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EXACT INEQUALITIES INVOLVING POWER MEAN, ARITHMETIC

MEAN AND IDENTRIC MEAN∗
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Abstract. For p ∈ R, the power mean Mp(a, b) of order p, identric mean I(a, b)
and arithmetic mean A(a, b) of two positive real numbers a and b are defined by

Mp(a, b) =


(

ap+bp

2

)1/p
, p 6= 0,

√
ab, p = 0,

I(a, b) =

 1
e

(
bb/aa

)1/(b−a)

, a 6= b,

a, a = b,

and A(a, b) = (a + b)/2, respectively.
In the article, we answer the questions: What are the least values p, q and

r, such that inequalities A1/2(a, b)I1/2(a, b) ≤ Mp(a, b), A(a, b)1/3I2/3(a, b) ≤
Mq(a, b) and A2/3(a, b)I1/3(a, b) ≤Mr(a, b) hold for all a, b > 0?

MSC 2000. 26E60.

Keywords. Power mean, identric mean, arithmetic mean.

1. INTRODUCTION

For p ∈ R, the power mean Mp(a, b) of order p and the identric mean I(a, b)
of two positive real numbers a and b are defined by

(1.1) Mp(a, b) =

{(
ap+bp

2

)1
p , p 6= 0,√

ab, p = 0

and

(1.2) I(a, b) =

1
e

(
bb

aa

) 1
b−a

, a 6= b,

a, a = b,

respectively.
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It is well-known that Mp(a, b) is continuous and strictly increasing with
respect to p ∈ R for fixed a, b > 0 with a 6= b. Recently, both mean values
have been the subject of intensive research. In particular, many remarkable
inequalities for Mp(a, b) and I(a, b) can be found in literature [1-24].

Let A(a, b) = (a+b)/2, L(a, b) = (b−a)/(log b− log a)(b 6= a) and L(a, a) =

a, G(a, b) =
√
ab and H(a, b) = 2ab/(a + b) be the arithmetic, logarithmic,

geometric and harmonic means of two positive numbers a and b, respectively.
Then

min{a, b} ≤ H(a, b) = M−1(a, b) ≤ G(a, b) = M0(a, b) ≤ L(a, b)(1.3)

≤ I(a, b) ≤ A(a, b) = M1(a, b) ≤ max{a, b}.
In [25], Alzer and Janous established the following sharp double inequality

Mlog 2/ log 3(a, b) ≤ 2
3A(a, b) + 1

3G(a, b) ≤M2/3(a, b)

for all a, b > 0.
In [26-28], the authors presented the bounds for L and I in terms of A and

G as follows

G2/3(a, b)A1/3(a, b) ≤ L(a, b) ≤ 2
3G(a, b) + 1

3A(a, b)

and
1
3G(a, b) + 2

3A(a, b) ≤ I(a, b)

for all a, b > 0.
The following companion of (1.3) provides inequalities for the geometric and

arithmetic means of L and I, the proof can be found in [29].

G1/2(a, b)A1/2(a, b) ≤ L1/2(a, b)I1/2(a, b) ≤ 1
2L(a, b) + 1

2I(a, b)

≤ 1
2G(a, b) + 1

2A(a, b)

for all a, b > 0.
The following sharp bounds for L, I, (LI)1/2, and (L + I)/2 in terms of

power means Mp(a, b) are proved in [29-35].

L(a, b) ≤M1/3(a, b), M2/3(a, b) ≤ I(a, b) ≤Mlog 2(a, b),

M0(a, b) ≤
√
L(a, b)I(a, b) ≤M1/2(a, b),

and
1
2 (L(a, b) + I(a, b)) < M1/2(a, b)

for all a, b > 0.
Alzer and Qiu [36] proved

Mc(a, b) ≤ 1
2L(a, b) + 1

2I(a, b)

for all a, b > 0 with the best possible parameter c = log 2/(1 + log 2).
The main purpose of this paper is to answer the questions: What are the

least values p, q and r, such that inequalities A1/2(a, b)I1/2(a, b) ≤ Mp(a, b),

A(a, b)1/3I2/3(a, b) ≤ Mq(a, b) and A2/3(a, b)I1/3(a, b) ≤ Mr(a, b) hold for all
a, b > 0?
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2. LEMMAS

In order to establish our main results, we need a lemma, which we present
in this section.

Lemma 2.1. Let

g(t) = (1− r)(tp+1 + tp + t+ 1) log t+ (2r − 1)tp+1−
− 2rtp + tp−1 − t2 + 2rt+ 1− 2r.

If (r, p) =
{

(1
3 ,

7
9), (2

3 ,
8
9), (1

2 ,
5
6)
}
, then there exists λ ∈ (1,+∞), such that

g(t) > 0 for t ∈ (1, λ) and g(t) < 0 for t ∈ (λ,+∞).

