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Abstract. The convergence condition for the simultaneous inclusion methods

is w(0) < c(a, b, n)d(0), where w(0) is the maximum Weierstrass factor W
(0)
k ,

k ∈ In, and d(0) is the minimum distance between z
(0)
1 , z

(0)
2 , . . . z

(0)
n , the distinct

approximations of the simple roots of the polynomial ζ1, ζ2, . . . ζn. The i-factor
(inequality-factor) is the positive real function c(a, b, n) = 1

an+b
. The article

presents the optimum i-factor for the simultaneous inclusion methods Durand–
Kerner and Tanabe.
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1. INTRODUCTION

Let

(1) P (z) = zn + an−1z
n−1 + · · ·+ a1z + a0, ak ∈ C , k ∈ I∗n−1 ,

be a polynomial, where I∗n−1 = {0, 1, . . . , n− 1} and let

(2) P (z) = 0 ,

be its attached algebraic equation.
Abel’s impossibility theorem states that: “In general, polynomial equations

higher than fourth degree are incapable of algebraic solution in terms of a
finite number of additions, subtractions, multiplications, divisions, and root
extractions”, [1]. This was also shown by Ruffini in 1813, [11, pp. 59].

Galois theorem states the same thing, namely that: “An algebraic equation
is algebraically solvable necessary and sufficient its group is solvable. In or-
der that an irreducible equation of prime degree be solvable by radicals, it is
necessary and sufficient that all its roots be rational functions of two roots”,
[18, 27].
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Modern softwares such as Maple, Mathematica, Mathcad or Matlab solve
the algebraic equation of degree 2, 3 and 4 using symbolic computation and
classical formulas for the second degree equation or Cardano’s formulas, [14,
pp. 282-284] and Ferrari–Cardano, [14, pp. 284-287] for the 3rd and 4th

degree equations. This methods always give the exact solutions but have the
disadvantage that, sometimes, the solutions have a complicated representation.

Arbitrary-precision calculus in Mathcad prints the solution with up to 250
decimals, while Mathematica, [33] permits the display of any number of dec-
imals for a result. Computing a result with n exact decimals is equivalent
to finding the solution of the equation (2) with a numerical method with the
precision 10−n.

Therefore obtaining the solutions for an algebraic equation of degree 2, 3
and 4 is a solved problem. According to Abel’s impossibility theorem, in
general for equation of degree greater than 4, we need to apply a numerical
method to approximate the solutions.

Let us denote by dn = {n, n+ 1, . . .}, n ∈ N the polynomial degree greater
or equal n.

2. SIMULTANEOUS METHODS WITH CORRECTIONS

Since k ∈ In = {1, 2, . . . , n} we denote∑
Wj

ẑk−zj =
n∑
j=1

Wj

ẑk−zj ,
∏
j 6=k

(zk − zj) =
n∏
j=1
k 6=j

(zk − zj),

max |Wk| = max
k∈In
|Wk| , min

k<j
|zk − zj | = min

k,j∈In
k<j

|zk − zj | ,

Weierstrass correction factor is denoted by

(3) Wk = W (zk) = P (zk)∏
j 6=k

(zk − zj)
,

where zk is the approximation for the simple zero ζk of the polynomial (1), w
is the absolute maximum value of the Weierstrass correction factors and d the
minimum distance between two approximations z1, z2, . . . , zn.

w = max |Wk| , d = min
k<j
|zk − zj | .

We will also note by z, w, d, W the current iteration z(m), w(m), d(m), W (m)

and by ẑ, ŵ, d̂, Ŵ the next iteration z(m+1), w(m+1), d(m+1), W (m+1).
We will consider a class C of simultaneous method with corrections, C(z) =

P (z)/F (z), with F (z) 6= 0 for any zero ζk with k ∈ In, of polynomial P , and

for any approximation z
(m)
k with k ∈ In and m = 0, 1, . . . obtained by the

iterative process. We will denote by

(4) C
(m)
k = Ck(z

(m)
1 , z

(m)
2 , . . . , z

(m)
k ),
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the correction factor for the mth iteration. The vast majority of the iterative
methods that simultaneously approximate the simple zeros of an polynomial
can be expressed as:

(5) z
(m+1)
k = z

(m)
k − C(m)

k , k ∈ In m = 0, 1, . . . ,

where z
(m)
1 , z

(m)
2 , . . ., z

(m)
n are distinct approximations of the simple zeros ζ1,

ζ2, . . . , ζn.
We try to find a convergence condition of the form w < c(n)d, where c(n) is

a real positive function that depends on n (the polynomial degree) asymptotic
to the function φ(n) = 1/(n + 2

√
n− 1) or ψ(n) = 1/(2n). We consider the

initial condition satisfied

(6) w(0) < c(n)d(0).

The function c(n) is called the i-factor (inequality factor) in [20], [31] and
many other works, and it depends on the degree n of the polynomial. For the
choice of c(n), Petković and its collaborators propose that c(n) has the form:

(7) c(n) = c(a, b, n) = 1
an+b with a, b ∈ R+.

Theorem 1. Let ηk = zk −Wk ∈ C\ {z1, z2, . . . , zn} and set

γk = |Wk| ·max
j 6=k
|zj − ηk|−1 , σk =

∑
j 6=k

|Wj |
|zj−σk| , k ∈ In.

If
√

1 + γk >
√
γk +

√
σk, then there is exactly one zero of P in the disk

centered in ηk and of radius

|Wk| ·
(

1− 2(1−2σk−γk)

1−σk−2γk+
√

(1−σk−2γk)2+4σk(1−2σk−γk)2

)
.

If

(8)
√

1 + γk >
√
γk +

√
σk and γk + 2σk < 1,

then there is exactly one zero of P , in disk centered in ηk and of radius

|Wk| γk+σk
1−σk .

