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QUENCHING FOR SEMIDISCRETIZATIONS
OF A SEMILINEAR HEAT EQUATION
WITH POTENTIAL AND GENERAL NONLINEARITY

HALIMA NACHID*

Abstract. This paper concerns the study of the numerical approximation for
the following boundary value problem

ue(z,t) — Uz (z,t) = —a(z) f(u(z,t)), 0<z<1,t>0,

uz(0,t) = 0,u(1,t) =0, t >0,
u(z,0) = uo(z) > 0, 0<z<1,
where f : (0,00) — (0,00) is a C' convex, nondecreasing function,

lim, o+ f(s) = oo, [ f%i) < oo for any positive real . The initial datum

uo € C*([0,1]), up(0) = 0 and uH(1) = 0. The potential a € C*((0,1)), a(z) > 0,
x € (0,1), a’(0) = 0, a’(1) = 0. We find some conditions under which the solu-
tion of a semidiscrete form of the above problem quenches in a finite time and
estimate its semidiscrete quenching time. We also prove that the semidiscrete
quenching time converges to the real one when the mesh size goes to zero. A sim-
ilar study has been also investigated taking a discrete form of the above problem.
Finally, we give some numerical experiments to illustrate our analysis.
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1. INTRODUCTION

Consider the following boundary value problem
(1) ug(x,t) = uge(z,t) — a(z) f(u(z, t)), (z,t) € (0,1) x (0,7T),
2) w(0,t)=0, wu(l,t)=1, telo,T)
(3) u(z,0) = ug(z) >0, z€]|0,1],
where f : (0,00) = (0,00) is a C' nondecreasing function, [;' f%i) < 00, for
any positive real a. lim, o+ f(0) = oo, a € C1([0,1]), a(z) > 0, x € (0,1),
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a’(0) =0, a’(1) = 0, uy(1) = 0 and u(0) = 0. The initial data ug € C?([0,1]),

uo(x) >0, z € (0,1), ug(z) <1, z € (0, )_

(4) ug(x) — ax) f(ug(x)) < 0, = € (0,1),
(5) ug(x) >0, z € (0,1),
(6) u(0) =0, up(1) = 1.

Here [0,7] is the maximal time interval on which the solution u of (1)—(3)
exists. The time T may be finite or infinite. When T is infinite, then we say
that the solution u of (1)—(3) exists globally. When T is finite, then the solution
u of (1)—(3) develops a singularity in a finite time, namely, lim;_,7 wn (t) = 0,
where Upin(t) = ming<y<ju(x,t). In this last case,we say that the solution u
of (1)—(3) quenches in a finite time and the time T is called the quenching
time of the solution w.

The theoretical study of solutions for semilinear parabolic equations which
quench in a finite time has been the subject of investigations of many authors
(see [2], [4]-[7], [11], [12], [16] and the references cited therein). Local in time
existence of a classical solution has been proved and this solution is unique. In
addition, it is shown that if the initial data at (3) satisfies ufj (z) —a(z)uy * (z) <
—Aug®(z) in [0,1] where A € (0,1] and p > 0, then the classical solution u of
(1)—(3) quenches in a finite time 7" and we have the following estimates
ming< g <1 (up(z))P+! ming< g <1 (ug(z))P+1
0< Sle(rlO( ) <T osAs(;(Jr?g ) 7

(Ap+ D) (T — T < tin(t) < (Blp+ 1)71 (T — )7,

IN

for t € (0,T), (see, for instance [4]-[6]).

In this paper, we are interested in the numerical study of the phenomenon
of quenching. Our aim is to build a semidiscrete scheme where solution obeys
the property of the continuous one. In order to facilitate our discussion, let us
notice that the first condition in (4) allows the solution u to attain its minimum
at the point x = 0, and the second one permits the solution u to decrease with
respect to the second variable. The hypotheses (5) are compatibility condition
which ensure the regularity of the solution u.

