∗n,i by

(2.5) T ∗n,i(Ln;x) = niLn
(
ψix;x

)
= ni

n∑
k=0

ϕn,k(x)An,k
(
ψix
)
, x ∈ I ∩ J,

where ψix = (t− x)i, t ∈ I ∩ J .
In what follows s ∈ N0 is even and we assume that the next two conditions

hold:

• there exists the smallest αs, αs+2 ∈ [0,+∞), so that

(2.6) lim
n→∞

T ∗n,j(Ln;x)

nαj
= Bj(x) ∈ R,

for any x ∈ I ∩ J and j ∈ {s, s+ 2},
(2.7) αs+2 < αs + 2

• I ∩ J is an interval.
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Theorem 2.1. [17, 18] If f ∈ E(I) is a function s times differentiable in a
neighborhood of x ∈ I ∩ J , then

(2.8) lim
n→∞

ns−αs

(
Ln(f ;x)−

s∑
i=0

f (i)(x)
i!·ni T

∗
n,i(Ln;x)

)
= 0.

Assume that f is s times differentiable function on I and there exists an in-
terval K ⊆ I ∩ J , such that, there exist n(s) ∈ N and the constants kj ∈ R
depending on K, so that for n ≥ n(s) and x ∈ K, the following

(2.9)
T ∗n,j(Ln;x)

nαj
≤ kj ,

holds, for j ∈ {s, s+ 2}.
Then, the convergence expressed by (2.8) is uniform on K and moreover

ns−αs

∣∣∣∣∣Ln(f ;x)−
s∑
i=0

f (i)(x)
i!·ni T

∗
n,i(Ln;x)

∣∣∣∣∣ ≤(2.10)

≤ 1
s!(ks + ks+2)ω1

(
f (s); 1√

n2+αs−αs+2

)
,

for any x ∈ K and n ≥ n(s), where ω1(f ; δ) denotes the modulus of continuity
of the function f .

3. MAIN RESULTS

In the case of Schurer operators, we get:

Proposition 3.1. For any j, n ∈ N and x ∈ [0, 1], the following holds

(3.1) B̃n,p(ej ;x) = 1
nj

j−1∑
i=0

S(j, j − i)(n+ p)j−ix
j−i.

Proof. For the proof of this proposition we take into account the same idea
used in [16]. The relation (2.1) can be written also in the following form

(3.2) xj =

j−1∑
i=0

S(j, j − i)(x)j−i,

because S(j, 0) = 0, see (2.2). Using (3.2), we get

B̃n,p(ej ;x) =

n+p∑
k=0

(
n+p
k

)
xk(1− x)n+p−k ( k

n

)j
= 1

nj

n+p∑
k=0

(
n+p
k

)
xk(1− x)n+p−k

j−1∑
i=0

S(j, j − i)(k)j−i

= 1
nj

j−1∑
i=0

S(j, j − i)
n+p∑
k=0

(k)j−i
(
n+p
k

)
xk(1− x)n+p−k =
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= 1
nj

j−1∑
i=0

S(j, j − i)(n+ p)j−ix
j−i.

�

In the following, we assume that the first three cases concerning calculation
of the test functions by Schurer, respectively Schurer-Stancu operators are well
known and for more details we recommend the reader our paper [15].

3.1. Schurer operators. Using the construction form preliminaries, we as-
sume that I = [0, 1 + p], J = [0, 1], E(I) = C([0, 1 + p]), F (J) = C([0, 1]) and
the role of n is played by n+ p. Then let the functions ϕn+p,k : [0, 1]→ R be
defined by ϕn+p,k(x) := p̃n,k(x), for any x ∈ [0, 1], n, k ∈ N0, n 6= 0 and the

functionals An+p,k : C([0, 1 + p]) → R let be defined by An+p,k(f) := f
(
k
n

)
,

for any n, k ∈ N0, n 6= 0. In this case one obtains the Schurer operators, with

T ∗n,i

(
B̃n,p;x

)
= ni

n+p∑
k=0

p̃n,k(x)An+p,k

(
ψix
)

(3.3)

= ni
n+p∑
k=0

p̃n,k(x)
(
k
n − x

)i
=

n+p∑
k=0

p̃n,k(x)(k − (n+ p)x+ px)i

=

n+p∑
k=0

p̃n,k(x)
i∑
l=0

(
i
l

)
(k − (n+ p)x)l(px)i−l

=

i∑
l=0

(
i
l

)
(px)i−lTn+p,l(x),

where

(3.4) Tn+p,l(x) =

n+p∑
k=0

p̃n,k(x)(k − (n+ p)x)l.