Proof. See [12] and [5, 8, 13]. �

Theorem 2. If the i-factor c(n) appearing in (6) is

(9) c(n) < φ(n) = 1
n+2
√
n−1

and c(n) < ψ(n) = 1
2n ,

then both inequalities (8) hold and the minimal radius of the inclusion disk
given in Theorem 1 is not greater than |Wk|.

Proof. See [31, T 1.5.]. �
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Theorem 3. Let c(a, b, n) = 1
an+b , a ≥ 2, b > (2− a)n, and let us assume

that w < c(a, b, n)d, holds. Then for n ∈ d3, the disks

D1 = D
(
z1 −W1; n

(a−1)n+b |W1|
)
, . . . , Dn = D

(
zn −Wn; n

(a−1)n+b |Wn|
)

are mutually disjoint and each of then contain unique zero of P .

Proof. See [31, T 1.6]. �

Corollary 4. Under the conditions of Theorem 3, each of disks D∗k defined
by

D∗k = D
(
zk −Wk;

n
(a−1)n+b |Wk|

)
(10)

= D
(
zk;

1
1−nc(a,b,n) |Wk|

)
, k ∈ In

contains exactly one zero of P .

Proof. See [31, Corollary 1.1]. �

Let g : (0, 1)→ R

(11) g(t) =

{
1 + 2t, 0 < t ≤ 1

2 ,
1

1−t ,
1
2 < t < 1.

Lemma 5. Let

sm(t) = tm +
m∑
k=0

tk , t ∈ (0, 1), m = 1, 2, . . . .

Then sm(t) < g(t).

Proof. Proof is elementary. �

Theorem 6. Let the iterative method (5) have the iterative correction of the

form (4) and let z
(0)
1 , z

(0)
2 , . . . z

(0)
n be distinct initial approximations of zeros

for the polynomial P . If there exists a real number β such that the following
two inequalities:

(1)
∣∣∣C(m+1)

k

∣∣∣ ≤ β ∣∣∣C(m)
k

∣∣∣ , for m = 0, 1, . . .,

(2)
∣∣∣z(0)
k − z

(0)
j

∣∣∣ > g(β)
(∣∣∣C(0)

k

∣∣∣+
∣∣∣C(0)

j

∣∣∣) , for k 6= j, k, j ∈ In,

are valid, then the iterative method (5) is convergent.

Proof. See [31, T 3.1]. �

All the simultaneous inclusion methods convergence theorems try to de-
termine the values of a and b such that the initial condition (6) assures the
convergence for the method. We try to find the optimum values for a and b,
namely an optimum i-factor for every simultaneous method with corrections,
[31, pp. 80-81], [30].
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Let us consider the nonlinear general problem with restrictions for simulta-
neous inclusion methods with the disks

(12) Dk = D
(
ẑk; |Ck|

)
, k ∈ In,

(13)



max c(a, b, n) maximization,
a > 1, b ≥ 0, n ∈ d5 defining c,
c(a, b, n) ≤ φ(n) asymptotic condition to φ(n),

0 < λ(a, b, n) < 1
2 ⇒ |Ck| ≤ λ(a,b,n)

c(a,b,n) |Wk| ,
0 < δ(a, b, n) < 1 ⇒ lim

m→∞

∣∣∣W (m)
k

∣∣∣ = 0,

0 < β(a, b, n) < 1 ⇒ lim
m→∞

∣∣∣C(m)
k

∣∣∣ = 0,

θ(a, b, n) ≤ 1 ⇒ if w ≤ c(a, b, n)d⇒ ŵ ≤ c(a, b, n)d̂,
η(a, b, n) < 0 ⇒ Dk ∩Dj = ∅,

for k, j ∈ In. The function φ(n) is given by (9). Functions δ, β, θ and η are
defined by

(14)



λ = λ(c, n) ,

Π(λ, n) =
(

1 + λ
1−2λ

)n−1
,

δ(λ, c, n) = µδ(λ, c, n) ·Π(λ, n) ,
β(λ, c, n) = µβ(λ, c, n) · δ(λ, c, n) ,
µθ(λ) = 1

1−2λ ,

θ(λ, c, n) = µθ(λ) · β(λ, c, n) ,
η(λ, c, n) = 2λ− 1

g
(
β(λ,c,n)

) .
The functions λ, µδ, µβ, will be defined for every inclusion method from the
lemmas and convergence theorems. The functions λ depend on c and n while
c depends on a b and n. The function g is given in (11).

Let us consider the nonlinear general problem with restrictions for simulta-
neous inclusion methods with the disks D∗k given by (10):

(15)



max c(a, b, n) maximization,
a ≥ 2, b ≥ 0, n ∈ d5 defining c,
c(a, b, n) ≤ ψ(n) asymptotic condition to ψ(n),

0 < λ(a, b, n) < 1
2 , ⇒ |Ck| ≤ λ(a,b,n)

c(a,b,n) |Wk| ,
0 < δ(a, b, n) < 1 ⇒ lim

m→∞

∣∣∣W (m)
k

∣∣∣ = 0,

0 < β(a, b, n) < 1 ⇒ lim
m→∞

∣∣∣C(m)
k

∣∣∣ = 0,

θ(a, b, n) ≤ 1 ⇒ if w ≤ c(a, b, n)d⇒ ŵ ≤ c(a, b, n)d̂,

for k, j ∈ In, where functions are defined by (14).

Proposition 7. If the functions f1, f2 : I ⊂ R → R+ are monotonically
increasing (monotonically decreasing), then the function f : I ⊂ R → R+,
f(t) = f1(t) · f2(t) is monotonically increasing (monotonically decreasing).
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Proof. If the functions f1, f2 are positive and increasing (strictly increasing),
then f ′1(t), f ′2(t) ≥ 0, (> 0), and f ′(t) = f ′1(t) · f2(t) + f1(t) · f ′2(t) ≥ 0, (> 0).
Then it follows that the function f(t) is increasing (strictly increasing). �

Remark 8.