This paper is organized as follows. In the next section, we give some results
about the discrete maximum principle. In the third section, under some con-
ditions, we prove that the solution of a semidiscrete form of (1)—(3) quenches
in a finite time and estimate its semidiscrete quenching time. In the fourth
section, we prove the convergence of the semidiscrete quenching time. In the
fifth section, we study the results of sections 3 and 4 taking a discrete form of
(1)—(3). Finally, in the last section, we give some numerical results to illustrate
our analysis.
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2. PROPERTIES OF A SEMIDISCRETE PROBLEM

We start our study by the construction of a semidiscrete scheme as follows.
Let I be a positive integer, and let h = % Define the grid z; = th, 0 < i <1,
and approximate the solution u of the problem (1)—(3) by the solution Uy (t) =
(Uo(t),Ur(t),...,Ur(t))T of the following semidiscrete equations

(7) W §205(6) = B f(Us(L)), 0<i < I, t e (0,T]),
_ h

(8) U](t)_lv te (OaTq)a

(9) Ui(0)=; >0, 0<i<I,

where

52Ui(t) _ Uz‘+1(t)—2U}'Z-2(t)+U¢_1(t)7 1<i<I—1,

where 3; > 0, p; >0
(10) 52U0(t) _ 2U1(15)’;22U0(1‘/)7 (52U](t) _ 2U171(2)2—2U1(t)'

B; and @; are approximations of a(z;) and wug(z;), respectively. There is an-
other reason which has motivated our choice, namely we want to know the
behavior of the quenching time when one perturbs slightly either the potential
or the initial datum.

Here (0, T;Z) is the maximal time interval on which ||Up(t)]|ins > 0 where

V() s = min, V(D)

When the time 7, (f is finite, we say that the solution Uj(t) of (7)—(9) quenches
in a finite time and the time T;‘ is called the quenching time of the solution
Up(t). The following lemma is a semidiscrete form of the maximum principle.

LEMMA 2.1. Let Oéh(t) € CO([OaT)vR[+1) and let Vh S Cl([ovT)’RI—‘rl) be
such that

(11) Wl _ §2Vi(t) + a; () Vi(t) > 0, 0<i <1, t € (0,T),
(12) Vi(0)>0,0<i<I.
Then Vi(t) >0,0<i <1, te (0,T).

Proof. Let Ty be any quantity satisfying the inequality Ty < T and define
the vector Zj(t) = eMVj(t) where X is such that

Oéi(t)—)\>0 for 0<:<1, tE[O,To].

Set m = ming<;<7y || Zn(t)]line-  Since Zp,(t) is a continuous vector on the

compact [0,Tp], there exist iy € {0,...,I} and to € [0,Tp] such that m =

Zi,(to). We observe that
dZiO(tO)

(13) ot — lim

ZiO (to)le‘o (to 7]6)
k—0 k

<0

Y
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(14) 62 Z;, (to) > 0.
From (11), we obtain the following inequality
dZ;
(15) 80) 5274, (to) + (avio (t) — X) Zig (t0) > 0.

We deduce from (13)-(15) that (s, (to) — A)Zi,(to) > 0, which implies that
Zi,(to) > 0. Therefore, Vj,(t) > 0 for ¢t € [0, Tp] and the proof is complete. [

Another form of the maximum principle for semidiscrete equations is the
following comparison lemma.

LEMMA 2.2. Let f € COR x R,R). If V},, W), € C1([0,T),R'*Y) are such
that
Tat OV + (Vi) 0) < TG = SWi)+F(Wi(t), 1) 0 <i < Tt e (0,7),

Vi(0) < W;(0), 0<i <1,

then Vi(t) < W;(t), 0<i<I, te(0,T).

Proof. Let Zy,(t) = Wiy (t) — Vi (t) and let to be the first ¢ € (0,7") such that
Zn(t) > 0 for t € [0,t9) but Z;,(t9) = 0 for a certain ig € {0,...,I}. We see
that

dZiO (to)
dt

— lili,)r(lj Zio(tO)_kZ:io(tO_k) S 0,
6%Z;, (to) > 0.

Therefore, we have
dz; (to
5 — 6273, (to) + F(Wig(to), to) = f(Vay(to). o) <0,
which contradicts the first strict inequality of the lemma and this ends the
proof. O

3. QUENCHING PROBLEM

In this section, under some assumptions, we show that the solution U}, of
(7)—(9) quenches in a finite time and estimate its semidiscrete quenching time.
We need the following result about the operator §2.

LEMMA 3.1. Let U, € R*! be such that U, > 0. Then, we have
S*(fU)i = f(U)&*U;, 0<i<I
Proof. Applying Taylor’s expansion, we find that

S FU); = (U6, + Wit g0 gy o Wit ZU% gy - g << 1,

where 6; is an intermediate Value between U; and U;41, 7; the one between
Ui—1 and U;, U_y = Uy, Ury1 = U1, no = 6o, nr = 0. Use the fact that
Up, > 0 to complete the rest of the proof. O

The statement of the result about solutions which quench in a finite time
is the following.