Application 3.2. For j ∈ {3, 4} we present the calculation of the test
functions by Schurer operators, taking into account (3.1).

Case 1. j = 3

B̃n,p(e3;x) = 1
n3

2∑
i=0

S(3, 3− i)(n+ p)3−ix
3−i

= 1
n3

(
S(3, 3)(n+ p)3x

3 + S(3, 2)(n+ p)2x
2 + S(3, 1)(n+ p)1x

)
= 1

n3

(
(n+ p)3x

3 + 3(n+ p)2x
2 + (n+ p)1x

)
,

where S(3, 2) = 2 · S(2, 2) + S(2, 1) = 3.
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Case 2. j = 4

B̃n,p(e4;x) = 1
n4

3∑
i=0

S(4, 4− i)(n+ p)4−ix
4−i

= 1
n4

(
S(4, 4)(n+ p)4x

4

+S(4, 3)(n+ p)3x
3 + S(4, 2)(n+ p)2x

2 + S(4, 1)(n+ p)1x
)

= 1
n4

(
(n+ p)4x

4 + 6(n+ p)3x
3 + 7(n+ p)2x

2 + (n+ p)1x
)
,

where S(4, 2) = 2 · S(3, 2) + S(3, 1) = 7 and S(4, 3) = 3 · S(3, 3) + S(3, 2) = 6.

Remark 3.3. Regarding the polynomials Tn+p,l(x), which were first intro-
duced in [4], we shall give a proof relied on Application 3.2. �

Lemma 3.4. The polynomials Tn+p,l(x) satisfy the following

Tn+p,0(x) = 1,

Tn+p,1(x) = 0,

Tn+p,2(x) = (n+ p)x(1− x),

Tn+p,3(x) = (n+ p)x(1− x)(1− 2x),

Tn+p,4(x) = 3(n+ p)2x2(1− x)2 + (n+ p)
(
x(1− x)− 6x2(1− x)2

)
.

Proof. Using (3.4) and Application 3.2, it follows

Tn+p,0(x) = B̃n,p(e0;x) = 1;

Tn+p,1(x) = nB̃n,p(e1;x)− (n+ p)xB̃n,p(e0;x) = 0;

Tn+p,2(x) = n2B̃n,p(e2;x)− 2n(n+ p)xB̃n,p(e1;x) + ((n+ p)x)2B̃n,p(e0;x)

= (n+ p)x(1− x);

Tn+p,3(x) = n3B̃n,p(e3;x)− 3n2(n+ p)xB̃n,p(e2;x) + 3n((n+ p)x)2B̃n,p(e1;x)

− ((n+ p)x)3B̃n,p(e0;x) = (n+ p)x(1− x)(1− 2x);

Tn+p,4(x) = n4B̃n,p(e4;x)− 4n3(n+ p)xB̃n,p(e3;x) + 6(nx(n+ p))2B̃n,p(e2;x)

− 4n((n+ p)x)3B̃n,p(e1;x) + ((n+ p)x)4B̃n,p(e0;x)

= 3(n+ p)2x2(1− x)2 + (n+ p)
(
x(1− x)− 6x2(1− x)2

)
.

�
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Lemma 3.5. For any x ∈ [0, 1] and n ∈ N, the following hold:

T ∗n,0

(
B̃n,p;x

)
= 1,

T ∗n,1

(
B̃n,p;x

)
= px,

T ∗n,2

(
B̃n,p;x

)
= (px)2 + (n+ p)x(1− x),

T ∗n,3

(
B̃n,p;x

)
= (px)3 + 3p(n+ p)x2(1− x) + (n+ p)x(1− x)(1− 2x),

T ∗n,4

(
B̃n,p;x

)
= (px)4 + 6p2(n+ p)x3(1− x) + 4p(n+ p)x2(1− x)(1− 2x)

+ 3(n+ p)2x2(1− x)2 + (n+ p)
(
x(1− x)− 6x2(1− x)2

)
.

Proof. Using (3.3), (3.4) and Lemma 3.4, the identities follow. �

Lemma 3.6. For any x ∈ [0, 1], the following relations hold

(3.5) lim
n→∞

T ∗n,0

(
B̃n,p;x

)
= 1,

(3.6) lim
n→∞

T ∗
n,2(B̃n,p;x)

n = x(1− x),

(3.7) lim
n→∞

T ∗
n,4(B̃n,p;x)

n2 = 3(x(1− x))2

and there exist

(3.8) T ∗n,0

(
B̃n,p;x

)
= 1 = k0,

(3.9)
T ∗
n,2(B̃n,p;x)

n ≤ 1
4 = k2,

(3.10)
T ∗
n,4(B̃n,p;x)

n2 ≤ 3
16 = k4,

for any x ∈ [0, 1] and n ∈ N.