(1) If the functions µβ(a, b, n) and µθ(a, b, n), are monotonically and ≥ 1,
then we have δ(a, b, n) ≤ β(a, b, n) ≤ θ(a, b, n).

(2) If the function Π = Π(a, b, n) ↗ it is necessary for the functions δ =
δ(a, b, n) ↗, β = β(a, b, n) ↗ and θ = θ(a, b, n) ↗. These involve the
followings:
• If Π↗, then is necessary that : µδ ↗ for as δ = µδΠ↗.
• If δ ↗, then is necessary that: µβ ↗ for as β = µβδ ↗ or if µβ ↘,

then µβδ = µβµδ ↗ for as β = µβδΠ↗.
• If β ↗, then is necessary that: µθ ↗ for as θ = µθβ ↗ or if µθ ↘,

then:
◦ µβδ = µβµδ ↗ for as θ = µβδδ ↗ or if µβδ ↘, then:
◦ µθβδ = µθµβµδ ↗ for as θ = µθβδΠ↗.

The following notations where used: µδ = µδ(a, b, n), µβ = µβ(a, b, n), µθ =
µθ(a, b, n).

If Π = Π(a, b, n)↘ then we have conditions similar to the case ↗. �

Lemma 9. The function Π(λ, n) is strictly increasing if λ(n) < Λ(n) and
strictly decreasing if λ(n) > Λ(n), where

(16) Λ(n) = 1− n−1√e
1−2 n−1√e .

Proof. If we derive the function Π(λ, n) in respect to the variable n we
obtain

∂
∂nΠ(λ, n) =

[
(n− 1)λ′(n)+

(
1− 2λ(n)

)(
1−λ(n)

)
ln
(

1−λ(n)
1−2λ(n)

)]
×
(

1−λ(n)
1−2λ(n)

)n
.

Since λ(n) ∈ (0, 1
2), under the constraints of nonlinear problems with restric-

tions (13) and (15), we have that(
1−λ(n)
1−2λ(n)

)n
=
(

1 + λ(n)
1−2λ(n)

)n
> 0.

The solution of differential equation

λ′(n) = − 1
n−1

(
1− 2λ(n)

)(
1− λ(n)

)
ln
(

1−λ(n)
1−2λ(n)

)
,

is Λ(n), given by (16). Then:

• if λ(n) < Λ(n), for n ∈ d5, then Π(λ, n) is increasing,
• if λ(n) > Λ(n), for n ∈ d5, then Π(λ, n) is decreasing.

�



134 Octavian Cira and Cristian Mihai Cira 7

3. THE DURAND–KERNER’S METHOD

Durand Kerner method, [3, 6], or Weierstrass-Docev method, [2, 4], [15] is
defined by

(17) z
(m+1)
k = z

(m)
k −W (m)

k for k ∈ In and m = 0, 1, . . . .

This method is part of the correction methods of form Ck = Wk = P (zk)
Fk(z)

where

Fk(z) = Fk(z1, z2, . . . , zn) =
∏
j 6=k

(zk − zj) , k ∈ In.

3.1. Durand–Kerner’s method convergence. Proof of Durand–Kerner’s
method convergence requires the next lemma and theorem.

Lemma 10. Let z1, z2, . . . , zn be distinct approximations and let initial
conditions

w ≤ c(a, b, n)d,

(18) 0 < c(a, b, n) < 1
2 ,

(19) θ(a, b, n) = δ(a,b,n)
1−2c(a,b,n) ≤ 1,

where

(20) δ(a, b, n) = (n−1)c(a,b,n)
1−c(a,b,n)

(
1 + c(a,b,n)

1−2c(a,b,n)

)n−1
.

hold. Then:

(1)
∣∣∣Ŵk

∣∣∣ ≤ δ(a, b, n) |Wk|,

(2) ŵ ≤ c(a, b, n)d̂.

Proof. See [31, Lemma 3.3.]. �

Theorem 11. Let the i-factor

(21) cP (n) = 1
1.76325n+0.8689425 ,

then the Durnad-Kerner method is convergent if the initial condition is satis-
fied, namely if

w(0) < cP (n)d(0).

Proof. See [31, T 3.3.]. �

Petković in [31, pp. 80] stated that the i–factor is “almost optimum”.
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3.2. The analytically optimum i-factor for Durand–Kerner’s method
with inclusion disks Dk. These inclusion disks are Dk = D(ẑk, |Ck|), where
for Durand-Kerner method the corrections Ck are Weierstrass factors Wk.

The solution for the Lambert equation, xex = 1, [32, LambertW-Function],
[19], is denoted by W (1). The constant 1/W (1), is called omega constant [32,
OmegaConstant], [32, A030178] prints 59 decimals for the constant W (1),

W (1) ≈ 0.56714329040978387299996866221 . . . .

Next 1/W (1) will be denoted by ω,

ω ≈ 1.76322283435189671022520177695 . . . .

Let the constant

(22) τ ≈ 0.88049674007368891 . . . ,

be the real solution of

(23) b3 + (11ω − 3)b2 + (35ω2 − 30ω + 2)b+ 25ω3 − 75ω2 + 18ω = 0.

For Durand–Kerner’s method we have the function c(a, b, n), given by (7),
and the functions:

(24)


λ(c) = c,

µδ(λ, n) = (n−1)λ
1−λ ,

µβ = 1,

resulting from Lemma 10 relations (19) and (20), and the functions δ, β, µθ,
θ and η are defined in (14).