168 Halima Nachid 5

THEOREM 3.1. Let Uy, be the solution of (7)—(9) and assume that there exists
a positive constant A € (0,1] and the initial data at (9) satisfies

(16) 8%p; — Bif(pi) < —Af(pi), 0<i<I.

Then, the solution Uy quenches in a finite time T;L and we have the following

estimate lonl
Phllinf
h 1 d
T, <% /0 YiGR

Proof. Since (O,T(;l) is the maximal time interval on which ||U(t)|/ine > O,

our aim is to show that T;‘ is finite and satisfies the above inequality. Introduce
the vector Jy,(t) defined as follows
Ji(t) = YD 4 Af(Ui(t), 0<i<I.
A straightforward calculation gives
G =00 = G (G = 00U — AF(U) g — AP (F(U(1)i, 0<i<T

From Lemma 3.1, we have 6(f(U)); > f'(U;)6?U;, 0 < i < I, which implies
that

U — 020 < $(% - 820;) + AL (U - 0°Uy), 0<i<T
Using (7), we arrive at

W ~Bif U, 0<i<I, te(0,Th).

From (16), we observe that J,(0) < 0. We deduce from Lemma 2.1 that
Jn(t) <0 for t € (0, th), which implies that

(1) WO < —AfU). 0<i<I te(0T)),

These estimates may be rewritten in the following form % < —Adt, 0 <

i < I. Integrating the above inequalities over the interval (¢, 7, ) we get

N . Ui(t) 4
Using the fact that ||¢p|line = Ui, (0) for a certain ig € {0,...,I} and taking
t =0 in (18), we obtain the desired result. O

REMARK 3.2. The inequalities (18) imply that

N . |Un (o) lint & N
Tq _tOSA/(; m, fOrtOG(O,Tq)7

and
memzmmw—m,mmewwx
where H (s) is the inverse of the function F(s f ; d“ O
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REMARK 3.3. Let Uy be the solution of (7)—(9). Then, we have
llenll
h 1 do
Ty = Bhuw/o O

100 i < 1Bl H(A(T) 1)), for t € (0.T}).
To prove these estimates, we proceed as follows. Introduce the function v(t)
defined as follows v(t) = ||Up(t)||ins for ¢t € [O,Tél). Let t1,t2 € [O,T;’). Then,
there exist 1,42 € {0, ..., I} such that v(t1) = U;, (t1) and v(t2) = Uy, (t2). We
observe that

and

W(ta) — v(ty) > Upy (ta) — Uiy (t1) = (t2 — t1) 2222 4 oty — 1),

W(ta) — v(t) < Uy, (ta) — Usy (t1) = (ts — 1) 22 4oty — 1),

which implies that v(¢) is Lipschitz continuous. Further, if to > t;, then

(tig tl(tl) = 22(t2) ( ) - 62 12(t2) 512]0( zg(tQ)) +0(1).

Obviously, 62U, (t2) > 0. Letting t; — to, and using the fact that 3;, <
||Bh||oo, we obtain dzat) > —||Bulloof(v(t)) for t € (O,T;’) or equivalently

f(v(t —||Bp||sodt for t € (0, Th) Integrate the above inequality over (¢, 77"
to obtain Tq -t > HBh”oo fo dg) Since v(t) = [|Un(t)||ins, we arrive at
Th 1 ”Uh( )”mf do

HBhII flo)
ﬁrst one, it sufﬁces to replace t by 0 in the above inequality and use the fact

that HsOhHinf = [|Un(0)][int- O

REMARK 3.4. If ¢; = o, 0 < ¢ < I, where « is a positive constant, then one
may take A = 1. It may imply that the potential equals to 1. In this case,

1 1
and  ||Up(t)|int = (p+ 1)Pt1 (th —t)ptl for te (O,Tg).

and the second estimate follows. To obtain the

h _ apPtl
Tq - p+l

0

4. CONVERGENCE OF THE SEMIDISCRETE QUENCHING TIME

In this section, under some assumptions, we show that the solution of the
semidiscrete problem quenches in a finite time and its semidiscrete quenching
time converges to the real one when the mesh size goes to zero. We denote

up(t) = (u(zo,t), ..., u(zr, )T and  ||Ux(t)||leo = Ollgl?é{I‘Ui(t”.

In order to obtain the convergence of the semidiscrete quenching time, we
firstly prove the following theorem about the convergence of the semidiscrete
scheme.
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THEOREM 4.1. Assume that the problem (1)—(3) has a solution
u € C¥1([0,1] x [0,T]) such that mingeg ) umin(t) = @ > 0. Suppose that
the potential at (7) and the initial data at (9) satisfy

(19) len —un(0)||o = o(1) as h—0,

(20) 1Bn = anlloo = o(1) as h—0.