Proof. Let g1(t) = t1−pg′(t), g2(t) = tpg′1(t), g3(t) = t1−pg′2(t), g4(t) =
t3g′3(t), g5(t) = tp−2g′4(t), g6(t) = t3g′5(t), g7(t) = t1−pg′6(t), and g8(t) =
tpg′7(t). Then simple computations lead to

g(1) = 0,(2.1)

lim
t→+∞

g(t) = −∞,(2.2)

g1(t) = (1− r)[t1−p + (1 + p)t+ p] log t− 2t2−p + (1 + r)t1−p

+(1− r)t−p + (2pr − p+ r)t− (1− p)t−1 − 2pr − r + 1,

g1(1) = 0,(2.3)

lim
t→+∞

g1(t) = −∞,(2.4)

g2(t) = (1− r)[(1 + p)tp + 1− p] log t+ (pr + 1)tp + p(1− r)tp−1

+(1− p)tp−2 − 2(2− p)t− p(1− r)t−1 − pr − p+ 2,

g2(1) = 0,(2.5)

lim
t→+∞

g2(t) = −∞.(2.6)

g3(t) = p(1 + p)(1− r) log t− 2(2− p)t1−p + (1 + p)(1− r)t−p

+p(1− r)t−1−p − p(1− p)(1− r)t−1 − (1− p)(2− p)t−2

+p2r − pr + 2p− r + 1,

g3(1) = 6p− 4− 2r = 0,(2.7)

lim
t→+∞

g3(t) = −∞,(2.8)

g4(t) = p(1− r)[(1 + p)t2 + (1− p)t− (1− p)t2−p − (1 + p)t1−p]

−2(1− p)(2− p)(t3−p − 1),

g4(1) = 0,(2.9)

lim
t→+∞

g4(t) = −∞,(2.10)

g5(t) = p(1− r)[2(1 + p)tp−1 + (1− p)tp−2 − (1− p)(2− p)t−1

−(1 + p)(1− p)t−2]− 2(1− p)(2− p)(3− p),
g5(1) = 4(1− r)p2 − 2(1− p)(2− p)(3− p),(2.11)
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lim
t→+∞

g5(t) = −2(1− p)(2− p)(3− p) < 0,(2.12)

g6(t) = p(1− r)[−2(1 + p)(1− p)tp+1 − (1− p)(2− p)tp

+(1− p)(2− p)t+ 2(1 + p)(1− p)],
g6(1) = 0,(2.13)

g7(t) = p(1− p)(1− r)[(2− p)t1−p − 2(1 + p)2t− p(2− p)],
g7(1) = −p2(1− p)(7 + p)(1− r) < 0,(2.14)

g8(t) = p(1− p)(1− r)[−2(1 + p)2tp + (1− p)(2− p)],(2.15)

and

g8(1) = −p2(1− p)(7 + p)(1− r) < 0.(2.16)

From (2.11) we know that g5(1) = 296
729 if (r, p) = (1

3 ,
7
9), g5(1) = 388

729 if

(r, p) = (2
3 ,

8
9), and g5(1) = 119

729 if (r, p) ∈ (1
2 ,

5
6). Therefore

g5(1) > 0(2.17)

for (r, p) =
{

(1
3 ,

7
9), (2

3 ,
8
9), (1

2 ,
5
6)
}

.
From (2.15) we clearly see that g8(t) is strictly decreasing in [1,+∞), then

(2.16) implies that g8(t) < 0 for t ∈ [1,+∞). Hence that g7(t) is strictly
decreasing in [1,+∞).

From (2.14) and the monotonicity of g7(t) we know that g7(t) < 0 for
t ∈ [1,+∞). Hence g6(t) is strictly decreasing in [1,+∞).

From (2.13) and the monotonicity of g6(t) we know that g6(t) < 0 for
t ∈ [1,+∞). Hence that g5(t) is strictly decreasing in [1,+∞).

Inequalities (2.12) and (2.17) together the monotonicity of g5(t) imply that
there exists t0 ∈ (1,+∞), such that g5(t) > 0 for t ∈ (1, t0) and g5(t) < 0 for
t ∈ (t0,+∞). Hence g4(t) is strictly increasing in [1, t0] and strictly decreasing
in [t0,+∞).

From equations (2.9) and (2.10) together with the monotonicity of g4(t) we
clearly see that there exists t1 ∈ (1,+∞), such that g4(t) > 0 for t ∈ (1, t1)
and g4(t) < 0 for t ∈ (t1,+∞). Hence g3(t) is strictly increasing in [1, t1] and
strictly decreasing in [t1,+∞).

Equations (2.7) and (2.8) together with the monotonicity of g3(t) imply that
there exists t2 ∈ (1,+∞), such that g3(t) > 0 for t ∈ (1, t2) and g3(t) < 0 for
t ∈ (t2,+∞). Hence g2(t) is strictly increasing in [1, t2] and strictly decreasing
in [t2,+∞).

It follows from equations (2.5) and (2.6) together with the monotonicity of
g2(t) that there exists t3 ∈ (1,+∞), such that g2(t) > 0 for t ∈ (1, t3) and
g2(t) < 0 for t ∈ (t3,+∞). Hence g1(t) is strictly increasing in [1, t3] and
strictly decreasing in [t3,+∞).