Proposition 12. If b > h(a, 5), then the function λ(a, b, n) = c(a, b, n) <
Λ(n), where

h(a, n) = 1
Λ(n) − an

and Λ is given by (16).

Proof. The function

(25) h(a, n) = 1− n−1√e
1−2 n−1√e − an,

is decreasing, because

h′(a, n) = ∂
∂nh(a, n) = 1(

2(n−1) sinh
(

1
2(n−1)

))2 − a < 0,

for a > 1 and n ∈ d5. Then, if b > h(a, 5) resulting that λ(a, b, n) < Λ(n). �

Lemma 13. Let the i-factor

(26) c(n) = c(ω, τ, n) = 1
ωn+τ ,

then:

(1) 0 < λ(ω, τ, n) < 0.10313,
(2) 0.707 < δ(ω, τ, n) < 1,
(3) 0.944 < θ(ω, τ, n) < 1
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(4) η(ω, τ, n) < 0,

for n ∈ d5.

Proof. The derivative function λ(a, b, n) = c(a, b, n) with respect to n is

− a
(an+b)2

< 0,

which implies that the functions c and λ are strictly decreasing. For

λ(ω, τ, n) = c(ω, τ, n)

we have

lim
n→∞

λ(ω, τ, n) = 0 and λ(5) = 1
5ω+τ ≈ 0.10312881573707708 . . . < 1

2 ,

then we have (1) of lemma.
If the function λ(a, b, n) → 0, then the function Π(λ(a, b, n), n) converges

and we have

lim
n→∞

Π
(
λ(a, b, n), n

)
= lim

n→∞
Π(a, b, n) = e

1
a ,

for a > 1. In these conditions we have that

lim
n→∞

δ(a, b, n) = 1
ae

1
a and lim

n→∞
θ(a, b, n) = 1

ae
1
a .

Since µθ(a, b, n) = (an + b)/(an + b − 2) > 1 it follows that θ(a, b, n) >
β(a, b, n) = δ(a, b, n). Imposing the inequality θ(a, b, n) ≤ 1 it follows that the
equation

e
1
a
a = 1.

This equation is a Lambert type equation, [19], whose solution is the constant
ω.

The function µδ(ω, b, n) = (n− 1)/(an+ b− 1) is increasing, because

∂
∂nµδ(ω, b, n) = ω+b−1

(ωn+b−1)2
> 0,

for b > 1− ω ≈ −0.7632228 . . . and n ∈ d5.
Under Lemma 9 and Proposition 12, for function Π(ω, b, n) to be increasing

it is necessary that b > h(ω, 5) ≈ −3.295 . . ., where h is given by (25). Then,
it follows that δ(ω, b, n)↗ 1, for b ≥ 0 when n→∞.

The derivative for the function µθ(ω, b, n) is

∂
∂nµθ(ω, b, n) = −2ω

(ωn+b−2)2
< 0.

Therefore we can not say that the function θ(ω, b, n) = µθ(ω, b, n)δ(ω, b, n) is
increasing on Proposition 7. But the function θ(a, b, n) can be expressed as

(27) θ(a, b, n) = µθ(a, b, n)δ(a, b, n) = µθ(a, b, n)µδ(a, b, n)Π(a, b, n).

Using the notation µθδ(a, b, n) = µθ(a, b, n)µδ(a, b, n), it follows that

(28) µθδ(a, b, n) = (n− 1) an+b
(an+b−1)(an+b−2)
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and

(29) µ′θδ(a, b, n) = ∂
∂nµθδ(a, b, n) = P3(a,b,n)

(an+b−1)2(an+b−2)2
.

Thus we have the polynomial

(30) P3(a, b, n) = b3 + α2(a, n)b2 + α1(a, n)b+ α0(a, n),

with coefficients

(31)
α2(a, n) = (2n+ 1)a− 3,
α1(a, n) = n(n+ 2)a2 − 6na+ 2,
α0(a, n) = a(n2a2 − 3n2a+ 4n− 2),

where

α2(a, n) ≥ 0 for a ≥ 3
11 and n ∈ d5,

α1(a, n) ≥ 0 for a /∈
(

3
7 −

√
31
7 ,

3
7 +

√
31
7

)
≈ (0.073, 0.748) and n ∈ d5,

α0(a, n) ≤ 0 for a ∈
(

3
2 −

3
√

17
10 , 3

2 + 3
√

17
10

)
≈ (0.263, 2.737) and n ∈ d5.

Then, according to Cauchy’s theorem, [29, pp. 3], the equation P3(a, b, n) = 0
has a unique positive real root, in relation to b. The greatest root results for
n = 5. For a = ω and n = 5 we have the equation (23). For a = ω and n = 6
we have the solution ≈ 0.92989 . . ., for a = ω and n = 7 we have the solution
≈ 0.96706 . . . and so on.

Then it follows that µθδ(ω, b, n) is strictly increasing if µ′θδ(ω, b, 5) > 0. We
have this inequality if b > τ ≈ 0.8804967400681223 . . . is true. The function
θ(ω, b, n) is the product of two positive and increasing functions, Π(ω, b, n) and
µθδ(ω, b, n). If b > τ , then, according to Proposition 7, the function θ(ω, b, n)
is strictly increasing.

We compute the function values δ and θ for n = 5,

δ(ω, τ, 5) ≈ 0.7497422461897223 . . . ,

θ(ω, τ, 5) ≈ 0.9445662420442020 . . . .

Because functions δ and θ are strictly increasing resulting that claims the
second and the third from the lemma are true.

For Durand–Kerner’s method we have δ(a, b, n) = β(a, b, n), when taking
into account (2) of the lemma and the definition of function g, given by (11),
we have

η(ω, τ, n) = 2λ(ω, τ, n) + β(ω, τ, n)− 1 = 2λ(ω, τ, n) + δ(ω, τ, n)− 1.