Proof. The identities (3.5)–(3.7) follow immediately from Lemma 3.5, while
(3.8)–(3.10) yield from (3.5)–(3.7). �

Theorem 3.1. Let f ∈ C([0, 1 + p]) be a function. If x ∈ [0, 1] and f is s
times differentiable in a neighborhood of x, then

(3.11) lim
n→∞

B̃n,p(f ;x) = f(x),

for s = 0;

(3.12) lim
n→∞

n
(
B̃n,p(f ;x)− f(x)

)
= pxf (1)(x) + x(1−x)

2 f (2)(x),
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for s = 2;

lim
n→∞

n2
(
B̃n,p(f ;x)− f(x)− px

n f
(1)(x)− (px)2+(n+p)x(1−x)

2n2 f (2)(x)
)

=(3.13)

= 3px2(1−x)+x(1−x)(1−2x)
6 f (3)(x) + (x(1−x))2

8 f (4)(x),

for s = 4 and

(3.14) lim
n→∞

ns−αs

(
B̃n,p(f ;x)−

s∑
i=0

f (i)(x)
i!·ni T

∗
n,i

(
B̃n,p;x

))
= 0,

for s ≥ 4.
Assume that f is s times differentiable on [0, 1 + p], then the convergence

in (3.11)–(3.14) is uniform on [0, 1] ⊂ [0, 1 + p]. Moreover, we get

(3.15)
∣∣∣B̃n,p(f ;x)− f(x)

∣∣∣ ≤ 5
4 · ω1

(
f ; 1√

n

)
,

for s = 0 and

n
∣∣∣B̃n,p(f ;x)−f(x)− px

n f
(1)(x)− (px)2+(n+p)x(1−x)

2n2 f (2)(x)
∣∣∣ ≤ 7

32 · ω1

(
f (2); 1√

n

)
,

(3.16)

for s = 2.

Proof. It follows from Theorem 2.1, with α0 = 0, α2 = 1 and α4 = 2, taking
into account Lemma 3.5 and Lemma 3.6. �

Remark 3.7. The above theorem, by the relation (3.14) generalizes the as-
ymptotic behavior of the Schurer operators and in the particular case s = 2 we
recover formula (3.12), for twice continuously differentiable function, proved
first by D. Bărbosu [5]. We get also the asymptotic behavior in the particular
case s = 4 and quantitative forms in terms of the modulus of continuity, for
the same operators. Various quantitative forms of Voronovskaja’s 1932 result
[22] dealing with the asymptotic behavior of the Bernstein type operators are
discussed also in several recent papers [10], [11] and [12], where better estimate
close to the endpoints 0 and 1 then the global one was established. �

3.2. Schurer-Stancu operators. Using the same construction form prelim-
inaries, we assume that I = [0, 1 + p], J = [0, 1], E(I) = C([0, 1 + p]),
F (J) = C([0, 1]), the role of n is played by n + p. Then the functions
ϕn+p,k : [0, 1] → R are defined by ϕn+p,k(x) := p̃n,k(x), for any x ∈ [0, 1],

n, k ∈ N0, n 6= 0 and the functionals A
(α,β)
n+p,k : C([0, 1 + p])→ R are defined by

A
(α,β)
n+p,k(f) := f

(
k+α
n+β

)
, for any n, k ∈ N0, n 6= 0.
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In this case one obtains the Schurer-Stancu operators, with

T ∗n,i

(
S̃(α,β)
n,p ;x

)
= ni

n+p∑
k=0

p̃n,k(x)A
(α,β)
n+p,k

(
ψix
)

= ni
n+p∑
k=0

p̃n,k(x)
(
k+α
n+β − x

)i(3.17)

=
(

n
n+β

)i n+p∑
k=0

p̃n,k(x) (k − (n+ p)x+ α+ px− βx)i

=
(

n
n+β

)i n+p∑
k=0

p̃n,k(x)

i∑
l=0

(
i
l

)
(k − (n+ p))l(α+ px− βx)i−l

=
(

n
n+β

)i i∑
l=0

(
i
l

)
(α+ px− βx)i−lTn+p,l(x),

where Tn+p,l(x) were given in (3.4).

