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Abstract. A Voronovskaja-type formula for the q-Meyer-König and Zeller op-
erators is presented.
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1. INTRODUCTION AND NOTATION

Starting from the identity

(1− x)n+1
∞∑
k=0

(
n+k
k

)
xk = 1 for all x ∈ [0, 1),

W. Meyer-König and K. Zeller [12] defined a sequence of linear positive oper-
ators associating with each continuous real-valued function defined on [0, 1] a
so-called “Bernstein power series”. In the slight modification by E. W. Cheney
and A. Sharma [4], the Meyer-König and Zeller operators are defined for every
n ∈ N (the set of all positive integers) and every f ∈ C[0, 1] by

Mnf(x) :=

∞∑
k=0

f
(

k
n+k

)
mn,k(x) if x ∈ [0, 1),

Mnf(1) := f(1),

where

mn,k(x) :=
(
n+k
k

)
xk(1− x)n+1.

Let q > 0. For every n ∈ {0, 1, 2, . . .} the q-integer [n]q is defined by

[0]q := 0 and [n]q := 1 + q + · · ·+ qn−1 if n ≥ 1.

The q-factorial [n]q! is defined by

[0]q! := 1 and [n]q! := [1]q[2]q · · · [n]q if n ≥ 1.
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For all nonnegative integers n and k with n ≥ k, the Gaussian binomial
coefficient (or q-binomial coefficient)

[
n
k

]
q

is defined by[
n
k

]
q

:=
[n]q !

[k]q ![n−k]q ! .

Clearly, when q = 1 we have

[n]1 = n, [n]1! = n! and
[
n
k

]
1

=
(
n
k

)
.

Throughout the rest of the paper q denotes a positive real number such
that 0 < q < 1. In order to simplify the notation, whenever it is not necessary
to mention explicitly q, we write [n], [n]! and

[
n
k

]
instead of [n]q, [n]q! and[

n
k

]
q
, respectively. Likewise, in order to emphasize the analogy with the clas-

sical Mn-operators, we make use (for any positive integer n) of the following
notation:

(a+ b)nq := (a+ b)(a+ qb) · · · (a+ qn−1b).

We set also (a+ b)0
q := 1.

For every n ∈ N one has (see, for instance, G. E. Andrews, R. Askey, R.
Roy [2, Corollary 10.2.2])

(1) (1− x)n+1
q

∞∑
k=0

[
n+k
k

]
xk = 1 for all x ∈ [0, 1).

Starting from this identity, L. Lupaş [9] introduced a q-generalization of the
Mn-operators. The q-Meyer-König and Zeller operators are defined for every
n ∈ N and every f ∈ C[0, 1] by

Mn,qf(x) :=
∞∑
k=0

f
(

[k]
[n+k]

)
mn,k,q(x) if x ∈ [0, 1),

Mn,qf(1) := f(1),

where

mn,k,q(x) :=
[
n+k
k

]
xk(1− x)n+1

q .

The Mn,q-operators and other similar ones have been intensively investigated
in the last decade by many authors (see, for instance, [5], [6], [7], [8], [10], [13],
[14], [15], [16], [19], [20], [21]). We merely mention here that in [19, Lemma
2.1] it has been proved that for all n ∈ N, n ≥ 3 and all x ∈ [0, 1] one has

Mn,qe2(x) = x2 + x(1−x)(1−qnx)
[n−1] −Rn,q(x),

where

0 ≤ Rn,q(x) ≤ qn−1(1+q)
[n−1][n−2] x(1− x)(1− qx)(1− qnx).

Here ek (k = 0, 1, 2, . . .) denotes, as usual, the monomial ek(t) := tk.
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2. THE SECOND MOMENT FOR THE Q-MEYER-KÖNIG AND ZELLER OPERATORS

J. A. H. Alkemade [1] was the first who derived an explicit expression for
Mne2 in terms of a hypergeometric series. More precisely, he proved that

(2) Mne2(x) = x2 + x(1−x)2

n+1 2F1(1, 2;n+ 2;x)

for all n ∈ N and all x ∈ [0, 1). Moreover, (2) holds also for x = 1 if n ≥ 2. In
(2) the notation 2F1(a, b; c;x) is used for the sum of the hypergeometric series

(3)
∞∑
k=0

(a)k(b)k
(c)kk! xk,

where

(y)0 := 1 and (y)k := y(y + 1) · · · (y + k − 1) if k ≥ 1.