To demonstrate that η(ω, τ, n) < 0, for n ∈ d5, but this relation is equivalent
to θ(ω, τ, n) < 1, for n ∈ d5, relation that has already been demonstrated. �

Theorem 14. The function c(n) given by (26) is the optimum i-factor for
Durand–Kerner’s method with inclusion disks Dk, given by (12).
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Proof. Since ω was computed from the limit condition

1
ω e

1
ω = 1,

and τ from the extreme condition, namely τ is the real solution for the equa-
tion, it implies that ω and τ are the best values for the given conditions. We
can then state that c(n) given by (26) is the optimum i-factor for Durand–
Kerner’s method. �

Theorem 15. If the initial distinct approximations z
(0)
1 , z

(0)
2 , . . . , z

(0)
n satisfy

the initial condition

(32) w(0) < c(n)d(0) ,

for n ∈ d5, where c given by (26), then the Durand-Kerner method with in-
clusion disks Dk, given by (12), is convergent.

Proof. The conclusions in the Lemma 13 assure that the conclusions of
Lemma 10 are satisfied, which, in turn assure the convergence of the Durand-
Kerner method if the initial condition is verified (32). �

Remark 16. If n ∈ d3, case considered by Petković et al., a = ω and b = τ3,
where τ3 is the solution for the equation µ′θδ(ω, b, 3) = 0, and the function µ′θδ
is given by (29). So we have

b3 + (7ω − 3)b2 + (15ω2 − 18ω + 2)b+ 9ω3 − 27ω2 + 10ω = 0,

and the optimum i-factor

c(n) = 1
ωn+τ3

, with τ3 = 0.7071447767242046 . . . ,

for n ∈ d3. �

3.3. The analytically optimum i-factor for Durand–Kerner’s method
with inclusion disks D∗k. The inclusion disks D∗k are given by (10).

Lemma 17. Let the i-factor be

(33) c(n) = c(2, τ∗, n) = 1
2n+τ∗

, τ∗ ≈ 0.67211423631036255 . . . ,

where τ∗ is a root of equation

(34) b3 + 19b2 + 82b− 64 = 0,

then:

(1) 0 < λ(2, τ∗, n) < 0.094,

(2) 0.639 < δ(2, τ∗, n) ≤
√
e

2 ≈ 0.824,

(3) 0.787 < θ(2, τ∗, n) ≤
√
e

2 ≈ 0.824,

for n ∈ d5.
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Proof. According to corollary 4 if we consider the inclusion disks D∗k given
by (10), then a ≥ 2 and b > (2 − a)n. Let a = 2, the lowest value of a, then
it follows that b > 0.

The function λ(2, b, n) ↘ 0 when n → ∞, because the derivative function
λ in relation to the variable n is −2/(2n + b)2 < 0. Then, Π(2, b, n) →

√
e

when n→∞. According to Proposition 7, the function δ(2, b, n) is increasing
if the functions µδ(2, b, n) and Π(2, b, n) are increasing. The derivative of the
function µδ(2, b, n) is

∂
∂nµδ(2, b, n) = b+1

(b+2n−1)2
,

and is positive if b > −1. The function Π(2, b, n) is increasing if b > h(2, 5) ≈
−4.479, where h is given by (25). Therefore it follows that δ(2, b, n) is increas-
ing for b ≥ 0 and n ∈ d5. In these circumstances we have

lim
n→∞

δ(2, b, n) = lim
n→∞

θ(2, b, n) =
√

e
2 ≈ 0.824 < 1.

The derivative of the function µθ(2, b, n) is

∂
∂nµθ(2, b, n) = −4

(2n+b−2)2
< 0.

We can not say that the function θ(2, b, n) = µθ(2, b, n)δ(2, b, n) is increasing
in the Proposition 7. But the function θ(a, b, n) can be expressed as (27).
We denote by µθδ(a, b, n) = µθ(a, b, n)µδ(a, b, n) and consider the polynomial
(30) with coefficients (31). If 0.748 < a < 2.737, then, according to Cauchy’s
theorem, [29, pp. 3], the equation P3(a, b, n) = 0, in relation to the variable b,
has a unique real positive solution. The largest positive real root results for
n = 5. For a = 2 and n = 5 resulting the equation (34), with real positive
solution τ∗ ≈ 0.67211423631036255 . . .. For a = 2 and n = 6 we have the
solution 0.71912 . . ., for a = 2 and n = 7 we have the solution 0.75419 . . . and
so on.

Then it follows that the function µθδ(2, b, n) is increasing if b > τ∗. The func-
tion θ(2, b, n) is the product of two positive and increasing functions, namely
Π(2, b, n) and µθδ(2, b, n), if b > τ∗, then, according to Proposition 7, the
function θ(2, b, n) is increasing.

Monotonous function values θ, δ and λ for n = 5 are:

θ(2, τ∗, 5) ≈ 0.787498541207337 . . . ,

δ(2, τ∗, 5) ≈ 0.6399179355710173 . . . ,

λ(2, τ∗, 5) ≈ 0.09370214540972971.

�

Theorem 18. The function c(n) given by (33) is the optimum i-factor for
Durand–Kerner’s method with the inclusion disks D∗k given by (10).

Proof. Since a = 2 and b = τ∗ are the best values under the circumstances,
then we say that c(n) given by (33) is optimum i-factor for Durand–Kerner’s
method with the inclusion disks D∗k, given by (10). �
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Theorem 19. If the initial distinct approximations z
(0)
1 , z

(0)
2 , . . . , z

(0)
n satisfy

the initial condition

(35) w(0) < c(n)d(0),

for n ∈ d5, where c is given by (33), then Durand–Kerner’s method with
inclusion disks D∗k, given by (10), is convergent.