Then, for h sufficiently small, the problem (7)—(9) has a unique solution Uy, €
C([0,T], RI™1) such that the following relation holds

_ _ _ 2
max 18— anlloe = 0(len = un(0)ow +h%) a5 h 0.

Proof. Let K > 0 and L > 0 be such that
(21)  lmple <K FG) <K and — (lanfleo + 1DS(5) < L.
The problem (7)-(9) has for each h, a unique solution U, € C*([0, T7), R +1).
Let t(h) < min{T, th} be the greatest value of ¢ > 0 such that
(22) |UR(t) — un(t)]|oo < § for te (0,t(h)).

The relation (19) implies that ¢(h) > 0 for h sufficiently small. By the triangle
inequality, we obtain

1UR(E)lling = lun(®)]ling — |Un(t) — un(t)lloo for ¢ € (0,¢(R)),
which implies that
(23) [Un@)ling = 0— 5 =15 for te(0,t(h)).
Since u € C*!, taking the derivative in x on both sides of (1) and due to the
fact that u,, u,: vanish at = 0 and z = 1, we observe that 1., also vanishes

at x = 0 and x = 1. Applying Taylor’s expansion, we discover that
2

Upg (T3, ) = (52u(xi,t) — %umm(@,t), 0<i<I, te(0,t(h)).

To establish the above equalities for ¢ = 0 and ¢ = I, we have used the fact
that u, and ug;, vanish at x =0 and x = 1. A direct calculation yields

(@i, t) — 6%u(@i, t) = —Bif (u(@i,t) — Bttgeas (Fi,t) + (B; — alz)) f(u(wi, 1),
for 1 <i¢ < I—1. Let ep(t) = Up(t) — un(t) be the error of discretization.
From the mean value theorem, we have

d%,gt) - 526i(t) = _ﬁif/(eiei + %Ummx:p(gzat) - (Bz - a(fz))f(u($’ut))a
for 0 < i <1I, t €(0,t(h)), where 0; is an intermediate value between Uj;(t)
and u(z;,t). Using (21), (22), we arrive at

deilt) _ §2¢,(t) < Lle;(t)| + Kh® + KB — anlloo, 0<i <1, t € (0,t(h)).
Introduce the vector z,(t) defined as follows

24(8) = e (flp, — un(0)lloo + KR2 + KB — anlloc), 0 < i < I, t € (0,¢(R).
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A straightforward computation reveals that

%2 > Llzi| + KW? + KBy — aplloe, 0<i<1, te(0,t(h)),

zi(0) > €;(0), 0<i<I.
It follows from Comparison Lemma 2.2 that
zi(t) > e;(t) for te(0,t(h)), 0<i<I.
In the same way, we also prove that
zi(t) > —ei(t) for te€ (0,t(h)), 0<i<I,
which implies that

U = un() oo < "D (lon — un(0) oo + K1 + KI|Bh — anlloo),

for t € (0,t(h)). Let us show that t(h) = min{T, th}. Suppose that t(h) <
min{7, T;‘}. From (22), we obtain

§<[Un(¢(h)) = un(t(h))lloo <™ DT (lon — un(0) oo + Kh® + K[| B — anlloo)-

Let us notice that both last formulas for t(h) are valid for sufficiently small
h. Since the term on the right hand side of the above inequality goes to zero
as h goes to zero, we deduce that % < 0, which is impossible. Consequently
t(h) = min{T, T}"}.

Now, let us show that t(h) = T'. Suppose that t(h) = th < T. Reasoning
as above, we prove that we have a contradiction and the proof is complete. [J

Now, we are in a position to prove the main theorem of this section.

THEOREM 4.2. Suppose that the problem (1)—(3) has a solution u which
quenches in a finite time T, such that u € C**([0,1] x [0,T,)). Assume that
the potential at (7) and the initial data at (9) satisfy the conditions (19) and
(20), respectively. Under the hypothesis of Theorem 3.1, the problem (7)—(9)
has a solution Uy, which quenches in a finite time T(;Z and we have

. h _
T =T,
Proof. Let 0 < ¢ <T,/2. There exists ¢ € (0,1) such that
0
1 d
(24) e