The series (3) converges for |x| < 1 and if c− a− b > 0 also for x = 1.
The q-analogue of the hypergeometric series (3) is the basic q-hypergeo-

metric series

(4)
∞∑
k=0

(α;q)k(β;q)k
(γ;q)k(q;q)k

xk,

where

(y; q)k := (1− y)(1− qy) · · · (1− qk−1y) = (1− y)kq .

The series (4) converges for |x| < 1. Its sum is usually denoted by

2φ1

(
α, β
γ

; q, x

)
.

Set [a] := [a]q := 1−qa
1−q for every real number a. Set also

[a]0 := [a]0,q := 1 and [a]k := [a]k,q := [a][a+ 1] · · · [a+ k − 1] if k ≥ 1,

and note that

(qa; q)k = (1− q)k[a]k

for every real number a and every nonnegative integer k. Therefore one has

2φ1

(
qa, qb

qc
; q, x

)
=
∞∑
k=0

[a]k[b]k
[c]k[k]! x

k for all x ∈ (−1, 1).

H. Wang [21, Theorem 1] proved that for every n ∈ N and all x ∈ [0, 1] one
has

(5) Mn,qe2(x) = x2 + x(1−x)
[n+1]

(
1− qn+2[n]x

[n+2] 2φ1

(
q, q2

qn+3 ; q, qn+1x

))
.

But a simple computation shows that

(6) 1− qn+2[n]x
[n+2] 2φ1

(
q, q2

qn+3 ; q, qn+1x

)
= (1− qnx)2φ1

(
q, q2

qn+2 ; q, qnx

)
.
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By (5) and (6) we get

(7) Mn,qe2(x) = x2 + x(1−x)(1−qnx)
[n+1] 2φ1

(
q, q2

qn+2 ; q, qnx

)
,

a formula which is closer to (2) than (5).
By using (7), one can easily derive estimates for the second moment

Mn,qe2(x)− x2. Set

Φm(x) :=

∞∑
k=m

[2]k
[n+2]k

xk

for every m ∈ N and all x ∈ [0, 1).

Theorem 1. For all n,m ∈ N with n ≥ 2 and all x ∈ [0, qn−1] one has

(8) Φm(x) ≤ [m+1]!
[n−1][n+2]m−1

xm

and
m∑
k=0

[2]k
[n+2]k

xk ≤ 2φ1

(
q, q2

qn+2 ; q, x

)
≤(9)

≤
m−1∑
k=0

[2]k
[n+2]k

xk + [m+1]!
[n−1][n+2]m−1

xm.

Proof . We have

Φm(x) = [m+1]!
[n+2]m

xm
∞∑
k=m

[m+2]k−m

[n+m+2]k−m
xk−m

= [m+1]!
[n+2]m

xm
∞∑
k=0

[m+2]k
[n+m+2]k

xk

= [m+1]!
[n+2]m

xm 2φ1

(
q, qm+2

qn+m+2 ; q, x

)
≤ [m+1]!

[n+2]m
xm 2φ1

(
q, qm+2

qn+m+2 ; q, qn−1

)
.

But, for |γ/αβ| < 1 it holds that (see [2, Corollary 10.9.2])

2φ1

(
α, β
γ

; q, γ/αβ

)
= (γ/α;q)∞(γ/β;q)∞

(γ;q)∞(γ/αβ;q)∞
,

where

(y; q)∞ :=

∞∏
k=0

(1− qky).

Taking this into account, we have

2φ1

(
q, qm+2

qn+m+2 ; q, qn−1

)
= (qn+m+1;q)∞(qn;q)∞

(qn+m+2;q)∞(qn−1;q)∞
= [n+m+1]

[n−1] .
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Consequently,

Φm(x) ≤ [m+1]!
[n+2]m

· [n+m+1]
[n−1] xm = [m+1]!

[n−1][n+2]m−1
xm.

The left inequality in (9) is obvious, while the right one follows immediately
by (8). �

By means of Theorem 1 we deduce the following estimates of the second
moment for the Mn,q-operators. These estimates are quite similar to those
obtained by M. Becker and R. J. Nessel [3] for the classical Mn-operators.

Corollary 2. For every n ∈ N, n ≥ 2 and all x ∈ [0, 1] one has

x(1−x)(1−qnx)
[n+1]

(
1 + (1+q)qnx

[n+2]

)
≤Mn,qe2(x)− x2 ≤

≤ x(1−x)(1−qnx)
[n+1]

(
1 + (1+q)qnx

[n−1]

)
.