Lemma 3.8. For any x ∈ [0, 1] and n ∈ N, the following hold:

T ∗n,0

(
S̃(α,β)
n,p ;x

)
= 1,

T ∗n,1

(
S̃(α,β)
n,p ;x

)
= n

n+β (α+ px− βx),

T ∗n,2

(
S̃(α,β)
n,p ;x

)
=
(

n
n+β

)2 (
(α+ px− βx)2 + (n+ p)x(1− x)

)
,

T ∗n,3

(
S̃(α,β)
n,p ;x

)
=
(

n
n+β

)3 (
(α+ px− βx)3

+3(α+ px− βx)(n+ p)x(1− x)+(n+p)x(1−x)(1−2x)) ,

T ∗n,4

(
S̃(α,β)
n,p ;x

)
=
(

n
n+β

)4 (
(α+ px− βx)4

+6(α+ px− βx)2(n+ p)x(1− x)

+4(α+ px− βx)(n+ p)x(1− x)(1− 2x)

+3(n+p)2(x(1− x))2+(n+ p)
(
x(1− x)−6(x(1− x))2

))
.

Proof. Using (3.17) and Lemma 3.4, it follows the identities. �

Lemma 3.9. For any x ∈ [0, 1], the following relations hold

(3.18) lim
n→∞

T ∗n,0

(
S̃(α,β)
n,p ;x

)
= 1,

(3.19) lim
n→∞

T ∗
n,2

(
S̃
(α,β)
n,p ;x

)
n = x(1− x),

(3.20) lim
n→∞

T ∗
n,4

(
S̃
(α,β)
n,p ;x

)
n2 = 3(x(1− x))2,
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and there exist

(3.21) T ∗n,0

(
S̃(α,β)
n,p ;x

)
= 1 = k0,

(3.22)
T ∗
n,2

(
S̃
(α,β)
n,p ;x

)
n ≤ 1

4 = k2,

(3.23)
T ∗
n,4

(
S̃
(α,β)
n,p ;x

)
n2 ≤ 3

16 = k4,

for any x ∈ [0, 1] and n ∈ N.

Proof. The identities (3.18)–(3.20) follow immediately from Lemma 3.8,
while (3.21)–(3.23) yield from (3.18)–(3.20). �

Theorem 3.2. Let f ∈ C([0, 1 + p]) be a function. If x ∈ [0, 1] and f is s
times differentiable in a neighborhood of x, then

(3.24) lim
n→∞

S̃(α,β)
n,p (f ;x) = f(x),

for s = 0;

(3.25) lim
n→∞

n
(
S̃(α,β)
n,p (f ;x)− f(x)

)
= (α+ px− βx)f (1)(x) + x(1−x)

2 f (2)(x),

for s = 2;

lim
n→∞

n2
(
S̃(α,β)
n,p (f ;x)− f(x)− α+px−βx

n+β f (1)(x)(3.26)

− (α+px−βx)2+(n+p)x(1−x)
2(n+β)2

f (2)(x)
)

=

= 3(α+px−βx)x(1−x)+x(1−x)(1−2x)
6 f (3)(x) + (x(1−x))2

8 f (4)(x),

for s = 4 and

(3.27) lim
n→∞

ns−αs

(
S̃(α,β)
n,p (f ;x)−

s∑
i=0

f (i)(x)
i!·ni T

∗
n,i

(
S̃(α,β)
n,p ;x

))
= 0,

for s ≥ 4. Assume that f is s times differentiable on [0, 1 + p], then the
convergence from (3.24)–(3.27) is uniform on [0, 1] ⊂ [0, 1 + p]. Moreover, we
get

(3.28)
∣∣∣S̃(α,β)
n,p (f ;x)− f(x)

∣∣∣ ≤ 5
4 · ω1

(
f ; 1√

n

)
,

for s = 0 and

n
∣∣∣S̃(α,β)
n,p (f ;x)− f(x)− α+px−βx

n+β f (1)(x)− (α+px−βx)2+(n+p)2x(1−x)
2(n+β)2

f (2)(x)
∣∣∣ ≤(3.29)

≤ 7
32 · ω1

(
f (2); 1√

n

)
,

for s = 2.
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Proof. It follows from Theorem 2.1, with α0 = 0, α2 = 1 and α4 = 2, taking
into account Lemma 3.8 and Lemma 3.9. �

Remark 3.10. The above theorem, by the relation (3.27) and by some
particular cases given at (3.25), respectively (3.26) generalizes the asymptotic
behavior of the Schurer-Stancu operators. Concerning quantitative forms in
terms of the modulus of continuity, it is easily to remark that, for the Schurer-
Stancu operators we get estimates as good as in the case of the Schurer oper-
ators. �
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