Since u quenches in a finite time Ty, there exist ho(e) > 0 and a time Ty €
(Ty — §5,T,) such that 0 < umin(t) < §  for t € [Ty, Ty), h < ho(e). It is not
hard to see that umin(t) > 0 for ¢t € [0,Tp], b < ho(e). From Theorem 4.1,
the problem (7)—(9) has a solution Uy(t) and we get [|Up(t) — up(t)[|oo < §
for t € [0,Tp], h < ho(e), which implies that ||Up(To) — up(T0)[|eo < § for

h < ho(g). Applying the triangle inequality, we find that
1UR(T0) [lint < [|Un(T0) — un(To)lloo + lun(To)|lime < §+35 =0 for h<ho(e).
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From Theorem 3.1, Up(t) quenches at the time T;‘. We deduce from Remark
3.1 and (22) that for h < hy(e),

<e

[Nel10)

f(o)
which leads us to the desired result. O

N N . U (To) llins q
T =T < T - Tol+ [T - Tyl < & | -
0

5. FULL DISCRETIZATIONS
In this section, we study the phenomenon of quenching using a full discrete
explicit scheme of (1)—(3). Approximate the solution w(z,t) of the problem
(1)—(3) by the solution U}(Ln) = (Ué"), Ul(n), ce Ul(n))T of the following explicit
scheme

(25) s U™ =s2ut™ — gfut™), 0<i<lI,

(26) U% =g, >0, 0<i<I,

where n > 0,
(n+1) (n)
(n) U —U;
6tUZ — L Atn L

(Ledy = L@ < o) for s > 0,

(n) (n)y.
If U,(Ln) > 0, then —% > —W, 0 <4 < I, and a straightforward
i h inf

computation reveals that

n+1 n (10, in n
UG 2 24aU) + (1 - 288 = [ o Aty LTI,
(n+1) < At () Atn 10y " Nint) \ 77(n), Aty 77(1) :
08 2 S U+ (128t A0 ) 001 4001, 15 i 11,
n+1 n U in
Ut > 28600 (1 - 98% |5, [,A ﬁﬁﬁ%w*

In order to permit the discrete solution to reproduce the properties of the
continuous one when the time ¢ approaches the quenching time Tj, we need to
adapt the size of the time step so that we  choose

(n)y.
Aty, = mm{ (1= T)hQ,Tf(ng’b””mf)} with 0 < 7 < 1. We observe that 1 —
h inf

(n)y.
At" — |8 HooAth 0, which implies that U, (1) > 0. Thus, since
h m

by hypothesis U}(Z ) = wp > 0, if we take At, as defined above, then using a
recursion argument, we see that the positivity of the discrete solution is guar-
anteed. Here, 7 is a parameter which will be chosen later to allow the discrete
solution U,S") to satisfy certain properties useful to get the convergence of the
numerical quenching time defined below.
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_ 2 (n) )
If necessary, we may take At, = min{(1 ;)h ,Tf(“lg};)””mf)} with K > 2
h inf

because in this case, the positivity of the discrete solution is also guaranteed.
The following lemma is a discrete form of the maximum principle.

LEMMA 5.1. Let agln) and Vh(n) be two sequences such that agbn) is bounded
and

(27) sV —52viM oMy >0, 0<i<I, n>o0,

(28) vi9 >0, 0<i<I.

7

(n) < T i
Then Vi™ 20 forn 20, 0 <i < Iif Ay < iy

Proof. 1If Vh(n) > 0, then a routine computation yields

Vi 2 2 4 (1= 25 — At o) V",

VI > S5V (1 - 258 — Atalla )V + VM, 1 << T -1,

VI(”-H) > %V[(f)l +(1- 2% - AtN‘|a§zn)”00)VI(n)'

Since At, < —" e see that 1 — 28% — At,|la is nonnegative.
"7 2l eoh? e nllan e &

From (27), we deduce by induction that Vh(n) > 0 which ends the proof. [

A direct consequence of the above result is the following comparison lemma.
Its proof is straightforward.

LEMMA 5.2. Let Vh( n) W(n) and ag) be three sequences such that a(n) 18
bounded and

sV — 2V () < ) g2y o)y )
0<i<I, n>0,

v <w”, o<i<I.

(n) h2
Then‘/; forn>0 0<Z<IZf n_m

Now, let us give a property of the operator d; stated in the following lemma.
Its proof is quite similar to that of Lemma 3.1, so we omit it here.