Proof. By Theorem 1 with m = 1 it follows that

1 + 1+q
[n+2] q

nx ≤ 2φ1

(
q, q2

qn+2 ; q, qnx

)
≤ 1 + 1+q

[n−1] q
nx.

This inequality and (7) yield the conclusion. �

3. A VORONOVSKAJA-TYPE FORMULA FOR THE Q-MEYER-KÖNIG AND ZELLER

OPERATORS

The goal of this section is to establish a Voronovskaja-type formula for the
Mn,q-operators. Such a formula is lacking in the literature. In order to derive
it, we need the following auxiliary results whose proofs are postponed to the
end of the section.

Lemma 3. For every n ∈ N, n ≥ 3 and all x ∈ [0, 1] one has

(10) Mn,qe3(x) = xMn,qe2(x) + 2qx2(1−x)(1−qnx)
[n−1] +Rn,q(x),

where

(11) |Rn,q(x)| ≤ 9
[n−1][n+2] .

Lemma 4. For every n ∈ N, n ≥ 3 and all x ∈ [0, 1] one has

Mn,qe4(x) = xMn,qe3(x) + 3q2x3(1−x)(1−qnx)
[n−1] + R̃n,q(x),

where

|R̃n,q(x)| ≤ C
[n−1][n+3] ,

C being an absolute constant (i.e., not depending on n, q or x).

We notice that, for a fixed q ∈ (0, 1), the sequence (Mn,qf)n≥1 does not
converge to f for every f ∈ C[0, 1]. For instance, by Corollary 2 it follows
that

Mn,qe2(x)→ x2 + (1− q)x(1− x) as n→∞.
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In order to obtain a convergent sequence of q-Meyer-König and Zeller operators
we must replace q by a sequence (qn)n≥1 of numbers in (0, 1). If (qn)n≥1

satisfies

(12) qn → 1 and [n]qn = 1 + qn + · · ·+ qn−1
n →∞ as n→∞,

then the sequence (Mn,qnf)n≥1 converges uniformly to f on [0, 1] for all f ∈
C[0, 1] (see [9, Theorem 2] or [19, Theorem 2.2]).

In order to obtain a Voronovskaja-type formula for the Mn,qn-operators,
(qn)n≥1 must satisfy an additional condition, namely

(13) there exists lim
n→∞

qnn =: α ∈ [0, 1].

It is not difficult to construct a sequence (qn)n≥1, satisfying both (12) and
(13). Indeed, it suffices to take qn such that

1− 1
n ≤ qn ≤ 1− 1

n−1 for all n ≥ 3.

Then clearly qn → 1 and qnn → e−1 as n→∞. Moreover, since

1− r
n ≤ q

r
n for 1 ≤ r ≤ n− 1,

we have

[n]qn ≥ n−
n(n−1)

2n = n+1
2 for all n ∈ N.

We notice also that, if (qn)n≥1 is a sequence in (0, 1) satisfying (13), then

(14) lim
n→∞

[n]qn
[n−1]qn

= lim
n→∞

[n]qn
[n+1]qn

= 1.

Indeed, if α ∈ [0, 1), then

[n]qn
[n−1]qn

= 1−qnn
1−qn−1

n
→ 1 as n→∞

and, analogously, [n]qn/[n+ 1]qn → 1 as n→∞. On the other hand, if α = 1,
then it is easily seen that

lim
n→∞

[n]qn
n = lim

n→∞
[n−1]qn

n = lim
n→∞

[n+1]qn
n = 1,

whence (14) holds also in this case.

Theorem 5. Let (qn)n≥1 be a sequence in (0, 1) satisfying (12) and (13).
Then for every x ∈ [0, 1] and every function f ∈ C[0, 1] which is twice differ-
entiable at x one has

lim
n→∞

[n]qn

(
Mn,qnf(x)− f(x)

)
= x(1−x)(1−αx)

2 f ′′(x).

Proof. For all n ∈ N we have

Mn,qnek(x) = ek(x), k = 0, 1.

By Corollary 2, (12), (13) and (14) it follows that

lim
n→∞

[n]qn

(
Mn,qne2(x)− x2

)
= x(1− x)(1− αx).
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Further, let ψx be the function defined by ψx(t) := t− x. We have(
Mn,qnψ

4
x

)
(x) = Mn,qne4(x)− 4xMn,qne3(x) + 6x2Mn,qne2(x)− 3x4.