Equations (2.3) and (2.4) together with the monotonicity of g1(t) lead to the
conclusion that there exists λ5 ∈ (1,+∞), such that g1(t) > 0 for t ∈ (1, t4)
and g1(t) < 0 for t ∈ (t4,+∞). Hence g(t) is strictly increasing in [1, t4] and
strictly decreasing in [t4,+∞).
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Therefore, Lemma 2.1 follows from equations (2.1) and (2.2) together with
the monotonicity of g(t). �

3. MAIN RESULTS

Theorem 3.1. For all a, b > 0 one has

A1/3(a, b)I2/3(a, b) ≤M7/9(a, b),

A2/3(a, b)I1/3(a, b) ≤M8/9(a, b),

and

A1/2(a, b)I1/2(a, b) ≤M5/6(a, b),

each inequality holds equality if and only if a = b, and the parameters 7/9, 8/9
and 5/6 in each inequality cannot be improved.

Proof. If a = b, then we clearly see that

A1/2(a, b)I1/2(a, b) = M5/6(a, b) = A1/3(a, b)I2/3(a, b) = M7/9(a, b)

= A2/3(a, b)I1/3(a, b) = M8/9(a, b) = a.

If a 6= b, without loss of generality, we assume that a > b. Let (α, p) =
{(1/3, 7/9), (2/3, 8/9), (1/2, 5/6)} and t = a/b > 1, then (1.1) and (1.2) lead
to

(3.1) Mp(a, b)−Aα(a, b)I1−α(a, b) = b

[(
tp+1

2

)1/p−( t+1
2

)α(1
e · t

t
t−1

)1−α
]
.

Let

f(t) = 1
p log 1+tp

2 − α log t+1
2 − (1− α) t

t−1 log t+ (1− α),

then

lim
t→1+

f(t) = 0,(3.2)

lim
t→∞

f(t) = (1− α) + (α− 1
p) log 2(3.3)

and

f ′(t) = g(t)
(t+1)(t−1)2(tp+1)

,(3.4)

where

g(t) = (1− α)(tp+1 + tp + t+ 1) log t

+ (2α− 1)tp+1 − 2αtp + tp−1 − t2 + 2αt+ 1− 2α.

From (3.3) we know that lim
t→∞

f(t) = 2(7 − 10 log 2)/21 > 0 if (α, p) =

(1
3 ,

7
9), lim

t→∞
f(t) = (8 − 11 log 2)/24 > 0 if (α, p) = (2

3 ,
8
9), and lim

t→∞
f(t) =

(5− 7 log 2)/10 > 0 if (α, p) = (1
2 ,

5
6). Hence we get

lim
t→∞

f(t) > 0.(3.5)
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Equation (3.4) and Lemma 2.1 lead to the conclusion that there exists
λ ∈ (1,+∞), such that f(t) is strictly increasing in [1, λ] and strictly decreasing

in [λ,+∞). Therefore, A1/3(a, b)I2/3(a, b) < M7/9(a, b), A2/3(a, b)I1/3(a, b) <

M8/9(a, b), and A1/2(a, b)I1/2(a, b) < M5/6(a, b) for all a, b > 0 with a 6= b
follow from (3.1), (3.2), (3.5) and the monotonicity of f(t).

Next, we prove that the parameters 7/9, 8/9 and 5/6 in each inequality
cannot be improved.

For any 0 < ε < 7/9, 0 < x < 1 and x→ 0, making use of Taylor expansion
one has

log
[
A1/2(1, 1 + x)I1/2(1, 1 + x)

]
− logM5/6−ε(1, 1 + x)(3.6)

= 1
2 log(1 + x

2 ) + 1+x
2x log(1 + x)− 1

2 −
6

5−6ε log 1+(1+x)5/6−ε

2

= ε
8x

2 + o(x2),

log
[
A1/3(1, 1 + x)I2/3(1, 1 + x)

]
− logM7/9−ε(1, 1 + x)(3.7)

= 1
3 log(1 + x

2 ) + 2(1+x)
3x log(1 + x)− 2

3 −
9

7−9ε log 1+(1+x)7/9−ε

2

= ε
8x

2 + o(x2)

and

log
[
A2/3(1, 1 + x)I1/3(1, 1 + x)

]
− logM8/9−ε(1, 1 + x)(3.8)

= 2
3 log(1 + x

2 ) + 1+x
3x log(1 + x)− 1

3 −
9

8−9ε log 1+(1+x)8/9−ε

2

= ε
8x

2 + o(x2).

Equations (3.6)–(3.8) imply that for any 0 < ε < 7/9, there exists 0 < δ =
δ(ε) < 1, such that

A1/2(1, 1 + x)I1/2(1, 1 + x) > M5/6−ε(1, 1 + x),

A1/3(1, 1 + x)I2/3(1, 1 + x) > M7/9−ε(1, 1 + x)

and
A2/3(1, 1 + x)I1/3(1, 1 + x) > M8/9−ε(1, 1 + x)

for x ∈ (0, δ). �
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