LEMMA 5.3. Let U™ € R be such that U™ > 0 for n > 0. Then, we have
sf (UM™Y > fums, U™, n>o0.
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LEMMA 5.4. Let a, b be two positive numbers such that b < 1. Then the
following estimate holds

ab™ <_a__ _1 adia
T = 7@ 7RO fo T

Proof. We have fo f“(f; = >, f ntl ab;i’". We observe that ab® >
ab"*t! for n < & < n+ 1, which that [’ ot ab:lflf) > f(a;;ﬁl) Consequently,
we get
ab®da ab®dw _ ab™
(29) /n Flab) Z / @ = "F T Zf(ab" '
Use the fact that fo f"f; = ln W) f . d" to complete the rest of the proof.

O

The theorem below is the discrete version of Theorem 4.1.

THEOREM 5.1. Suppose that the problem (1)—(3) has a solution
u € C*%([0,1] x [0,T]) such that Mmingepo, 7] Umin(t) = p > 0. Assume that
the initial data at (26) satisfies the condition (16). Then, the problem (25)—

(26) has a solution U,gn) for h sufficiently small, 0 < n < J and the following
relation holds

max [[U™ = un(tn)lloo = O(lln — un(0)lloo + lan — Balloo + h2) as h—0,
0<n<J

where J is any quantity satisfying the inequality Zi;é At, < T and t, =
0 Aty

Proof. For each h, the problem (25)—(26) has a solution U,En). Let N < J
be the greatest value of n such that

(30) 1O = un(tn)|loo < & for n < N.

We know that N > 1 because of (16). Applying the triangle inequality, we
have

B NT line > N (ta) lint — 1T = wn(tn)]loo > & for n < N.

As in the proof of Theorem 4.1, using Taylor’s expansion, we find that for
n<N,0<i< 1,

Seu(xi, tn) — 8%u(wi, tn) + Bif (ulwi, tn)) + (alw: — Bi)) f(u(zi, tn))

2 ~
= _%u:vacxm(xi; tn) + %utt(lj, tn).
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Let e%n) =U }(L " _ up(tn) be the error of discretization. From the mean value
theorem, we get for n<N,0<i<1,

5t€z( " (52 Blf (é(n ) 5 =+ 12ua:xzx(xutn) - %utt(«riatn)
+ (a(@; — Bi)) f (u(wi, tn)),
)

where §i(n) is an intermediate value between w(z;,t,) and U; Since
Ugppee (T, 1), uy(x,t) are bounded,u(x,t) > p and At, = O(h?), then there
exists a positive constant M such that

Siel™ — 62 < 8, £/(€™)el™ + Mllap, — Brllos + MB%, 0<i < I, n < N.
Set L = —(|lap|loc + 1) f'(§) and introduce the vector Vh(n) defined as follows
V" = B0 (o, —up (0)|loo + M2 + Ml|ay, — Bpllec), 0<i <1, n<N.

A straightforward computation gives

sV — 52V > g (€Y MB2 4 Mjap — Brlloos 0< i < I, n < N,
VZ.()>e§), 0<i<I.

We observe from (29) that —g; f/ (51-(")) is bounded from above by L. It follows

from Comparison Lemma 5.2 that Vh(n) > eén). By the same way, we also
prove that Vh(n) > —egn), which implies that

U = un(tn) oo < €D ([l — un(0)lloc + M2 + Ml — Bullsc), n < N.

Let us show that N = J. Suppose that N < J. If we replace n by N in (29)
and use (30), we find that

8 <R = wn(tn) oo < eFIT(lon — wn(0) oo + M2 + Mllan = Bullc)-

Since the term on the right hand side of the second inequality goes to zero as
h goes to zero, we deduce that £ < 0, which is a contradiction and the proof
is complete. ]

To handle the phenomenon of quenching for discrete equations, we need the
following definition.

DEFINITION 5.1. We say that the solution U}(ln) of (25)—(26) quenches in a
finite time if ||U,§n)|]inf >0 forn >0, but

n—1

lim HUh lint =0 and TA' = lim ZAt < 00.

n—-+oo n—o0

).

The number ThAt is called the numerical quenching time of Uh

The following theorem reveals that the discrete solution U,S") of (25)-(26)
quenches in a finite time under some hypotheses.
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THEOREM 5.2. Let U}(Ln) be the solution of (25)—(26). Suppose that there
exists a constant A € (0,1] such that the initial data at (26) satisfies

(32) 5%0i — Bif(pi) < —Af(pi), 0<i<I

Then U}En) is nonincreasing and quenches in a finite time ThAt which satisfies
the following estimate

lln lling
TAt 7|l¢n llint T do_
h = f(||<Ph||mf) - In(l-7) 0 f(o)’