Proof. The conclusions in the Lemma 17 assure that the conclusions of
Lemma 10 are satisfied, which, in turn assure the convergence of the Durand-
Kerner method if the initial condition is verified (35). �

4. THE TANABE’S METHOD

The Tanabe’s method, [10], is given by the formula:

(36) z
(m+1)
k = z

(m)
k −W (m)

k

1−
∑
j 6=k

W
(m)
j

z
(m)
k −z(m)

j

 , k ∈ In m = 0, 1, . . . .

If we denote by

tk =
∑
j 6=k

Wj

zk−zj , k ∈ In,

then for reasonably small values of tk, we can state that 1/(1 + tk) = 1− tk +
O(t2k). It is well known that Tanabe’s method results form Börsch-Supan’s
method based on this observation. Tanabe’s method is one with corrections,
where

Ck(z1, z2, . . . , zn) = P (zk)
Fk(z1,z2,...,zn) , k ∈ In,

but

Fk(z1, z2, . . . , zn) = 1

1−
∑
j 6=k

W
(m)
k

z
(m)
k −z(m)

j

·
∏
j 6=k

(zk − zj).

4.1. Tanabe’s method convergence. In order to prove the convergence we
state the following theorem and 4 lemmas.

Lemma 20. Let z1, z2, . . . , zn ∈ C be distinct numbers and the i-factor
c(a, b, n) that satisfies the conditions

(37) 0 < c(a, b, n) < ψ(n) = 1
1+
√

2n−1

and

(38) w ≤ c(a, b, n)d.
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Then:

(1) λ(a,b,n)
c(a,b,n) ≥

∣∣∣∣∣∣1−
∑
j 6=k

Wj

zk−zj

∣∣∣∣∣∣ ≥ 2− λ(a,b,n)
c(a,b,n) ,

(2) |ẑk − zk| ≤ λ(a,b,n)
c(a,b,n) |Wk| ≤ λ(a, b, n)d,

(3) |ẑk − zj | ≥
(
1− λ(a, b, n)

)
d,

(4) |ẑk − ẑj | ≥
(
1− 2λ(a, b, n)

)
d,

(5)
∣∣∣1 +

∑
Wj

ẑk−zj

∣∣∣ ≤ (n−1)
(
λ(a,b,n)+(n−1)c(a,b,n)

)
c(a,b,n)2(

2c(a,b,n)−λ(a,b,n)
)(

1−λ(a,b,n)
) ,

(6)

∣∣∣∣∣∣
∏
j 6=k

ẑk−zj
ẑk−ẑj

∣∣∣∣∣∣ ≤
(

1 + λ(a,b,n)
1−2λ(a,b,n)

)n−1
,

where

(39) λ(a, b, n) =
(
1 + (n− 1)c(a, b, n)

)
c(a, b, n).

Proof. See [31, Lemma 3.8.]. �

Lemma 21. Let z1, z2, . . . , zn be distinct approximations for the roots ζ1,
ζ2, . . . , ζn of the polynomial P and let us assume the conditions (37) and (38)
from Lemma 20 to be true. Let us also consider true the following inequality

(40) θ(a, b, n) = δ(a,b,n)
1−2λ(a,b,n) ≤ 1,

where

(41)

δ(a, b, n) =
(n−1)c(a,b,n)λ(a,b,n)

(
λ(a,b,n)+(n−1)c(a,b,n)

)(
2c(a,b,n)−λ(a,b,n)

)(
1−λ(a,b,n)

) ×
(

1 + λ(a,b,n)
1−2λ(a,b,n)

)n−1
.

Then:

(1)
∣∣∣Ŵk

∣∣∣ ≤ δ(a, b, n) |Wk| , k ∈ In
(2) ŵ ≤ c(a, b, n)w.

Proof. See [31, Lemma 3.9.]. �

Lemma 22. Let us consider all the conditions form Lemma 20 and 21 and
the next two ones to be true

(42) β(a, b, n) = λ(a,b,n)δ(a,b,n)
2c(a,b,n)−λ(a,b,n) < 1

and

(43) η(a, b, n) = 2λ(a, b, n)− 1

g
(
β(a,b,n)

) < 0 .
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If the initial distinct approximations z
(0)
1 , z

(0)
2 , . . . , z

(0)
n satisfy the initial con-

dition

(44) w(0) ≤ c(a, b, n)d(0),

then Tanabe’s method given by (36) is convergent.

Proof. See [31, T 3.6.]. �

Lemma 23. The i-factor function

(45) cP (n) = 1
3n .

satisfies then conditions (37), (40), (42) and (43).

Proof. See [31, Lemma 3.10.]. �

Theorem 24. The Tanabe’s method, given by (36), is convergent if the

initial condition (38) is true for the initial distinct approximations z
(0)
1 , z

(0)
2 ,

. . . z
(0)
n , where the i-factor is given by (45).

4.2. The optimum analytic i-factor. For Tanabe’s method we have the
function c(a, b, n), given by (7) and the functions:

(46)


λ(c, n) = c+ (n− 1)c2

µδ(λ, c, n) = (n−1)2c2λ+(n−1)cλ2

(2c−λ)(1−λ) ,

µβ(λ, c) = λ
2c−λ ,

resulting from the Lemmas 20, 21 and 22, respectively from the relations (39),
(41) and (42) and the functions δ, β, µθ and θ defined in (14). Let the constant
ωT be the solution for the Lambert type equation, [19],

(47) x+1
x2

exp
(
x+1
x2

)
= (x−1)2

x+1 .

The approximative value ωT is 2.7480500253477966212 . . ..