By Lemma 3, Lemma 4, (12), (13) and (14) it follows that

lim
n→∞

[n]qn

(
Mn,qnψ

4
x

)
(x) = 0.

Now the conclusion of the theorem is an immediate consequence of a standard
result (for instance [11, Theorem 3] or [17, Theorem 1]). �

Proof of Lemma 3. Clearly, the assertion holds for x = 1. For x ∈ [0, 1) we
have

Mn,qe3(x) = (1− x)n+1
q

∞∑
k=1

[
n+k
k

]
xk [k]3

[n+k]3

= x(1− x)n+1
q

∞∑
k=0

[
n+k
k

]
xk [k+1]2

[n+k+1]2
.

Following P. C. Sikkema [18] in his proof of Theorem 3, we notice that

[k+1]2

[n+k+1]2
= [k]2

[n+k]2
+ 2qk[n][k]

[n+k]2[n+k+1]
+ q2k[n]2

[n+k]2[n+k+1]2
.

Taking this into account, we deduce that

(15) Mn,qe3(x) = xMn,qe2(x) + Sn,q(x) + Tn,q(x),

where

Sn,q(x) := 2[n]x(1− x)n+1
q

∞∑
k=1

[
n+k
k

]
(qx)k [k]

[n+k]2[n+k+1]
,

Tn,q(x) := x(1− x)n+1
q

∞∑
k=0

[
n+k
k

]
(q2x)k [n]2

[n+k]2[n+k+1]2
.

Since

Sn,q(x) = 2[n]qx2(1− x)n+1
q

∞∑
k=0

[
n+k
k

]
(qx)k 1

[n+k+1][n+k+2]

and
1

[n+k+1] = 1
[n+k] −

qn+k

[n+k][n+k+1] ,

it follows that

(16) Sn,q(x) = Un,q(x)− Vn,q(x),
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where

Un,q(x) := 2qx2(1− x)n+1
q

∞∑
k=0

[
n+k
k

] (qx)k [n]
[n+k][n+k+2] ,

Vn,q(x) := 2qn+1x2(1− x)n+1
q

∞∑
k=0

[
n+k
k

] (q2x)k [n]
[n+k][n+k+1][n+k+2] .

Since

Un,q(x) = 2qx2(1− x)n+1
q

∞∑
k=0

[
n−1+k

k

]
(qx)k 1

[n+k+2]

and
1

[n+k+2] = 1
[n−1+k] −

[3]qn−1+k

[n−1+k][n+k+2] ,

we deduce that

Un,q(x) =
2qx2(1−x)(1−qnx)(1−qx)n−1

q

[n−1]

∞∑
k=0

[
n−2+k

k

]
(qx)k(17)

−Wn,q(x)

= 2qx2(1−x)(1−qnx)
[n−1] −Wn,q(x),

where

Wn,q(x) := 2[3]qnx2(1− x)n+1
q

∞∑
k=0

[
n−1+k

k

] (q2x)k

[n−1+k][n+k+2] .

By (15), (16) and (17) we get

Mn,qe3(x) = xMn,qe2(x) + 2qx2(1−x)(1−qnx)
[n−1](18)

−Wn,q(x)− Vn,q(x) + Tn,q(x).

Now we have

0 ≤Wn,q(x) ≤ 6
[n−1][n+2] (1− x)n+1

q

∞∑
k=0

[
n−1+k

k

]
(q2x)k(19)

≤ 6
[n−1][n+2] (1− x)nq

∞∑
k=0

[
n−1+k

k

]
xk

= 6
[n−1][n+2] ,

0 ≤ Vn,q(x) ≤ 2
[n+1][n+2] (1− x)n+1

q

∞∑
k=0

[
n−1+k

k

]
(q2x)k(20)

≤ 2
[n+1][n+2] (1− x)nq

∞∑
k=0

[
n−1+k

k

]
xk

= 2
[n+1][n+2] ,
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and

0 ≤ Tn,q(x) ≤ 1
[n+1]2

(1− x)n+1
q

∞∑
k=0

[
n+k
k

]
(q2x)k(21)

≤ 1
[n+1]2

(1− x)n+1
q

∞∑
k=0

[
n+k
k

]
xk

= 1
[n+1]2

.

By (18), (19), (20) and (21) we conclude that (10) and (11) hold. �

Proof of Lemma 4. Since this proof is similar to that of Lemma 3 and follows
the same lines, we omit it. �
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