(A=7)h?f(|lenlint)
1 T
2[lon [lint ! }

where 7' = Amln{

Proof. Introduce the vector J,(Ln) defined as follows

J" = sut™ + Apw™), 0<i<I, n>0.
A straightforward computation yields for 0 <i < I, n >0,
6" — 620" = 0y (UL = 22U ) + A f(U) - AU,
Using (25), we arrive at
5™ = 827 = — (8 — A5 f(UM) — AS2FU™), 0<i<I, n>0.
It follows from Lemmas 5.3 and 3.1 that for 0 <¢ < I, n >0,
5™ =23 < —(8 = A f UM T™ — A iU,
We deduce from (25) that
5™ — 52" < —g (U™, 0<i<I n>o0.
Obviously, the inequalities (31) ensure that J}(LO)
we get J,(ln) < 0 for n > 0, which implies that

< 0. Applying Lemma 5.1,

y™
(33) v <o - aan 5 o<i<r >0

7

These estimates reveal that the sequence U }En) is nonincreasing. By induction,
we obtain U, ,(Ln) <U, ,(LO) = p. Thus, the following holds

FUUL™ lint) (=2 (lenlling) Ay _
(34) AAt, TR > Amin{ STon s ,TH="T.

Let ig be such that ||U}(Ln) llinf = Ul.(on). Replacing i by ig in (38), we obtain
(35) 10 Pl < 107 (1 = 7). n >0,
and by iteration, we arrive at

n 0 n n
36) U llnr < U line (1 = 7)™ = [l llint(1 = 7)", 0 >0,
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Since the term on the right hand side of the above equality goes to zero as n

approaches infinity, we conclude that ||U }(ln)Hinf tends to zero as n approaches
infinity. Now, let us estimate the numerical quenching time. Due to (33) and
M

n < o) it is not hard to see that
FUUL lling)”

the restriction At

Yoo +oo _lonllims(1=7)"
Y20t < T 20 F o T A=7)7)

because ﬁ is nondecreasing for s > 0. It follows from Lemma 5.4 that

2 ¢ Aty < T|lenllint T o lint do_
Fllenlling — In(T=7") 0 flo)”
Use the fact that the quantity on the right hand side of the above inequality
converges towards is finite to complete the rest of the proof. O
REMARK 5.3. From (35), we deduce by induction that
10 lat < N0 g (1 = 7)"7 for n > g,

and we see that

T ¢ —Z At ZOO ”Uh ||1nf(1 Tl)” 4
h a n < =4 (UD [ (1= )n=a)”

because ﬁ is nondecreasing for s > 0. It follows from Lemma 5.4 that

(9)
U 1mn:
TAt —t. < THU}(LQ)”inf . T I lint do
h q = U@ In(1—77) (o)
f(” h ”mf) 0

(=n)h2f([lenllint)

: _ 32
STonlr , T}, if we take 7 = h*, we get

. / .
Since 7 = Amin{

/

— 3 (17h2)h2f(”90 [ling) F(lenlling)
T = Amin{Z=rop e, 1} > Amin{ o, 1}

Therefore, there exist constants cg, ¢; such that 0 < ¢y < 7'/7'/ < ¢ and
= O(1), for the choice T = h?. O

In(1—7")

In the sequel, we take 7 = hZ.
Now, we are in a position to state the main theorem of this section.

THEOREM 5.4. Suppose that the problem (1)—(3) has a solution w which
quenches in a finite time T, and u € C*2([0,1] x [0,T,)). Assume that the
initial data at (25) satisfies the condition (16). Under the assumption of The-
orem 5.2, the problem (25)—(26) has a solution U,(Ln) which quenches in a finite
time ThAt and the following relation holds

lim T2 = T,.
h—0 h a
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Proof. We know from Remark 5.1 that ( =
T,/2, there exists a constant R € (0,1) such that

is bounded. Letting 0 < ¢ <

R
R d
@) - wi [ f<h
Since u quenches at the time , there exist Ty € (T — §,Ty) and ho(e) > 0
such that 0 < upin(t) < for t € [11,T,), h < ho(e). Let ¢ be a positive

integer such that t, = ano Aty € [11,T,) for h < hy(e). It follows from
Theorem 5.1 that the problem (25)—(26) has a solution U}(Ln) which obeys
||U}(Ln) — up(tn)|loo < & for n < g, h < ho(e), which implies that

U ing < 1T = un(tg) oo + l[un(te)lins < B+ B =R, k< hoe).