Proposition 25. If b > hT(a, 5), then λ(a, b, n) < Λ(n), where λ(a, b, n) =
c(a, b, n) + (n− 1)c(a, b, n)2,

(48) hT(a, n) = −2(a−1) n−1√e+2an−1
2( n−1√e−1)

+

√
4(2n−1)

n−1√
e2−4(3n−2) n−1√e+4n−3

2( n−1√e−1)

and Λ is given by (16).

Proof. The equation λ(a, b, n) = Λ(n) has solutions:

−2(a−1) n−1√e+2an−1
2( n−1√e−1)

±
√

4(2n−1)
n−1√

e2−4(3n−2) n−1√e+4n−3

2( n−1√e−1)
.

The function hT(a, n), given by (48), for a > 1 and n ∈ d5. Then, if b >
hT(a, 5) resulting that λ(a, b, n) < Λ(n). �

Lemma 26. If a = ωT and b = 0, then for the i-factor c(n) = c(ωT, 0, n)
the following inequalities must be true for n ∈ d5,
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(1) 0 < c(ωT, 0, n) < ψ(n),
(2) 0 < λ(ωT, 0, n) < 0.094,
(3) 0.349 < δ(ωT, 0, n) < 0.4664,
(4) 0.636 < β(ωT, 0, n) < 1,
(5) 0.783 < θ(ωT, 0, n) < 1,

where ψ(n) is given by (37).

Proof. The function c(ωT , 0, n) is clearly greater than 0 and verifies the
inequality c(ωT , 0, n) < ψ(n), for n ∈ d5.

For the function

λ(a, b, n) = λ
(
c(a, b, n), n

)
= 1

an+b + n−1
(an+b)2

,

we have

lim
n→∞

λ(a, b, n) = 0, for a > 0.

The function Π(a, b, n) is

Π(a, b, n) =
(

1 + λ(a,b,n)
1−2λ(a,b,n)

)n−1
.

Since the limit the function λ is 0, then we move to limit the function Π(a, b, n)
and we have

LΠ(a) = lim
n→∞

Π(a, b, n) = e
a+1
a2 .

The function µδ(a, b, n) is

(49) µδ(a, b, n) = (n−1)[(a+1)n+b−1][an2+(b+1)n−1]
(an+b)[(a−1)n+b+1][a2n2+(2ab−a−1)n+b2−b+1]

,

and its limit is

Lµδ(a) = lim
n→∞

µδ(a, b, n) = a+1
a2(a−1)

.

Then the function δ(a, b, n) = µδ(a, b, n)Π(a, b, n), has the limit

Lδ(a) = lim
n→∞

δ(a, b, n) = a+1
a2(a−1)

e
a+1
a2 .

The function µβ(a, b, n) is

µβ(a, b, n) = (a+1)n+b−1
(a−1)n+b+1 ,

and its limit is

Lµβ (a) = lim
n→∞

µβ(a, b, n) = a+1
a−1 .

Then the function β(a, b, n) = µβ(a, b, n)δ(a, b, n), has the limit

Lβ(a) = lim
n→∞

β(a, b, n) = (a+1)2

a2(a−1)2
e
a+1
a2 .

The function µθ(a, b, n) is

µθ(a, b, n) = (an+b)2

a2n2−2(a+1−ab)n+b2−2b+2
,
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and its limit is 1 when n→∞. Then it follows that the function

θ(a, b, n) = µθ(a, b, n)β(a, b, n),

has the limit

Lθ(a) = (a+1)2

a2(a−1)2
e
a+1
a2 .

Impose conditions Lδ(a) ≤ 1 and Lβ(a) = Lθ(a) ≤ 1. Lambert type equa-
tions, Lδ(a) = 1 has solution ≈ 2.236180389652745005 and Lθ(a) = 1 has
solution ωT ≈ 2.7480500253477966212 . . .. Let a = ωT , sine for any a > ωT we
have Lδ(a) < 1.

To prove that the function Π(ωT , b, n) is monotonically increasing to its
limit. According to Lemma 9 and Proposition 25, the function Π(ωT , b, n) is
increasing for b > hT(ωT , 5) ≈ −5.529 . . .. It follows that for b ≥ 0 the function
Π(ωT , 0, n) is monotonically increasing to its limit. Let further b = 0.

To prove that the function δ(ωT , 0, n) is monotonically increasing to its limit,
we derivative the function µδ(ωT , 0, n), where µδ(a, b, n) is given by (49), so

µ′δ(ωT , 0, n) = α6n6+α5n5+α4n4+α3n3+α2n2+α1n+α0
ω2
T
n2[(ω

T
−1)n+1]2[ω2

T
n2−(ω

T
+1)n+1]2

,

where

α6 = ω5
T
− 2ω3

T
+ 2ω2

T
+ ωT ≈ 133.06582372905672183,

α5 = 2ω4
T

+ 4ω3
T
− 10ω2

T
− 4ωT ≈ 110.55940610241204683,

α4 = −3ω4
T
− 6ω3

T
+ 14ω2

T
+ 6ωT + 1 ≈ −172.39088809543209589,

α3 = 4ω3
T
− 6ω2

T
− 4ωT − 4 ≈ 22.707791497616619358,

α2 = ωT + 6 ≈ 8.7480500253477966212,

α1 = −4,

α0 = 1.

The largest real root of the nominator polynomial function µ′δ(ωT , 0, n) is
≈ 0.63786 . . ., hence for n ∈ d5, µ′δ(ωT , 0, n) > 0. Then, according to Propo-
sition 7, the function δ(ωT , 0, n) = µδ(ωT , 0, n)Π(ωT , 0, n) is monotonically
increasing.

To prove that β(ωT , 0, n) is monotone increasing function to its limit, we
derivative the function µβ(ωT , 0, n), is 2ωT/[(ωT − 1)n + 1]2 > 0. Then, ac-
cording to Proposition 7, the function β(ωT , 0, n) = µβ(ωT , 0, n)δ(ωT , 0, n) is
monotonically increasing.