From Theorem 5.2, Uf(Ln) quenches at the time ThAt. It follows from Remark

At THUh Hmf T HUh ”mf do
5.1 and (36) that |T>" —t,] < FUT D ey~ WO Jo (o) < 5 because

HU Hmf < R for h < hy(g). We deduce that for h < hy(e),

Ty — TR < Ty —tgl + 1ty — T | < 5+ 5 <,

which leads us to the result. O

6. NUMERICAL RESULTS

In this section, we present some numerical approximations to the quenching

time for the solution of the problem (1)-(3) in the case where p = 1 and

up(x) = %%s(m) with 0 < ¢ < 1. Firstly, we take the explicit scheme in

(25)—(26). Secondly, we use the following implicit scheme

(n+1) _g7(n)
Ui AtnUi — 62Ui(n+1) _ ai(Ui(n))_p_lUi(nJrl), 0<i<I,

U = >0 0<i<I,

where n > 0, At,, = KHU}(Ln)HpJrl with K = 1073.

inf

In both cases, ¢; = M*S'(mm, 0 < ¢ < I. For the above implicit scheme,

(n)

the existence and positivity of the discrete solution U, is guaranteed using

standard methods (see [3]). In the tables 1-8, in rows, we present the numerical

quenching times, the numbers of iterations and the CPU times corresponding

to meshes of 16, 32, 64, 128. We take for the numerical quenching time
Z At which is computed at the first time when

Aty = |tps1 — tn]| < 10716,
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Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

I tn n CPU time
16 | 0.062132 | 4102 1

32 |0.062253 | 15883 |3

64 | 0.062312 | 61257 | 60

128 | 0.062322 | 235525 | 1245

Numerical quenching times, numbers of iterations and CPU times (seconds) ob-
tained with the explicit Euler method for € = 1.

I tn n CPU time
16 | 0.062302 | 4017 1

32 |0.062317 | 15499 |6

64 | 0.062323 | 59679 | 138

128 | 0.062324 | 229179 | 4260

Numerical quenching times, numbers of iterations and CPU times (seconds) ob-
tained with the implicit Euler method for ¢ = 1.

1 tn n CPU time
16 |0.121368 | 2389 4

32 |0.121210 | 8882 16

64 | 0.121170 | 32769 | 222

128 | 0.121157 | 119887 | 3887

Numerical quenching times, numbers of iterations and CPU times (seconds) ob-
tained with the explicit Euler method for e = 1/10.

I tn n CPU time
16 | 0.121316 | 14047 | 25

32 |0.121326 | 14071 | 45

64 | 0.121328 | 14091 | 168

128 | 0.121329 | 14098 | 795

Numerical quenching times, numbers of iterations and CPU times (seconds) ob-
tained with the implicit Euler method for € = 1/10.

I tn n CPU time
16 | 0.124875 | 2356 3

32 |0.124694 | 8728 17

64 | 0.124649 | 32091 | 236

128 | 0.124638 | 112964 | 3974

Numerical quenching times, numbers of iterations and CPU times (seconds) ob-
tained with the explicit Euler method for e = 1/100.
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I tn n CPU time
16 | 0.124822 | 13915 | 24

32 | 0.1248195 | 13920 | 44

64 | 0.1248193 | 13923 | 168

128 | 0.1248191 | 13925 | 793

Table 6. Numerical quenching times, numbers of iterations and CPU times (seconds) ob-
tained with the implicit Euler method for e = 1/100.

1 tn n CPU time
16 | 0.125208 | 2351 3

32 | 0.125024 | 8708 17

64 |0.124979 | 32006 | 191

128 | 0.124957 | 112873 | 3852

Table 7. Numerical quenching times, numbers of iterations and CPU times (seconds) ob-
tained with the explicit Euler method for e = 1/1000.

I tn n CPU time
16 | 0.125155 13914 | 26

32 | 0.12515090 | 13917 | 52

64 | 0.12515091 | 13918 | 154

128 | 0.12515093 | 13919 | 781

Table 8. Numerical quenching times, numbers of iterations and CPU times (seconds) ob-
tained with the implicit Euler method for € = 1/1000.

REMARK 6.1. When € = 0 and p = 1, we know that the quenching time
of the continuous solution of (1)—(3) is equal 0.125. We have also seen in
Remark 3.3 that the quenching time of the semidiscrete solution is equal 0.125.
We observe from Tables 1-8 that when ¢ decays to zero, then the numerical
quenching time of the discrete solution goes to 0.125. When one examines
tables 1,2,3 and 4 one sees that an important perturbation on the potential
and the initial datum has a meaningful impact on the numerical quenching
time. ]
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