To prove that θ(ωT , 0, n) is monotonically increasing function to its limit.
The derivative function µθ(ωT , 0, n) is

− 2ω2
T
n[(ω

T
+1)n−2]

[ω2
T
n2−2(ω

T
+1)+2]2

< 0 .
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Then we can say that the function θ(ωT , 0, n) = µθ(ωT , 0, n)β(ωT , 0, n) is
monotonically increasing. Let the function

µθβδ(ωT , 0, n) = µθ(ωT , 0, n)µβ(ωT , 0, n)µδ(ωT , 0, n)

=
ω
T
n(n−1)[(ω

T
+1)n−1]2(ω

T
n2+n−1)

[(ω
T
−1)n+1]2[ω2

T
n2−2(ω

T
+1)n+2][ω2

T
n2−(ω

T
+1)n+1]

,

its derivative is

µ′θβδ(ωT , 0, n) =
ω
T

[(ω
T

+1)n−1]P8(ω
T
,n)

[(ω
T
−1)n+1]3[ω2

T
n2−2(ω

T
+1)n+2]2[ω2

T
n2−(ω

T
+1)n+1]2

where polynomial P8(ωT , n) = α8n
8 + α7n

7 + α6n
6 + α5n

5 + α4n
4 + α3n

3 +
α2n

2 + α1n+ α0 has the following coefficients:

α8 = ω7
T
− 4ω5

T
+ 4ω4

T
+ 3ω3

T
≈ 847.0086516,

α7 = 4ω5
T
− 16ω4

T
− 12ω3

T
− 8ω2

T
− 4ωT ≈ −606.0300766,

α6 = −3ω6
T
− 8ω5

T
+ 18ω4

T
+ 28ω3

T
+ 43ω2

T
+ 18ωT − 2 ≈ −565.9812397,

α5 = 10ω5
T

+ 8ω4
T
− 18ω3

T
− 72ω2

T
− 24ωT + 12 ≈ 1052.2011279,

α4 = −14ω4
T
− 15ω3

T
+ 38ω2

T
− 4ωT − 30 ≈ −863.72570760,

α3 = 14ω3
T

+ 8ω2
T

+ 36ωT + 40 ≈ 489.8813608,

α2 = −9ω2
T
− 30ωT − 30 ≈ −180.4075112,

α1 = 8ωT + 12 ≈ 33.9844002,

α0 = −2.

The monomials (ωT + 1)n−1 and (ωT−1)n+ 1 are equal to 0 in 0.2668054 . . .
and −0.572066 . . .. The largest positive real root of polynomial P8(ωT , n)
is ≈ 0.600633 . . ., hence µ′θβδ(ωT , 0, n) > 0 for n ∈ d5, i.e. µθβδ(ωT , 0, n)

is increasing, then and the function θ(ωT , 0, n) = µθβδ(ωT , 0, n)Π(ωT , 0, n) is
increasing for n ∈ d5.

Monotonous function values λ, δ, β and θ for n = 5 are:

λ(ωT , 0, 5) ≈ 0.093965939752349623079,

δ(ωT , 0, 5) ≈ 0.349197650213356803400,

β(ωT , 0, 5) ≈ 0.636005603331306147860,

θ(ωT , 0, 5) ≈ 0.783192428417692776398.

For the function δ we have

lim
n→∞

δ(ωT , 0, n) =
ω
T
−1

ω
T

+1 ≈ 0.46638919265374213777.

�

Theorem 27. The optimum i-factor for Tanabe’s method is

(50) c(n) = 1
ωTn

.

Proof. The constants a = ωT and b = 0, are the best values in the given
conditions, so the i-factor c(n) given by (50), is optimal. �
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Theorem 28. If the initial distinct approximation z
(0)
1 , z

(0)
2 , . . . , z

(0)
n satisfy

the initial condition

(51) w(0) < c(n)d(0),

for n ∈ d5, where c given by (50), then Tanabe’s method with inclusion disks
D∗k, given by (10), is convergent.

Proof. Since ωT > 2 and b = 0, then according to corollary 4 the disks D∗k,
given by (10), are mutually disjoint and each of them contain exactly one zero
of polynomial P .

The conclusions on Lemma 26 assure the fulfillment of Lemmas 20, 21 and
22, fact, that in turn, assures the convergence for Tanabe’s method if the
initial condition (51) is verified. �

5. CONCLUSIONS

(1) For Durand–Kerner’s method, given by (17), with the inclusion disks
Dk, given by (12), the optimum i-factor is

c(n) = 1
ωn+τ , n ∈ d5,

where ω ≈ 1.7632228343518967 . . ., τ ≈ 0.88049674007368891 . . ..
(2) For Durand–Kerner’s method, given by (17), with the inclusion disks

D∗k, given by (10), the optimum i-factor is

c(n) = 1
2n+τ∗

, n ∈ d5,

where τ∗ ≈ 0.67211423631036255 . . ..
(3) For Tanabe’s method, given by (36), with the inclusion disks D∗k, given

by (10), the optimum i-factor is

c(n) = 1
ω
T
n , n ∈ d5,

where ωT ≈ 2.7480500253477966212 . . ..
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ben Verändelichen, Ges. Werke, 3, pp. 251–269, 1903.

[3] I. E. Durand, Solutions Numérique des Équations Algébriques. Équations du Type
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[26] M. S. Petković and J. Herceg, On the convergence of Wang-Zheng’s metod, J. Com-
put. Appl. Math., 91, pp. 123–135, 1998.

[27] D. S. Dummit and R. M. Foote, Galois Theory, CHAPTER:14 in Abstract Alge-
bra, PUBLISHER: Prentice-Hall, address: New York, edition: 2nd Englewood Cliffs,
pp. 471–570, 1998.
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